Results 1  10
of
712,829
Fusion, Propagation, and Structuring in Belief Networks
 ARTIFICIAL INTELLIGENCE
, 1986
"... Belief networks are directed acyclic graphs in which the nodes represent propositions (or variables), the arcs signify direct dependencies between the linked propositions, and the strengths of these dependencies are quantified by conditional probabilities. A network of this sort can be used to repre ..."
Abstract

Cited by 482 (8 self)
 Add to MetaCart
Belief networks are directed acyclic graphs in which the nodes represent propositions (or variables), the arcs signify direct dependencies between the linked propositions, and the strengths of these dependencies are quantified by conditional probabilities. A network of this sort can be used
Bayes Factors
, 1995
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 1766 (74 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null
Ptolemy: A Framework for Simulating and Prototyping Heterogeneous Systems
, 1992
"... Ptolemy is an environment for simulation and prototyping of heterogeneous systems. It uses modern objectoriented software technology (C++) to model each subsystem in a natural and efficient manner, and to integrate these subsystems into a whole. Ptolemy encompasses practically all aspects of design ..."
Abstract

Cited by 569 (90 self)
 Add to MetaCart
Ptolemy is an environment for simulation and prototyping of heterogeneous systems. It uses modern objectoriented software technology (C++) to model each subsystem in a natural and efficient manner, and to integrate these subsystems into a whole. Ptolemy encompasses practically all aspects
A Practical Bayesian Framework for Backprop Networks
 Neural Computation
, 1991
"... A quantitative and practical Bayesian framework is described for learning of mappings in feedforward networks. The framework makes possible: (1) objective comparisons between solutions using alternative network architectures ..."
Abstract

Cited by 496 (20 self)
 Add to MetaCart
A quantitative and practical Bayesian framework is described for learning of mappings in feedforward networks. The framework makes possible: (1) objective comparisons between solutions using alternative network architectures
Refactoring ObjectOriented Frameworks
, 1992
"... This thesis defines a set of program restructuring operations (refactorings) that support the design, evolution and reuse of objectoriented application frameworks. The focus of the thesis is on automating the refactorings in a way that preserves the behavior of a program. The refactorings are defin ..."
Abstract

Cited by 482 (4 self)
 Add to MetaCart
This thesis defines a set of program restructuring operations (refactorings) that support the design, evolution and reuse of objectoriented application frameworks. The focus of the thesis is on automating the refactorings in a way that preserves the behavior of a program. The refactorings
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 696 (15 self)
 Add to MetaCart
Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence
Predictive reward signal of dopamine neurons
 Journal of Neurophysiology
, 1998
"... Schultz, Wolfram. Predictive reward signal of dopamine neurons. is called rewards, which elicit and reinforce approach behavJ. Neurophysiol. 80: 1–27, 1998. The effects of lesions, receptor ior. The functions of rewards were developed further during blocking, electrical selfstimulation, and drugs ..."
Abstract

Cited by 717 (12 self)
 Add to MetaCart
Schultz, Wolfram. Predictive reward signal of dopamine neurons. is called rewards, which elicit and reinforce approach behavJ. Neurophysiol. 80: 1–27, 1998. The effects of lesions, receptor ior. The functions of rewards were developed further during blocking, electrical selfstimulation, and drugs
Results 1  10
of
712,829