Results 1  10
of
16,188
Selfadjusting binary search trees
, 1985
"... The splay tree, a selfadjusting form of binary search tree, is developed and analyzed. The binary search tree is a data structure for representing tables and lists so that accessing, inserting, and deleting items is easy. On an nnode splay tree, all the standard search tree operations have an am ..."
Abstract

Cited by 432 (18 self)
 Add to MetaCart
The splay tree, a selfadjusting form of binary search tree, is developed and analyzed. The binary search tree is a data structure for representing tables and lists so that accessing, inserting, and deleting items is easy. On an nnode splay tree, all the standard search tree operations have
Rtrees: A Dynamic Index Structure for Spatial Searching
 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA
, 1984
"... In order to handle spatial data efficiently, as required in computer aided design and geodata applications, a database system needs an index mechanism that will help it retrieve data items quickly according to their spatial locations However, traditional indexing methods are not well suited to data ..."
Abstract

Cited by 2750 (0 self)
 Add to MetaCart
to data objects of nonzero size located m multidimensional spaces In this paper we describe a dynamic index structure called an Rtree which meets this need, and give algorithms for searching and updating it. We present the results of a series of tests which indicate that the structure performs well
Mtree: An Efficient Access Method for Similarity Search in Metric Spaces
, 1997
"... A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion o ..."
Abstract

Cited by 663 (38 self)
 Add to MetaCart
A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion
Depthfirst IterativeDeepening: An Optimal Admissible Tree Search
 Artificial Intelligence
, 1985
"... The complexities of various search algorithms are considered in terms of time, space, and cost of solution path. It is known that breadthfirst search requires too much space and depthfirst search can use too much time and doesn't always find a cheapest path. A depthfirst iteratiwdeepening a ..."
Abstract

Cited by 527 (24 self)
 Add to MetaCart
The complexities of various search algorithms are considered in terms of time, space, and cost of solution path. It is known that breadthfirst search requires too much space and depthfirst search can use too much time and doesn't always find a cheapest path. A depthfirst iteratiw
Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2000
"... We present a unifying framework for studying the solution of multiclass categorization problems by reducing them to multiple binary problems that are then solved using a marginbased binary learning algorithm. The proposed framework unifies some of the most popular approaches in which each class ..."
Abstract

Cited by 561 (20 self)
 Add to MetaCart
given the empirical loss of the individual binary learning algorithms. The scheme and the corresponding bounds apply to many popular classification learning algorithms including supportvector machines, AdaBoost, regression, logistic regression and decisiontree algorithms. We also give a multiclass
Efficient similarity search in sequence databases
, 1994
"... We propose an indexing method for time sequences for processing similarity queries. We use the Discrete Fourier Transform (DFT) to map time sequences to the frequency domain, the crucial observation being that, for most sequences of practical interest, only the first few frequencies are strong. Anot ..."
Abstract

Cited by 515 (19 self)
 Add to MetaCart
. Another important observation is Parseval's theorem, which specifies that the Fourier transform preserves the Euclidean distance in the time or frequency domain. Having thus mapped sequences to a lowerdimensionality space by using only the first few Fourier coe cients, we use Rtrees to index
Suffix arrays: A new method for online string searches
, 1991
"... A new and conceptually simple data structure, called a suffix array, for online string searches is introduced in this paper. Constructing and querying suffix arrays is reduced to a sort and search paradigm that employs novel algorithms. The main advantage of suffix arrays over suffix trees is that ..."
Abstract

Cited by 835 (0 self)
 Add to MetaCart
A new and conceptually simple data structure, called a suffix array, for online string searches is introduced in this paper. Constructing and querying suffix arrays is reduced to a sort and search paradigm that employs novel algorithms. The main advantage of suffix arrays over suffix trees
Similarity search in high dimensions via hashing
, 1999
"... The nearest or nearneighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over highdimensional data, e.g., image dat ..."
Abstract

Cited by 641 (10 self)
 Add to MetaCart
to 20, searching in kd trees and related structures involves the inspection of a large fraction of the database, thereby doing no better than bruteforce linear search. It has been suggested that since the selection of features and the choice of a distance metric in typical applications is rather
Fast texture synthesis using treestructured vector quantization
, 2000
"... Figure 1: Our texture generation process takes an example texture patch (left) and a random noise (middle) as input, and modifies this random noise to make it look like the given example texture. The synthesized texture (right) can be of arbitrary size, and is perceived as very similar to the given ..."
Abstract

Cited by 561 (12 self)
 Add to MetaCart
Field texture models and generates textures through a deterministic searching process. We accelerate this synthesis process using treestructured vector quantization.
Mining Frequent Patterns without Candidate Generation: A FrequentPattern Tree Approach
 DATA MINING AND KNOWLEDGE DISCOVERY
, 2004
"... Mining frequent patterns in transaction databases, timeseries databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriorilike candidate set generationandtest approach. However, candidate set generation is still co ..."
Abstract

Cited by 1752 (64 self)
 Add to MetaCart
costly, especially when there exist a large number of patterns and/or long patterns. In this study, we propose a novel
frequentpattern tree
(FPtree) structure, which is an extended prefixtree
structure for storing compressed, crucial information about frequent patterns, and develop an efficient FPtree
Results 1  10
of
16,188