Results 1  10
of
276,899
A Parallel Implementation of a Hidden Markov Model with Duration Modeling for Speech Recognition
, 1995
"... Hidden Markov models (HMMs) are currently the most successful paradigm for speech recognition. Although explicit duration continuous HMMs more accurately model speech than HMMs with implicit duration modeling, the cost of accurate duration modeling is often considered prohibitive. This paper describ ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
Hidden Markov models (HMMs) are currently the most successful paradigm for speech recognition. Although explicit duration continuous HMMs more accurately model speech than HMMs with implicit duration modeling, the cost of accurate duration modeling is often considered prohibitive. This paper
An introduction to hidden Markov models
 IEEE ASSp Magazine
, 1986
"... The basic theory of Markov chains has been known to ..."
Abstract

Cited by 1110 (2 self)
 Add to MetaCart
The basic theory of Markov chains has been known to
Coupled hidden Markov models for complex action recognition
, 1996
"... We present algorithms for coupling and training hidden Markov models (HMMs) to model interacting processes, and demonstrate their superiority to conventional HMMs in a vision task classifying twohanded actions. HMMs are perhaps the most successful framework in perceptual computing for modeling and ..."
Abstract

Cited by 497 (22 self)
 Add to MetaCart
We present algorithms for coupling and training hidden Markov models (HMMs) to model interacting processes, and demonstrate their superiority to conventional HMMs in a vision task classifying twohanded actions. HMMs are perhaps the most successful framework in perceptual computing for modeling
A tutorial on hidden Markov models and selected applications in speech recognition
 PROCEEDINGS OF THE IEEE
, 1989
"... Although initially introduced and studied in the late 1960s and early 1970s, statistical methods of Markov source or hidden Markov modeling have become increasingly popular in the last several years. There are two strong reasons why this has occurred. First the models are very rich in mathematical s ..."
Abstract

Cited by 5764 (1 self)
 Add to MetaCart
Although initially introduced and studied in the late 1960s and early 1970s, statistical methods of Markov source or hidden Markov modeling have become increasingly popular in the last several years. There are two strong reasons why this has occurred. First the models are very rich in mathematical
Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms
, 2002
"... We describe new algorithms for training tagging models, as an alternative to maximumentropy models or conditional random fields (CRFs). The algorithms rely on Viterbi decoding of training examples, combined with simple additive updates. We describe theory justifying the algorithms through a modific ..."
Abstract

Cited by 641 (16 self)
 Add to MetaCart
We describe new algorithms for training tagging models, as an alternative to maximumentropy models or conditional random fields (CRFs). The algorithms rely on Viterbi decoding of training examples, combined with simple additive updates. We describe theory justifying the algorithms through a
Segmentation of brain MR images through a hidden Markov random field model and the expectationmaximization algorithm
 IEEE TRANSACTIONS ON MEDICAL. IMAGING
, 2001
"... The finite mixture (FM) model is the most commonly used model for statistical segmentation of brain magnetic resonance (MR) images because of its simple mathematical form and the piecewise constant nature of ideal brain MR images. However, being a histogrambased model, the FM has an intrinsic limi ..."
Abstract

Cited by 619 (14 self)
 Add to MetaCart
based methods produce unreliable results. In this paper, we propose a novel hidden Markov random field (HMRF) model, which is a stochastic process generated by a MRF whose state sequence cannot be observed directly but which can be indirectly estimated through observations. Mathematically, it can be shown
Maximum entropy markov models for information extraction and segmentation
, 2000
"... Hidden Markov models (HMMs) are a powerful probabilistic tool for modeling sequential data, and have been applied with success to many textrelated tasks, such as partofspeech tagging, text segmentation and information extraction. In these cases, the observations are usually modeled as multinomial ..."
Abstract

Cited by 554 (18 self)
 Add to MetaCart
Hidden Markov models (HMMs) are a powerful probabilistic tool for modeling sequential data, and have been applied with success to many textrelated tasks, such as partofspeech tagging, text segmentation and information extraction. In these cases, the observations are usually modeled
Markov Random Field Models in Computer Vision
, 1994
"... . A variety of computer vision problems can be optimally posed as Bayesian labeling in which the solution of a problem is defined as the maximum a posteriori (MAP) probability estimate of the true labeling. The posterior probability is usually derived from a prior model and a likelihood model. The l ..."
Abstract

Cited by 515 (18 self)
 Add to MetaCart
. The latter relates to how data is observed and is problem domain dependent. The former depends on how various prior constraints are expressed. Markov Random Field Models (MRF) theory is a tool to encode contextual constraints into the prior probability. This paper presents a unified approach for MRF modeling
Visual Recognition of American Sign Language Using Hidden Markov Models
, 1995
"... Using hidden Markov models (HMM's), an unobstrusive single view camera system is developed that can recognize hand gestures, namely, a subset of American Sign Language (ASL). Previous systems have concentrated on finger spelling or isolated word recognition, often using tethered electronic glov ..."
Abstract

Cited by 346 (14 self)
 Add to MetaCart
Using hidden Markov models (HMM's), an unobstrusive single view camera system is developed that can recognize hand gestures, namely, a subset of American Sign Language (ASL). Previous systems have concentrated on finger spelling or isolated word recognition, often using tethered electronic
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
 Biometrika
, 1995
"... Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model determi ..."
Abstract

Cited by 1330 (24 self)
 Add to MetaCart
Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model
Results 1  10
of
276,899