Results 1  10
of
1,441,400
Fast Parallel Algorithms for ShortRange Molecular Dynamics
 JOURNAL OF COMPUTATIONAL PHYSICS
, 1995
"... Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of interatomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dyn ..."
Abstract

Cited by 622 (6 self)
 Add to MetaCart
Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of interatomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular
The nas parallel benchmarks
 The International Journal of Supercomputer Applications
, 1991
"... A new set of benchmarks has been developed for the performance evaluation of highly parallel supercomputers. These benchmarks consist of ve \parallel kernel " benchmarks and three \simulated application" benchmarks. Together they mimic the computation and data movement characterist ..."
Abstract

Cited by 686 (10 self)
 Add to MetaCart
A new set of benchmarks has been developed for the performance evaluation of highly parallel supercomputers. These benchmarks consist of ve \parallel kernel " benchmarks and three \simulated application" benchmarks. Together they mimic the computation and data movement
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
The Viterbi algorithm
 Proceedings of the IEEE
, 1973
"... vol. 6, no. 8, pp. 211220, 1951. [7] J. L. Anderson and J. W..Ryon, “Electromagnetic radiation in accelerated systems, ” Phys. Rev., vol. 181, pp. 17651775, 1969. [8] C. V. Heer, “Resonant frequencies of an electromagnetic cavity in an accelerated system of reference, ” Phys. Reu., vol. 134, pp. A ..."
Abstract

Cited by 985 (3 self)
 Add to MetaCart
. A799A804, 1964. [9] T. C. Mo, “Theory of electrodynamics in media in noninertial frames and applications, ” J. Math. Phys., vol. 11, pp. 25892610, 1970.
A learning algorithm for Boltzmann machines
 Cognitive Science
, 1985
"... The computotionol power of massively parallel networks of simple processing elements resides in the communication bandwidth provided by the hardware connections between elements. These connections con allow a significant fraction of the knowledge of the system to be applied to an instance of a probl ..."
Abstract

Cited by 586 (13 self)
 Add to MetaCart
The computotionol power of massively parallel networks of simple processing elements resides in the communication bandwidth provided by the hardware connections between elements. These connections con allow a significant fraction of the knowledge of the system to be applied to an instance of a
LogP: Towards a Realistic Model of Parallel Computation
, 1993
"... A vast body of theoretical research has focused either on overly simplistic models of parallel computation, notably the PRAM, or overly specific models that have few representatives in the real world. Both kinds of models encourage exploitation of formal loopholes, rather than rewarding developme ..."
Abstract

Cited by 562 (15 self)
 Add to MetaCart
parallel algorithms and to offer guidelines to machine designers. Such a model must strike a balance between detail and simplicity in order to reveal important bottlenecks without making analysis of interesting problems intractable. The model is based on four parameters that specify abstractly
A Fast Elitist NonDominated Sorting Genetic Algorithm for MultiObjective Optimization: NSGAII
, 2000
"... Multiobjective evolutionary algorithms which use nondominated sorting and sharing have been mainly criticized for their (i) 4 computational complexity (where is the number of objectives and is the population size), (ii) nonelitism approach, and (iii) the need for specifying a sharing ..."
Abstract

Cited by 634 (15 self)
 Add to MetaCart
Multiobjective evolutionary algorithms which use nondominated sorting and sharing have been mainly criticized for their (i) 4 computational complexity (where is the number of objectives and is the population size), (ii) nonelitism approach, and (iii) the need for specifying a
Boosting a Weak Learning Algorithm By Majority
, 1995
"... We present an algorithm for improving the accuracy of algorithms for learning binary concepts. The improvement is achieved by combining a large number of hypotheses, each of which is generated by training the given learning algorithm on a different set of examples. Our algorithm is based on ideas pr ..."
Abstract

Cited by 516 (15 self)
 Add to MetaCart
We present an algorithm for improving the accuracy of algorithms for learning binary concepts. The improvement is achieved by combining a large number of hypotheses, each of which is generated by training the given learning algorithm on a different set of examples. Our algorithm is based on ideas
Randomized Algorithms
, 1995
"... Randomized algorithms, once viewed as a tool in computational number theory, have by now found widespread application. Growth has been fueled by the two major benefits of randomization: simplicity and speed. For many applications a randomized algorithm is the fastest algorithm available, or the simp ..."
Abstract

Cited by 2210 (37 self)
 Add to MetaCart
Randomized algorithms, once viewed as a tool in computational number theory, have by now found widespread application. Growth has been fueled by the two major benefits of randomization: simplicity and speed. For many applications a randomized algorithm is the fastest algorithm available
Results 1  10
of
1,441,400