Results 1  10
of
3,856,419
A Symbolic Representation Of Time Series, with . . .
 IN PROCEEDINGS OF THE 8TH ACM SIGMOD WORKSHOP ON RESEARCH ISSUES IN DATA MINING AND KNOWLEDGE DISCOVERY
, 2003
"... The parallel explosions of interest in streaming data, and data mining of time series have had surprisingly little intersection. This is in spite of the fact that time series data are typically streaming data. The main reason for this apparent paradox is the fact that the vast majority of work on st ..."
Abstract
 Add to MetaCart
The parallel explosions of interest in streaming data, and data mining of time series have had surprisingly little intersection. This is in spite of the fact that time series data are typically streaming data. The main reason for this apparent paradox is the fact that the vast majority of work
A Symbolic Representation of Time Series, with Implications for Streaming Algorithms
 In Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery
, 2003
"... The parallel explosions of interest in streaming data, and data nfining of time series have had surprisingly little intersection. This is in spite of the fact that time series data are typically streaming data. The main reason for this apparent paradox is the fact that the vast majority of work on s ..."
Abstract

Cited by 300 (32 self)
 Add to MetaCart
The parallel explosions of interest in streaming data, and data nfining of time series have had surprisingly little intersection. This is in spite of the fact that time series data are typically streaming data. The main reason for this apparent paradox is the fact that the vast majority of work
A Symbolic Representation of Time Series Employing KeySequences and a Hierarchical Approach
"... Efficiently and accurately searching for similarities among time series and discovering interesting patterns is an important and nontrivial problem. There is a lot of prior work e.g., Findex introduced by Agrawal et al, STindex proposed by Faloutsos et al, and PAA suggested by Keogh et al. In this ..."
Abstract
 Add to MetaCart
time series in a hierarchical mechanism, processing the original time series at multiple resolutions. Moreover, the proposed representation is symbolic employing keysequences potentially allowing the application of textbased retrieval techniques into the similarity analysis of time series. Our method
The Symbol Grounding Problem
, 1990
"... There has been much discussion recently about the scope and limits of purely symbolic models of the mind and about the proper role of connectionism in cognitive modeling. This paper describes the "symbol grounding problem": How can the semantic interpretation of a formal symbol system be m ..."
Abstract

Cited by 1072 (18 self)
 Add to MetaCart
Chinese from a Chinese/Chinese dictionary alone. A candidate solution is sketched: Symbolic representations must be grounded bottomup in nonsymbolic representations of two kinds: (1) "iconic representations" , which are analogs of the proximal sensory projections of distal objects and events
Symbolic Model Checking for Realtime Systems
 INFORMATION AND COMPUTATION
, 1992
"... We describe finitestate programs over realnumbered time in a guardedcommand language with realvalued clocks or, equivalently, as finite automata with realvalued clocks. Model checking answers the question which states of a realtime program satisfy a branchingtime specification (given in an ..."
Abstract

Cited by 574 (50 self)
 Add to MetaCart
in an extension of CTL with clock variables). We develop an algorithm that computes this set of states symbolically as a fixpoint of a functional on state predicates, without constructing the state space. For this purpose, we introduce a calculus on computation trees over realnumbered time. Unfortunately
Symbolic Model Checking without BDDs
, 1999
"... Symbolic Model Checking [3, 14] has proven to be a powerful technique for the verification of reactive systems. BDDs [2] have traditionally been used as a symbolic representation of the system. In this paper we show how boolean decision procedures, like Stalmarck's Method [16] or the Davis ..."
Abstract

Cited by 910 (74 self)
 Add to MetaCart
Symbolic Model Checking [3, 14] has proven to be a powerful technique for the verification of reactive systems. BDDs [2] have traditionally been used as a symbolic representation of the system. In this paper we show how boolean decision procedures, like Stalmarck's Method [16] or the Davis
Inductive Learning Algorithms and Representations for Text Categorization
, 1998
"... Text categorization – the assignment of natural language texts to one or more predefined categories based on their content – is an important component in many information organization and management tasks. We compare the effectiveness of five different automatic learning algorithms for text categori ..."
Abstract

Cited by 641 (8 self)
 Add to MetaCart
categorization in terms of learning speed, realtime classification speed, and classification accuracy. We also examine training set size, and alternative document representations. Very accurate text classifiers can be learned automatically from training examples. Linear Support Vector Machines (SVMs
Symbolic Boolean manipulation with ordered binarydecision diagrams
 ACM COMPUTING SURVEYS
, 1992
"... Ordered BinaryDecision Diagrams (OBDDS) represent Boolean functions as directed acyclic graphs. They form a canonical representation, making testing of functional properties such as satmfiability and equivalence straightforward. A number of operations on Boolean functions can be implemented as grap ..."
Abstract

Cited by 1022 (13 self)
 Add to MetaCart
Ordered BinaryDecision Diagrams (OBDDS) represent Boolean functions as directed acyclic graphs. They form a canonical representation, making testing of functional properties such as satmfiability and equivalence straightforward. A number of operations on Boolean functions can be implemented
Probabilistic Visual Learning for Object Representation
, 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixtureof ..."
Abstract

Cited by 705 (15 self)
 Add to MetaCart
We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixture
Results 1  10
of
3,856,419