Results 1  10
of
1,496,553
Shiftable Multiscale Transforms
, 1992
"... Orthogonal wavelet transforms have recently become a popular representation for multiscale signal and image analysis. One of the major drawbacks of these representations is their lack of translation invariance: the content of wavelet subbands is unstable under translations of the input signal. Wavel ..."
Abstract

Cited by 557 (36 self)
 Add to MetaCart
Orthogonal wavelet transforms have recently become a popular representation for multiscale signal and image analysis. One of the major drawbacks of these representations is their lack of translation invariance: the content of wavelet subbands is unstable under translations of the input signal
The Askeyscheme of hypergeometric orthogonal polynomials and its qanalogue
, 1998
"... We list the socalled Askeyscheme of hypergeometric orthogonal polynomials and we give a q analogue of this scheme containing basic hypergeometric orthogonal polynomials. In chapter 1 we give the definition, the orthogonality relation, the three term recurrence relation, the second order di#erent ..."
Abstract

Cited by 580 (6 self)
 Add to MetaCart
#erential or di#erence equation, the forward and backward shift operator, the Rodriguestype formula and generating functions of all classes of orthogonal polynomials in this scheme. In chapter 2 we give the limit relations between di#erent classes of orthogonal polynomials listed in the Askeyscheme. In chapter
Bayes Factors
, 1995
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 1766 (74 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 951 (12 self)
 Add to MetaCart
for additive expansions based on any tting criterion. Specic algorithms are presented for least{squares, least{absolute{deviation, and Huber{M loss functions for regression, and multi{class logistic likelihood for classication. Special enhancements are derived for the particular case where the individual
Determining the Number of Factors in Approximate Factor Models
, 2000
"... In this paper we develop some statistical theory for factor models of large dimensions. The focus is the determination of the number of factors, which is an unresolved issue in the rapidly growing literature on multifactor models. We propose a panel Cp criterion and show that the number of factors c ..."
Abstract

Cited by 538 (29 self)
 Add to MetaCart
In this paper we develop some statistical theory for factor models of large dimensions. The focus is the determination of the number of factors, which is an unresolved issue in the rapidly growing literature on multifactor models. We propose a panel Cp criterion and show that the number of factors
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE TRANS IMAGE PROCESSING
, 2003
"... We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vecto ..."
Abstract

Cited by 514 (17 self)
 Add to MetaCart
We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian
Epidemic Spreading in ScaleFree Networks
, 2000
"... The Internet, as well as many other networks, has a very complex connectivity recently modeled by the class of scalefree networks. This feature, which appears to be very efficient for a communications network, favors at the same time the spreading of computer viruses. We analyze real data from c ..."
Abstract

Cited by 550 (14 self)
 Add to MetaCart
The Internet, as well as many other networks, has a very complex connectivity recently modeled by the class of scalefree networks. This feature, which appears to be very efficient for a communications network, favors at the same time the spreading of computer viruses. We analyze real data from
The 2005 pascal visual object classes challenge
, 2006
"... Abstract. The PASCAL Visual Object Classes Challenge ran from February to March 2005. The goal of the challenge was to recognize objects from a number of visual object classes in realistic scenes (i.e. not presegmented objects). Four object classes were selected: motorbikes, bicycles, cars and peop ..."
Abstract

Cited by 633 (24 self)
 Add to MetaCart
Abstract. The PASCAL Visual Object Classes Challenge ran from February to March 2005. The goal of the challenge was to recognize objects from a number of visual object classes in realistic scenes (i.e. not presegmented objects). Four object classes were selected: motorbikes, bicycles, cars
The PASCAL Visual Object Classes (VOC) challenge
, 2009
"... ... is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has be ..."
Abstract

Cited by 624 (20 self)
 Add to MetaCart
... is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 582 (23 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first
Results 1  10
of
1,496,553