• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 1,175,959
Next 10 →

Algorithmic Game Theory

by Tim Roughgarden , 2009
"... ..."
Abstract - Cited by 582 (15 self) - Add to MetaCart
Abstract not found

Planning Algorithms

by Steven M LaValle , 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract - Cited by 1108 (51 self) - Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning

Instance-based learning algorithms

by David W. Aha, Dennis Kibler, Marc K. Albert - Machine Learning , 1991
"... Abstract. Storing and using specific instances improves the performance of several supervised learning algorithms. These include algorithms that learn decision trees, classification rules, and distributed networks. However, no investigation has analyzed algorithms that use only specific instances to ..."
Abstract - Cited by 1359 (18 self) - Add to MetaCart
to solve incremental learning tasks. In this paper, we describe a framework and methodology, called instance-based learning, that generates classification predictions using only specific instances. Instance-based learning algorithms do not maintain a set of abstractions derived from specific instances

Games and decisions

by Debra Edwards Ph. D , 1957
"... Agency ..."
Abstract - Cited by 610 (0 self) - Add to MetaCart
Abstract not found

Randomized Algorithms

by Rajeev Motwani , 1995
"... Randomized algorithms, once viewed as a tool in computational number theory, have by now found widespread application. Growth has been fueled by the two major benefits of randomization: simplicity and speed. For many applications a randomized algorithm is the fastest algorithm available, or the simp ..."
Abstract - Cited by 2210 (37 self) - Add to MetaCart
Randomized algorithms, once viewed as a tool in computational number theory, have by now found widespread application. Growth has been fueled by the two major benefits of randomization: simplicity and speed. For many applications a randomized algorithm is the fastest algorithm available

A learning algorithm for Boltzmann machines

by H. Ackley, E. Hinton, J. Sejnowski - Cognitive Science , 1985
"... The computotionol power of massively parallel networks of simple processing elements resides in the communication bandwidth provided by the hardware connections between elements. These connections con allow a significant fraction of the knowledge of the system to be applied to an instance of a probl ..."
Abstract - Cited by 586 (13 self) - Add to MetaCart
. Second, there must be some way of choosing internal representations which allow the preexisting hardware connections to be used efficiently for encoding the con-straints in the domain being searched. We describe a generol parallel search method, based on statistical mechanics, and we show how it leads

Boosting a Weak Learning Algorithm By Majority

by Yoav Freund , 1995
"... We present an algorithm for improving the accuracy of algorithms for learning binary concepts. The improvement is achieved by combining a large number of hypotheses, each of which is generated by training the given learning algorithm on a different set of examples. Our algorithm is based on ideas pr ..."
Abstract - Cited by 516 (15 self) - Add to MetaCart
We present an algorithm for improving the accuracy of algorithms for learning binary concepts. The improvement is achieved by combining a large number of hypotheses, each of which is generated by training the given learning algorithm on a different set of examples. Our algorithm is based on ideas

A comparative analysis of selection schemes used in genetic algorithms

by David E. Goldberg, Kalyanmoy Deb - Foundations of Genetic Algorithms , 1991
"... This paper considers a number of selection schemes commonly used in modern genetic algorithms. Specifically, proportionate reproduction, ranking selection, tournament selection, and Genitor (or «steady state") selection are compared on the basis of solutions to deterministic difference or d ..."
Abstract - Cited by 512 (32 self) - Add to MetaCart
This paper considers a number of selection schemes commonly used in modern genetic algorithms. Specifically, proportionate reproduction, ranking selection, tournament selection, and Genitor (or «steady state") selection are compared on the basis of solutions to deterministic difference

The Viterbi algorithm

by G. David Forney - Proceedings of the IEEE , 1973
"... vol. 6, no. 8, pp. 211-220, 1951. [7] J. L. Anderson and J. W..Ryon, “Electromagnetic radiation in accelerated systems, ” Phys. Rev., vol. 181, pp. 1765-1775, 1969. [8] C. V. Heer, “Resonant frequencies of an electromagnetic cavity in an accelerated system of reference, ” Phys. Reu., vol. 134, pp. A ..."
Abstract - Cited by 985 (3 self) - Add to MetaCart
. A799-A804, 1964. [9] T. C. Mo, “Theory of electrodynamics in media in noninertial frames and applications, ” J. Math. Phys., vol. 11, pp. 2589-2610, 1970.

Predicting How People Play Games: Reinforcement Learning . . .

by Ido Erev, Alvin E. Roth - AMERICAN ECONOMIC REVIEW , 1998
"... ..."
Abstract - Cited by 607 (23 self) - Add to MetaCart
Abstract not found
Next 10 →
Results 1 - 10 of 1,175,959
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University