Results 1  10
of
837,200
Fast subsequence matching in timeseries databases
 PROCEEDINGS OF THE 1994 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA
, 1994
"... We present an efficient indexing method to locate 1dimensional subsequences within a collection of sequences, such that the subsequences match a given (query) pattern within a specified tolerance. The idea is to map each data sequence into a small set of multidimensional rectangles in feature space ..."
Abstract

Cited by 527 (24 self)
 Add to MetaCart
space. Then, these rectangles can be readily indexed using traditional spatial access methods, like the R*tree [9]. In more detail, we use a sliding window over the data sequence and extract its features; the result is a trail in feature space. We propose an ecient and eective algorithm to divide
A fast learning algorithm for deep belief nets
 Neural Computation
, 2006
"... We show how to use “complementary priors ” to eliminate the explaining away effects that make inference difficult in denselyconnected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a ..."
Abstract

Cited by 939 (49 self)
 Add to MetaCart
at a time, provided the top two layers form an undirected associative memory. The fast, greedy algorithm is used to initialize a slower learning procedure that finetunes the weights using a contrastive version of the wakesleep algorithm. After finetuning, a network with three hidden layers forms a
A LinearTime Heuristic for Improving Network Partitions
, 1982
"... An iterative mincut heuristic for partitioning networks is presented whose worst case computation time, per pass, grows linearly with the size of the network. In practice, only a very small number of passes are typically needed, leading to a fast approximation algorithm for mincut partitioning. To d ..."
Abstract

Cited by 518 (0 self)
 Add to MetaCart
An iterative mincut heuristic for partitioning networks is presented whose worst case computation time, per pass, grows linearly with the size of the network. In practice, only a very small number of passes are typically needed, leading to a fast approximation algorithm for mincut partitioning
Determining Lyapunov Exponents from a Time Series
 Physica
, 1985
"... We present the first algorithms that allow the estimation of nonnegative Lyapunov exponents from an experimental time series. Lyapunov exponents, which provide a qualitative and quantitative characterization of dynamical behavior, are related to the exponentially fast divergence or convergence of n ..."
Abstract

Cited by 469 (1 self)
 Add to MetaCart
We present the first algorithms that allow the estimation of nonnegative Lyapunov exponents from an experimental time series. Lyapunov exponents, which provide a qualitative and quantitative characterization of dynamical behavior, are related to the exponentially fast divergence or convergence
Consensus and cooperation in networked multiagent systems
 Proceedings of the IEEE
, 2007
"... Summary. This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An ove ..."
Abstract

Cited by 773 (2 self)
 Add to MetaCart
Summary. This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees
Sequential minimal optimization: A fast algorithm for training support vector machines
 Advances in Kernel MethodsSupport Vector Learning
, 1999
"... This paper proposes a new algorithm for training support vector machines: Sequential Minimal Optimization, or SMO. Training a support vector machine requires the solution of a very large quadratic programming (QP) optimization problem. SMO breaks this large QP problem into a series of smallest possi ..."
Abstract

Cited by 453 (3 self)
 Add to MetaCart
This paper proposes a new algorithm for training support vector machines: Sequential Minimal Optimization, or SMO. Training a support vector machine requires the solution of a very large quadratic programming (QP) optimization problem. SMO breaks this large QP problem into a series of smallest
A scaled conjugate gradient algorithm for fast supervised learning
 NEURAL NETWORKS
, 1993
"... A supervised learning algorithm (Scaled Conjugate Gradient, SCG) with superlinear convergence rate is introduced. The algorithm is based upon a class of optimization techniques well known in numerical analysis as the Conjugate Gradient Methods. SCG uses second order information from the neural netwo ..."
Abstract

Cited by 441 (0 self)
 Add to MetaCart
and avoids a time consuming linesearch, which CGB and BFGS uses in each iteration in order to determine an appropriate step size.
Incorporating problem dependent structural information in the architecture of a neural network often lowers the overall complexity. The smaller the complexity of the neural
A new approach to the maximum flow problem
 JOURNAL OF THE ACM
, 1988
"... All previously known efficient maximumflow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortestlength augmenting paths at once (using the layered network approach of Dinic). An alternative method based on the pre ..."
Abstract

Cited by 665 (33 self)
 Add to MetaCart
All previously known efficient maximumflow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortestlength augmenting paths at once (using the layered network approach of Dinic). An alternative method based
Reveal, A General Reverse Engineering Algorithm For Inference Of Genetic Network Architectures
, 1998
"... Given the immanent gene expression mapping covering whole genomes during development, health and disease, we seek computational methods to maximize functional inference from such large data sets. Is it possible, in principle, to completely infer a complex regulatory network architecture from input/o ..."
Abstract

Cited by 342 (5 self)
 Add to MetaCart
/output patterns of its variables? We investigated this possibility using binary models of genetic networks. Trajectories, or state transition tables of Boolean nets, resemble time series of gene expression. By systematically analyzing the mutual information between input states and output states, one is able
Understanding FaultTolerant Distributed Systems
 COMMUNICATIONS OF THE ACM
, 1993
"... We propose a small number of basic concepts that can be used to explain the architecture of faulttolerant distributed systems and we discuss a list of architectural issues that we find useful to consider when designing or examining such systems. For each issue we present known solutions and design ..."
Abstract

Cited by 374 (23 self)
 Add to MetaCart
We propose a small number of basic concepts that can be used to explain the architecture of faulttolerant distributed systems and we discuss a list of architectural issues that we find useful to consider when designing or examining such systems. For each issue we present known solutions and design
Results 1  10
of
837,200