Results 1  10
of
2,352,724
A note on metric properties of some divergence measures: The Gaussian case
 Proc. of the 4th ACML, JMLR W&CP
"... Multivariate Gaussian densities are pervasive in pattern recognition and machine learning. A central operation that appears in most of these areas is to measure the difference between two multivariate Gaussians. Unfortunately, traditional measures based on the Kullback– Leibler (KL) divergence and t ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
and the Bhattacharyya distance do not satisfy all metric axioms necessary for many algorithms. In this paper we propose a modification for the KL divergence and the Bhattacharyya distance, for multivariate Gaussian densities, that transforms the two measures into distance metrics. Next, we show how these metric axioms
Gaussian processes for machine learning
 in: Adaptive Computation and Machine Learning
, 2006
"... Abstract. We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperpar ..."
Abstract

Cited by 631 (2 self)
 Add to MetaCart
Abstract. We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn
Blind Beamforming for Non Gaussian Signals
 IEE ProceedingsF
, 1993
"... This paper considers an application of blind identification to beamforming. The key point is to use estimates of directional vectors rather than resorting to their hypothesized value. By using estimates of the directional vectors obtained via blind identification i.e. without knowing the arrray mani ..."
Abstract

Cited by 704 (31 self)
 Add to MetaCart
manifold, beamforming is made robust with respect to array deformations, distortion of the wave front, pointing errors, etc ... so that neither array calibration nor physical modeling are necessary. Rather surprisingly, `blind beamformers' may outperform `informed beamformers' in a plausible
Capacity of multiantenna Gaussian channels
 EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS
, 1999
"... We investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading. We derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such form ..."
Abstract

Cited by 2878 (6 self)
 Add to MetaCart
We investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading. We derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate
A Metrics Suite for Object Oriented Design
 IEEE Trans. Softw. Eng
, 1994
"... Given the central role that software development plays in the delivery and application of information technology, managers are increasingly focusing on process improvement in the software development area. This demand has spurred the provision of a number of new and/or improved approaches to softwar ..."
Abstract

Cited by 1079 (3 self)
 Add to MetaCart
to software development, with perhaps the most prominent being objectorientation (00). In addition, the focus on process improvement has increased the demand for software measures, or metrics with which to manage the process. The need for such metrics is particularly acute when an organization is adopting a
Gradient flows in metric spaces and in the space of probability measures
 LECTURES IN MATHEMATICS ETH ZÜRICH, BIRKHÄUSER VERLAG
, 2005
"... ..."
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE TRANS IMAGE PROCESSING
, 2003
"... We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vecto ..."
Abstract

Cited by 514 (17 self)
 Add to MetaCart
We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian
Mtree: An Efficient Access Method for Similarity Search in Metric Spaces
, 1997
"... A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion o ..."
Abstract

Cited by 652 (38 self)
 Add to MetaCart
A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion
Distance Metric Learning, With Application To Clustering With SideInformation
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 15
, 2003
"... Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as Kmeans initially fails to find one that is meaningful to a user, the only recourse may be for the us ..."
Abstract

Cited by 799 (14 self)
 Add to MetaCart
Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as Kmeans initially fails to find one that is meaningful to a user, the only recourse may
A Note on the Confinement Problem
, 1973
"... This not explores the problem of confining a program during its execution so that it cannot transmit information to any other program except its caller. A set of examples attempts to stake out the boundaries of the problem. Necessary conditions for a solution are stated and informally justified. ..."
Abstract

Cited by 532 (0 self)
 Add to MetaCart
This not explores the problem of confining a program during its execution so that it cannot transmit information to any other program except its caller. A set of examples attempts to stake out the boundaries of the problem. Necessary conditions for a solution are stated and informally justified.
Results 1  10
of
2,352,724