Results 1  10
of
3,092,858
The Nature of Statistical Learning Theory
, 1999
"... Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the deve ..."
Abstract

Cited by 12976 (32 self)
 Add to MetaCart
Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based
Maximum likelihood from incomplete data via the EM algorithm
 JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B
, 1977
"... A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value situat ..."
Abstract

Cited by 11807 (17 self)
 Add to MetaCart
A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value
A Trainable Document Summarizer
, 1995
"... To summarize is to reduce in complexity, and hence in length, while retaining some of the essential qualities of the original. This paper focusses on document extracts, a particular kind of computed document summary. ..."
Abstract

Cited by 525 (2 self)
 Add to MetaCart
To summarize is to reduce in complexity, and hence in length, while retaining some of the essential qualities of the original. This paper focusses on document extracts, a particular kind of computed document summary.
Using Lexical Chains for Text Summarization
, 1997
"... We investigate one technique to produce a summary of an original text without requiring its full semantic interpretation, but instead relying on a model of the topic progression in the text derived from lexical chains. We present a new algorithm to compute lexical chains in a text, merging several r ..."
Abstract

Cited by 450 (9 self)
 Add to MetaCart
robust knowledge sources: the WordNet thesaurus, a partofspeech tagger and shallow parser for the ldentification of nominal groups, and a segmentation algorithm derived from (Hearst, 1994) Summarization proceeds in three steps: the original text m first segmented, lexical chains are constructed, strong
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
Biclustering of Expression Data
, 2000
"... An efficient nodedeletion algorithm is introduced to find submatrices... ..."
Abstract

Cited by 591 (0 self)
 Add to MetaCart
An efficient nodedeletion algorithm is introduced to find submatrices...
A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts
 In Proceedings of the ACL
, 2004
"... Sentiment analysis seeks to identify the viewpoint(s) underlying a text span; an example application is classifying a movie review as “thumbs up” or “thumbs down”. To determine this sentiment polarity, we propose a novel machinelearning method that applies textcategorization techniques to just the ..."
Abstract

Cited by 589 (7 self)
 Add to MetaCart
Sentiment analysis seeks to identify the viewpoint(s) underlying a text span; an example application is classifying a movie review as “thumbs up” or “thumbs down”. To determine this sentiment polarity, we propose a novel machinelearning method that applies textcategorization techniques to just
The CN2 Induction Algorithm
 MACHINE LEARNING
, 1989
"... Systems for inducing concept descriptions from examples are valuable tools for assisting in the task of knowledge acquisition for expert systems. This paper presents a description and empirical evaluation of a new induction system, cn2, designed for the efficient induction of simple, comprehensib ..."
Abstract

Cited by 884 (6 self)
 Add to MetaCart
Systems for inducing concept descriptions from examples are valuable tools for assisting in the task of knowledge acquisition for expert systems. This paper presents a description and empirical evaluation of a new induction system, cn2, designed for the efficient induction of simple
Data Streams: Algorithms and Applications
, 2005
"... In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerg ..."
Abstract

Cited by 538 (22 self)
 Add to MetaCart
In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has
A data locality optimizing algorithm
, 1991
"... 1 Introduction As processor speed continues to increase faster than memory speed, optimizations to use the memory hierarchy efficiently become ever more important. Blocking [9] ortiling [18] is a wellknown technique that improves the data locality of numerical algorithms [1, 6, 7, 12, 13].Tiling c ..."
Abstract

Cited by 805 (16 self)
 Add to MetaCart
1 Introduction As processor speed continues to increase faster than memory speed, optimizations to use the memory hierarchy efficiently become ever more important. Blocking [9] ortiling [18] is a wellknown technique that improves the data locality of numerical algorithms [1, 6, 7, 12, 13].Tiling
Results 1  10
of
3,092,858