Results 1  10
of
76,784
A cone programming approach to the bilinear matrix inequality problem and its geometry 1
, 1995
"... We discuss an approach for solving the Bilinear Matrix Inequality (BMI) based on its connections with certain problems defined over matrix cones. These problems are, among others, the cone generalization f the linear programming (LP) and the linear complementarity problem (LCP) (referred to as the ..."
Abstract
 Add to MetaCart
We discuss an approach for solving the Bilinear Matrix Inequality (BMI) based on its connections with certain problems defined over matrix cones. These problems are, among others, the cone generalization f the linear programming (LP) and the linear complementarity problem (LCP) (referred
Learning the Kernel Matrix with SemiDefinite Programming
, 2002
"... Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract

Cited by 780 (22 self)
 Add to MetaCart
is contained in the socalled kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input spaceclassical model selection
The Extended Linear Complementarity Problem
, 1993
"... We consider an extension of the horizontal linear complementarity problem, which we call the extended linear complementarity problem (XLCP). With the aid of a natural bilinear program, we establish various properties of this extended complementarity problem; these include the convexity of the biline ..."
Abstract

Cited by 776 (28 self)
 Add to MetaCart
We consider an extension of the horizontal linear complementarity problem, which we call the extended linear complementarity problem (XLCP). With the aid of a natural bilinear program, we establish various properties of this extended complementarity problem; these include the convexity
Global Optimization with Polynomials and the Problem of Moments
 SIAM Journal on Optimization
, 2001
"... We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear mat ..."
Abstract

Cited by 569 (47 self)
 Add to MetaCart
matrix inequality (LMI) problems. A notion of KarushKuhnTucker polynomials is introduced in a global optimality condition. Some illustrative examples are provided. Key words. global optimization, theory of moments and positive polynomials, semidefinite programming AMS subject classifications. 90C22
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
the solution to a nonlinear programming relaxation. This relaxation can be interpreted both as a semidefinite program and as an eigenvalue minimization problem. The best previously known approximation algorithms for these problems had performance guarantees of ...
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 557 (12 self)
 Add to MetaCart
We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized
GromovWitten classes, quantum cohomology, and enumerative geometry
 Commun. Math. Phys
, 1994
"... The paper is devoted to the mathematical aspects of topological quantum field theory and its applications to enumerative problems of algebraic geometry. In particular, it contains an axiomatic treatment of Gromovâ€“Witten classes, and a discussion of their properties for Fano varieties. Cohomological ..."
Abstract

Cited by 484 (3 self)
 Add to MetaCart
The paper is devoted to the mathematical aspects of topological quantum field theory and its applications to enumerative problems of algebraic geometry. In particular, it contains an axiomatic treatment of Gromovâ€“Witten classes, and a discussion of their properties for Fano varieties. Cohomological
Determining the Epipolar Geometry and its Uncertainty: A Review
 International Journal of Computer Vision
, 1998
"... Two images of a single scene/object are related by the epipolar geometry, which can be described by a 3×3 singular matrix called the essential matrix if images' internal parameters are known, or the fundamental matrix otherwise. It captures all geometric information contained in two i ..."
Abstract

Cited by 400 (9 self)
 Add to MetaCart
images, and its determination is very important in many applications such as scene modeling and vehicle navigation. This paper gives an introduction to the epipolar geometry, and provides a complete review of the current techniques for estimating the fundamental matrix and its uncertainty. A well
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 496 (2 self)
 Add to MetaCart
. This paper studies a method called convex relaxation, which attempts to recover the ideal sparse signal by solving a convex program. This approach is powerful because the optimization can be completed in polynomial time with standard scientific software. The paper provides general conditions which ensure
Results 1  10
of
76,784