Results 1  10
of
926,279
A Parallel Mixture of SVMs for Very Large Scale Problems
, 2002
"... Support Vector Machines (SVMs) are currently the stateoftheart models for many classification problems but they suffer from the complexity of their training algorithm which is at least quadratic with respect to the number of examples. ..."
Abstract

Cited by 108 (0 self)
 Add to MetaCart
Support Vector Machines (SVMs) are currently the stateoftheart models for many classification problems but they suffer from the complexity of their training algorithm which is at least quadratic with respect to the number of examples.
Comments on a parallel mixture of svms for very large scale problems
 Neural Computation
, 2004
"... Collobert et. al. recently introduced a novel approach to using a neural network to provide a class prediction from an ensemble of support vector machines (SVMs). This approach has the advantage that the required computation scales well to very large data sets. Experiments on the Forest Cover data s ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Collobert et. al. recently introduced a novel approach to using a neural network to provide a class prediction from an ensemble of support vector machines (SVMs). This approach has the advantage that the required computation scales well to very large data sets. Experiments on the Forest Cover data
NOTE Communicated by John Platt Comments on “A Parallel Mixture of SVMs for Very Large Scale Problems”
"... Collobert, Bengio, and Bengio (2002) recently introduced a novel approach to using a neural network to provide a class prediction from an ensemble of support vector machines (SVMs). This approach has the advantage that the required computation scales well to very large data sets. Experiments on th ..."
Abstract
 Add to MetaCart
Collobert, Bengio, and Bengio (2002) recently introduced a novel approach to using a neural network to provide a class prediction from an ensemble of support vector machines (SVMs). This approach has the advantage that the required computation scales well to very large data sets. Experiments
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE TRANS IMAGE PROCESSING
, 2003
"... We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vecto ..."
Abstract

Cited by 514 (17 self)
 Add to MetaCart
We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian
Making LargeScale Support Vector Machine Learning Practical
, 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract

Cited by 620 (1 self)
 Add to MetaCart
Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large
GloMoSim: A Library for Parallel Simulation of Largescale Wireless Networks
 in Workshop on Parallel and Distributed Simulation
, 1998
"... A number of librarybased parallel and sequential network simulators have been designed. This paper describes a library, called GloMoSim (for Global Mobile system Simulator), for parallel simulation of wireless networks. GloMoSim has been designed to be extensible and composable: the communication p ..."
Abstract

Cited by 645 (30 self)
 Add to MetaCart
A number of librarybased parallel and sequential network simulators have been designed. This paper describes a library, called GloMoSim (for Global Mobile system Simulator), for parallel simulation of wireless networks. GloMoSim has been designed to be extensible and composable: the communication
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 582 (23 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first
The nas parallel benchmarks
 The International Journal of Supercomputer Applications
, 1991
"... A new set of benchmarks has been developed for the performance evaluation of highly parallel supercomputers. These benchmarks consist of ve \parallel kernel " benchmarks and three \simulated application" benchmarks. Together they mimic the computation and data movement characterist ..."
Abstract

Cited by 686 (10 self)
 Add to MetaCart
A new set of benchmarks has been developed for the performance evaluation of highly parallel supercomputers. These benchmarks consist of ve \parallel kernel " benchmarks and three \simulated application" benchmarks. Together they mimic the computation and data movement
Network Coding for Large Scale Content Distribution
"... We propose a new scheme for content distribution of large files that is based on network coding. With network coding, each node of the distribution network is able to generate and transmit encoded blocks of information. The randomization introduced by the coding process eases the scheduling of bloc ..."
Abstract

Cited by 497 (6 self)
 Add to MetaCart
We propose a new scheme for content distribution of large files that is based on network coding. With network coding, each node of the distribution network is able to generate and transmit encoded blocks of information. The randomization introduced by the coding process eases the scheduling
Mixtures of Probabilistic Principal Component Analysers
, 1998
"... Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and visualising data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a com ..."
Abstract

Cited by 537 (6 self)
 Add to MetaCart
combination of local linear PCA projections. However, conventional PCA does not correspond to a probability density, and so there is no unique way to combine PCA models. Previous attempts to formulate mixture models for PCA have therefore to some extent been ad hoc. In this paper, PCA is formulated within a
Results 1  10
of
926,279