• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 119,528
Next 10 →

Global Optimization with Polynomials and the Problem of Moments

by Jean B. Lasserre - SIAM Journal on Optimization , 2001
"... We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear mat ..."
Abstract - Cited by 569 (47 self) - Add to MetaCart
We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear

Planning Algorithms

by Steven M LaValle , 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract - Cited by 1108 (51 self) - Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning

Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming

by M. X. Goemans, D.P. Williamson - Journal of the ACM , 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2-satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract - Cited by 1231 (13 self) - Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2-satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds

A training algorithm for optimal margin classifiers

by Bernhard E. Boser, et al. - PROCEEDINGS OF THE 5TH ANNUAL ACM WORKSHOP ON COMPUTATIONAL LEARNING THEORY , 1992
"... A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjust ..."
Abstract - Cited by 1848 (44 self) - Add to MetaCart
A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters

A Limited Memory Algorithm for Bound Constrained Optimization

by Richard H. Byrd, Richard H. Byrd, Peihuang Lu, Peihuang Lu, Jorge Nocedal, Jorge Nocedal, Ciyou Zhu, Ciyou Zhu - SIAM Journal on Scientific Computing , 1994
"... An algorithm for solving large nonlinear optimization problems with simple bounds is described. ..."
Abstract - Cited by 557 (9 self) - Add to MetaCart
An algorithm for solving large nonlinear optimization problems with simple bounds is described.

A first-order primal-dual algorithm for convex problems with applications to imaging

by Antonin Chambolle, Thomas Pock , 2010
"... In this paper we study a first-order primal-dual algorithm for convex optimization problems with known saddle-point structure. We prove convergence to a saddle-point with rate O(1/N) in finite dimensions, which is optimal for the complete class of non-smooth problems we are considering in this paper ..."
Abstract - Cited by 435 (20 self) - Add to MetaCart
In this paper we study a first-order primal-dual algorithm for convex optimization problems with known saddle-point structure. We prove convergence to a saddle-point with rate O(1/N) in finite dimensions, which is optimal for the complete class of non-smooth problems we are considering

SNOPT: An SQP Algorithm For Large-Scale Constrained Optimization

by Philip E. Gill, Walter Murray, Michael A. Saunders , 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract - Cited by 582 (23 self) - Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first

An Efficient Boosting Algorithm for Combining Preferences

by Raj Dharmarajan Iyer , Jr. , 1999
"... The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new boosting ..."
Abstract - Cited by 707 (18 self) - Add to MetaCart
The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new

The Omega Test: a fast and practical integer programming algorithm for dependence analysis

by William Pugh - Communications of the ACM , 1992
"... The Omega testi s ani nteger programmi ng algori thm that can determi ne whether a dependence exi sts between two array references, and i so, under what condi7: ns. Conventi nalwi[A m holds thati nteger programmiB techni:36 are far too expensi e to be used for dependence analysi6 except as a method ..."
Abstract - Cited by 521 (15 self) - Add to MetaCart
The Omega testi s ani nteger programmi ng algori thm that can determi ne whether a dependence exi sts between two array references, and i so, under what condi7: ns. Conventi nalwi[A m holds thati nteger programmiB techni:36 are far too expensi e to be used for dependence analysi6 except as a method

A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting

by Yoav Freund, Robert E. Schapire , 1996
"... ..."
Abstract - Cited by 3437 (65 self) - Add to MetaCart
Abstract not found
Next 10 →
Results 1 - 10 of 119,528
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University