Results 1  10
of
4,700,835
Compressive sampling
, 2006
"... Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired res ..."
Abstract

Cited by 1427 (15 self)
 Add to MetaCart
of scientific interest accurately and sometimes even exactly from a number of samples which is far smaller than the desired resolution of the image/signal, e.g. the number of pixels in the image. It is believed that compressive sampling has far reaching implications. For example, it suggests the possibility
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 696 (15 self)
 Add to MetaCart
Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence
Optimization Flow Control, I: Basic Algorithm and Convergence
 IEEE/ACM TRANSACTIONS ON NETWORKING
, 1999
"... We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm. In thi ..."
Abstract

Cited by 690 (64 self)
 Add to MetaCart
We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm
The Unix TimeSharing System
 Communications of the ACM
, 1974
"... Unix is a generalpurpose, multiuser, interactive operating system for the larger Digital Equipment Corporation PDP11 and the Interdata 8/32 computers. It offers a number of features seldom found even in larger operating systems, including i A hierarchical file system incorporating demountable vol ..."
Abstract

Cited by 536 (14 self)
 Add to MetaCart
Unix is a generalpurpose, multiuser, interactive operating system for the larger Digital Equipment Corporation PDP11 and the Interdata 8/32 computers. It offers a number of features seldom found even in larger operating systems, including i A hierarchical file system incorporating demountable
A Digital Fountain Approach to Reliable Distribution of Bulk Data
 IN PROC. OF ACM SIGCOMM ’98
, 1998
"... The proliferation of applications that must reliably distribute bulk data to a large number of autonomous clients motivates the design of new multicast and broadcast prot.ocols. We describe an ideal, fully scalable protocol for these applications that we call a digital fountain. A digital fountain a ..."
Abstract

Cited by 498 (20 self)
 Add to MetaCart
allows any number of heterogeneous clients to acquire bulk data with optimal efficiency at times of their choosing. Moreover, no feedback channels are needed to ensure reliable delivery, even in the face of high loss rates. We develop a protocol that closely approximates a digital fountain using a new
Static Scheduling of Synchronous Data Flow Programs for Digital Signal Processing
 IEEE TRANSACTIONS ON COMPUTERS
, 1987
"... Large grain data flow (LGDF) programming is natural and convenient for describing digital signal processing (DSP) systems, but its runtime overhead is costly in real time or costsensitive applications. In some situations, designers are not willing to squander computing resources for the sake of pro ..."
Abstract

Cited by 592 (37 self)
 Add to MetaCart
not be done at runtime, but can be done at compile time (statically), so the runtime overhead evaporates. The sample rates can all be different, which is not true of most current datadriven digital signal processing programming methodologies. Synchronous data flow is closely related to computation graphs, a
Global Optimization with Polynomials and the Problem of Moments
 SIAM Journal on Optimization
, 2001
"... We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear mat ..."
Abstract

Cited by 569 (47 self)
 Add to MetaCart
matrix inequality (LMI) problems. A notion of KarushKuhnTucker polynomials is introduced in a global optimality condition. Some illustrative examples are provided. Key words. global optimization, theory of moments and positive polynomials, semidefinite programming AMS subject classifications. 90C22
Dynamo: A Transparent Dynamic Optimization System
 ACM SIGPLAN NOTICES
, 2000
"... We describe the design and implementation of Dynamo, a software dynamic optimization system that is capable of transparently improving the performance of a native instruction stream as it executes on the processor. The input native instruction stream to Dynamo can be dynamically generated (by a JIT ..."
Abstract

Cited by 479 (2 self)
 Add to MetaCart
We describe the design and implementation of Dynamo, a software dynamic optimization system that is capable of transparently improving the performance of a native instruction stream as it executes on the processor. The input native instruction stream to Dynamo can be dynamically generated (by a JIT
LowPower CMOS Digital Design
 JOURNAL OF SOLIDSTATE CIRCUITS. VOL 27, NO 4. APRIL 1992 413
, 1992
"... Motivated by emerging batteryoperated applications that demand intensive computation in portable environments, techniques are investigated which reduce power consumption in CMOS digital circuits while maintaining computational throughput. Techniques for lowpower operation are shown which use the ..."
Abstract

Cited by 570 (20 self)
 Add to MetaCart
Motivated by emerging batteryoperated applications that demand intensive computation in portable environments, techniques are investigated which reduce power consumption in CMOS digital circuits while maintaining computational throughput. Techniques for lowpower operation are shown which use
A Limited Memory Algorithm for Bound Constrained Optimization
 SIAM Journal on Scientific Computing
, 1994
"... An algorithm for solving large nonlinear optimization problems with simple bounds is described. ..."
Abstract

Cited by 557 (9 self)
 Add to MetaCart
An algorithm for solving large nonlinear optimization problems with simple bounds is described.
Results 1  10
of
4,700,835