Results 1  10
of
1,418,303
Iterative decoding of binary block and convolutional codes
 IEEE Trans. Inform. Theory
, 1996
"... Abstract Iterative decoding of twodimensional systematic convolutional codes has been termed “turbo ” (de)coding. Using loglikelihood algebra, we show that any decoder can he used which accepts soft inputsincluding a priori valuesand delivers soft outputs that can he split into three terms: the ..."
Abstract

Cited by 600 (43 self)
 Add to MetaCart
: the soft channel and a priori inputs, and the extrinsic value. The extrinsic value is used as an a priori value for the next iteration. Decoding algorithms in the loglikelihood domain are given not only for convolutional codes hut also for any linear binary systematic block code. The iteration
The Viterbi algorithm
 Proceedings of the IEEE
, 1973
"... vol. 6, no. 8, pp. 211220, 1951. [7] J. L. Anderson and J. W..Ryon, “Electromagnetic radiation in accelerated systems, ” Phys. Rev., vol. 181, pp. 17651775, 1969. [8] C. V. Heer, “Resonant frequencies of an electromagnetic cavity in an accelerated system of reference, ” Phys. Reu., vol. 134, pp. A ..."
Abstract

Cited by 985 (3 self)
 Add to MetaCart
. A799A804, 1964. [9] T. C. Mo, “Theory of electrodynamics in media in noninertial frames and applications, ” J. Math. Phys., vol. 11, pp. 25892610, 1970.
The Capacity of LowDensity ParityCheck Codes Under MessagePassing Decoding
, 2001
"... In this paper, we present a general method for determining the capacity of lowdensity paritycheck (LDPC) codes under messagepassing decoding when used over any binaryinput memoryless channel with discrete or continuous output alphabets. Transmitting at rates below this capacity, a randomly chos ..."
Abstract

Cited by 569 (9 self)
 Add to MetaCart
In this paper, we present a general method for determining the capacity of lowdensity paritycheck (LDPC) codes under messagepassing decoding when used over any binaryinput memoryless channel with discrete or continuous output alphabets. Transmitting at rates below this capacity, a randomly
The ratedistortion function for source coding with side information at the decoder
 IEEE Trans. Inform. Theory
, 1976
"... AbstractLet {(X,, Y,J}r = 1 be a sequence of independent drawings of a pair of dependent random variables X, Y. Let us say that X takes values in the finite set 6. It is desired to encode the sequence {X,} in blocks of length n into a binary stream*of rate R, which can in turn be decoded as a seque ..."
Abstract

Cited by 1055 (1 self)
 Add to MetaCart
sequence { 2k}, where zk E %, the reproduction alphabet. The average distorjion level is (l/n) cl = 1 E[D(X,,z&, where D(x, $ 2 0, x E I, 2 E J, is a preassigned distortion measure. The special assumption made here is that the decoder has access to the side information {Yk}. In this paper we determine
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
computational rule, the sumproduct algorithm operates in factor graphs to computeeither exactly or approximatelyvarious marginal functions by distributed messagepassing in the graph. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can
The CN2 Induction Algorithm
 MACHINE LEARNING
, 1989
"... Systems for inducing concept descriptions from examples are valuable tools for assisting in the task of knowledge acquisition for expert systems. This paper presents a description and empirical evaluation of a new induction system, cn2, designed for the efficient induction of simple, comprehensib ..."
Abstract

Cited by 884 (6 self)
 Add to MetaCart
Systems for inducing concept descriptions from examples are valuable tools for assisting in the task of knowledge acquisition for expert systems. This paper presents a description and empirical evaluation of a new induction system, cn2, designed for the efficient induction of simple
Randomized Algorithms
, 1995
"... Randomized algorithms, once viewed as a tool in computational number theory, have by now found widespread application. Growth has been fueled by the two major benefits of randomization: simplicity and speed. For many applications a randomized algorithm is the fastest algorithm available, or the simp ..."
Abstract

Cited by 2210 (37 self)
 Add to MetaCart
Randomized algorithms, once viewed as a tool in computational number theory, have by now found widespread application. Growth has been fueled by the two major benefits of randomization: simplicity and speed. For many applications a randomized algorithm is the fastest algorithm available
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
A learning algorithm for Boltzmann machines
 Cognitive Science
, 1985
"... The computotionol power of massively parallel networks of simple processing elements resides in the communication bandwidth provided by the hardware connections between elements. These connections con allow a significant fraction of the knowledge of the system to be applied to an instance of a probl ..."
Abstract

Cited by 586 (13 self)
 Add to MetaCart
to a general learning rule for modifying the connection strengths so as to incorporate knowledge obout o task domain in on efficient way. We describe some simple examples in which the learning algorithm creates internal representations thot ore demonstrobly the most efficient way of using
Improved algorithms for optimal winner determination in combinatorial auctions and generalizations
, 2000
"... Combinatorial auctions can be used to reach efficient resource and task allocations in multiagent systems where the items are complementary. Determining the winners is NPcomplete and inapproximable, but it was recently shown that optimal search algorithms do very well on average. This paper present ..."
Abstract

Cited by 598 (55 self)
 Add to MetaCart
presents a more sophisticated search algorithm for optimal (and anytime) winner determination, including structural improvements that reduce search tree size, faster data structures, and optimizations at search nodes based on driving toward, identifying and solving tractable special cases. We also uncover
Results 1  10
of
1,418,303