Results 1  10
of
160,120
Iterative decoding of binary block and convolutional codes
 IEEE Trans. Inform. Theory
, 1996
"... Abstract Iterative decoding of twodimensional systematic convolutional codes has been termed “turbo ” (de)coding. Using loglikelihood algebra, we show that any decoder can he used which accepts soft inputsincluding a priori valuesand delivers soft outputs that can he split into three terms: the ..."
Abstract

Cited by 600 (43 self)
 Add to MetaCart
Abstract Iterative decoding of twodimensional systematic convolutional codes has been termed “turbo ” (de)coding. Using loglikelihood algebra, we show that any decoder can he used which accepts soft inputsincluding a priori valuesand delivers soft outputs that can he split into three terms
Good ErrorCorrecting Codes based on Very Sparse Matrices
, 1999
"... We study two families of errorcorrecting codes defined in terms of very sparse matrices. "MN" (MacKayNeal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties. The ..."
Abstract

Cited by 741 (23 self)
 Add to MetaCart
. The decoding of both codes can be tackled with a practical sumproduct algorithm. We prove that these codes are "very good," in that sequences of codes exist which, when optimally decoded, achieve information rates up to the Shannon limit. This result holds not only for the binarysymmetric channel
Ensemble Methods in Machine Learning
 MULTIPLE CLASSIFIER SYSTEMS, LBCS1857
, 2000
"... Ensemble methods are learning algorithms that construct a set of classifiers and then classify new data points by taking a (weighted) vote of their predictions. The original ensemble method is Bayesian averaging, but more recent algorithms include errorcorrecting output coding, Bagging, and boostin ..."
Abstract

Cited by 607 (3 self)
 Add to MetaCart
Ensemble methods are learning algorithms that construct a set of classifiers and then classify new data points by taking a (weighted) vote of their predictions. The original ensemble method is Bayesian averaging, but more recent algorithms include errorcorrecting output coding, Bagging
Toward a model of text comprehension and production
 Psychological Review
, 1978
"... The semantic structure of texts can be described both at the local microlevel and at a more global macrolevel. A model for text comprehension based on this notion accounts for the formation of a coherent semantic text base in terms of a cyclical process constrained by limitations of working memory. ..."
Abstract

Cited by 540 (12 self)
 Add to MetaCart
The semantic structure of texts can be described both at the local microlevel and at a more global macrolevel. A model for text comprehension based on this notion accounts for the formation of a coherent semantic text base in terms of a cyclical process constrained by limitations of working memory
Loopy Belief Propagation for Approximate Inference: An Empirical Study
 In Proceedings of Uncertainty in AI
, 1999
"... Recently, researchers have demonstrated that "loopy belief propagation"  the use of Pearl's polytree algorithm in a Bayesian network with loops  can perform well in the context of errorcorrecting codes. The most dramatic instance of this is the near Shannonlimit performa ..."
Abstract

Cited by 680 (18 self)
 Add to MetaCart
Recently, researchers have demonstrated that "loopy belief propagation"  the use of Pearl's polytree algorithm in a Bayesian network with loops  can perform well in the context of errorcorrecting codes. The most dramatic instance of this is the near Shannon
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear
Wireless sensor networks: a survey
, 2002
"... This paper describes the concept of sensor networks which has been made viable by the convergence of microelectromechanical systems technology, wireless communications and digital electronics. First, the sensing tasks and the potential sensor networks applications are explored, and a review of fact ..."
Abstract

Cited by 1936 (23 self)
 Add to MetaCart
This paper describes the concept of sensor networks which has been made viable by the convergence of microelectromechanical systems technology, wireless communications and digital electronics. First, the sensing tasks and the potential sensor networks applications are explored, and a review
Cilk: An Efficient Multithreaded Runtime System
 JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING
, 1995
"... Cilk (pronounced "silk") is a Cbased runtime system for multithreaded parallel programming. In this paper, we document the efficiency of the Cilk workstealing scheduler, both empirically and analytically. We show that on real and synthetic applications, the "work" and "cri ..."
Abstract

Cited by 750 (40 self)
 Add to MetaCart
;criticalpath length" of a Cilk computation can be used to model performance accurately. Consequently, a Cilk programmer can focus on reducing the computation's work and criticalpath length, insulated from load balancing and other runtime scheduling issues. We also prove that for the class of "fully
Results 1  10
of
160,120