Results 1  10
of
952,311
Weighted Essentially NonOscillatory Schemes
, 1994
"... In this paper we introduce a new version of ENO (Essentially NonOscillatory) shockcapturing schemes which we call Weighted ENO. The main new idea is that, instead of choosing the "smoothest" stencil to pick one interpolating polynomial for the ENO reconstruction, we use a convex combinati ..."
Abstract

Cited by 336 (9 self)
 Add to MetaCart
In this paper we introduce a new version of ENO (Essentially NonOscillatory) shockcapturing schemes which we call Weighted ENO. The main new idea is that, instead of choosing the "smoothest" stencil to pick one interpolating polynomial for the ENO reconstruction, we use a convex
Essentially nonoscillatory and weighted essentially nonoscillatory schemes for hyperbolic conservation laws
, 1998
"... In these lecture notes we describe the construction, analysis, and application of ENO (Essentially NonOscillatory) and WENO (Weighted Essentially NonOscillatory) schemes for hyperbolic conservation laws and related HamiltonJacobi equations. ENO and WENO schemes are high order accurate nite di ere ..."
Abstract

Cited by 275 (28 self)
 Add to MetaCart
In these lecture notes we describe the construction, analysis, and application of ENO (Essentially NonOscillatory) and WENO (Weighted Essentially NonOscillatory) schemes for hyperbolic conservation laws and related HamiltonJacobi equations. ENO and WENO schemes are high order accurate nite di
Weighted Essentially NonOscillatory Schemes on Triangular Meshes
 J. Comput. Phys
, 1998
"... In this paper we construct high order weighted essentially nonoscillatory (WENO) schemes on two dimensional unstructured meshes (triangles) in the finite volume formulation. We present third order schemes using a combination of linear polynomials, and fourth order schemes using a combination of qua ..."
Abstract

Cited by 70 (12 self)
 Add to MetaCart
In this paper we construct high order weighted essentially nonoscillatory (WENO) schemes on two dimensional unstructured meshes (triangles) in the finite volume formulation. We present third order schemes using a combination of linear polynomials, and fourth order schemes using a combination
Efficient Implementation of Weighted ENO Schemes
, 1995
"... In this paper, we further analyze, test, modify and improve the high order WENO (weighted essentially nonoscillatory) finite difference schemes of Liu, Osher and Chan [9]. It was shown by Liu et al. that WENO schemes constructed from the r th order (in L¹ norm) ENO schemes are (r +1) th order accur ..."
Abstract

Cited by 415 (40 self)
 Add to MetaCart
In this paper, we further analyze, test, modify and improve the high order WENO (weighted essentially nonoscillatory) finite difference schemes of Liu, Osher and Chan [9]. It was shown by Liu et al. that WENO schemes constructed from the r th order (in L¹ norm) ENO schemes are (r +1) th order
A NonOscillatory Eulerian Approach to Interfaces in Multimaterial Flows (The Ghost Fluid Method)
, 2000
"... While Eulerian schemes work well for most gas flows, they have been shown to admit nonphysical oscillations near some material interfaces. In contrast,... ..."
Abstract

Cited by 323 (45 self)
 Add to MetaCart
While Eulerian schemes work well for most gas flows, they have been shown to admit nonphysical oscillations near some material interfaces. In contrast,...
The Lifting Scheme: A Construction Of Second Generation Wavelets
, 1997
"... . We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads to ..."
Abstract

Cited by 541 (16 self)
 Add to MetaCart
. We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads
Locally weighted learning
 ARTIFICIAL INTELLIGENCE REVIEW
, 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract

Cited by 594 (53 self)
 Add to MetaCart
, assessing predictions, handling noisy data and outliers, improving the quality of predictions by tuning t parameters, interference between old and new data, implementing locally weighted learning e ciently, and applications of locally weighted learning. A companion paper surveys how locally weighted
COMPACTRECONSTRUCTION WEIGHTED ESSENTIALLY NONOSCILLATORY SCHEMES FOR HYPERBOLIC CONSERVATION LAWS
, 2012
"... A new class of nonlinear compact interpolation schemes is introduced in this dissertation that have a high spectral resolution and are nonoscillatory across discontinuities. The CompactReconstruction Weighted Essentially NonOscillatory (CRWENO) schemes use a solutiondependent combination of l ..."
Abstract
 Add to MetaCart
A new class of nonlinear compact interpolation schemes is introduced in this dissertation that have a high spectral resolution and are nonoscillatory across discontinuities. The CompactReconstruction Weighted Essentially NonOscillatory (CRWENO) schemes use a solutiondependent combination
A fast and high quality multilevel scheme for partitioning irregular graphs
 SIAM JOURNAL ON SCIENTIFIC COMPUTING
, 1998
"... Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc. ..."
Abstract

Cited by 1173 (16 self)
 Add to MetaCart
Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc.
Results 1  10
of
952,311