• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 98,156
Next 10 →

Fast Parallel Algorithms for Short-Range Molecular Dynamics

by Steve Plimpton - JOURNAL OF COMPUTATIONAL PHYSICS , 1995
"... Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dyn ..."
Abstract - Cited by 622 (6 self) - Add to MetaCart
Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular

LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares

by Christopher C. Paige, Michael A. Saunders - ACM Trans. Math. Software , 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax- b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract - Cited by 649 (21 self) - Add to MetaCart
-gradient algorithms, indicating that I~QR is the most reliable algorithm when A is ill-conditioned. Categories and Subject Descriptors: G.1.2 [Numerical Analysis]: ApprorJmation--least squares approximation; G.1.3 [Numerical Analysis]: Numerical Linear Algebra--linear systems (direct and

Finding community structure in networks using the eigenvectors of matrices

by M. E. J. Newman , 2006
"... We consider the problem of detecting communities or modules in networks, groups of vertices with a higher-than-average density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible div ..."
Abstract - Cited by 500 (0 self) - Add to MetaCart
number of possible algorithms for detecting community structure, as well as several other results, including a spectral measure of bipartite structure in networks and a new centrality measure that identifies those vertices that occupy central positions within the communities to which they belong

The nas parallel benchmarks

by D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, H. D. Simon, V. Venkatakrishnan, S. K. Weeratunga - The International Journal of Supercomputer Applications , 1991
"... A new set of benchmarks has been developed for the performance evaluation of highly parallel supercomputers. These benchmarks consist of ve \parallel kernel " benchmarks and three \simulated application" benchmarks. Together they mimic the computation and data movement characterist ..."
Abstract - Cited by 686 (10 self) - Add to MetaCart
A new set of benchmarks has been developed for the performance evaluation of highly parallel supercomputers. These benchmarks consist of ve \parallel kernel " benchmarks and three \simulated application" benchmarks. Together they mimic the computation and data movement

Planning Algorithms

by Steven M LaValle , 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract - Cited by 1108 (51 self) - Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning

GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems

by Youcef Saad, Martin H. Schultz - SIAM J. SCI. STAT. COMPUT , 1986
"... We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2-orthogonal basis of Krylov subspaces. It can be considered a ..."
Abstract - Cited by 2046 (40 self) - Add to MetaCart
We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2-orthogonal basis of Krylov subspaces. It can be considered

CONVERGENCE OF THE TRIDIAGONAL QR ALGORITHM WITH

by Tai-lin Wang
"... Abstract. The convergence results obtained by J. H. Wilkinson [Linear Algebra Appl. 1 (1968) 409420] for the tridiagonal QR algorithm are further developed. We choose an eigenvalue of the 3 3 submatrix in the lower right corner of the iterating tridiagonal matrix as the shift and show that global c ..."
Abstract - Add to MetaCart
an approximate eigenvalue. Key words. QR algorithm; convergence analysis; shift strategy; symmetric tridiagonal matrices AMS subject classi…cation. 65F15 1. Introduction. A

SNOPT: An SQP Algorithm For Large-Scale Constrained Optimization

by Philip E. Gill, Walter Murray, Michael A. Saunders , 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract - Cited by 582 (23 self) - Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first derivatives are available, and that the constraint gradients are sparse. We discuss

Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming

by M. X. Goemans, D.P. Williamson - Journal of the ACM , 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2-satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract - Cited by 1231 (13 self) - Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2-satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds

Parallel Block Tridiagonalization of Real Symmetric Matrices

by Yihua Bai, Robert C. Ward , 2006
"... Two parallel block tridiagonalization algorithms and implementations for dense real symmetric matrices are presented. Block tridiagonalization is a critical pre-processing step for the block-tridiagonal divide-and-conquer algorithm for computing eigensystems and is useful for many algorithms desirin ..."
Abstract - Cited by 4 (0 self) - Add to MetaCart
Two parallel block tridiagonalization algorithms and implementations for dense real symmetric matrices are presented. Block tridiagonalization is a critical pre-processing step for the block-tridiagonal divide-and-conquer algorithm for computing eigensystems and is useful for many algorithms
Next 10 →
Results 1 - 10 of 98,156
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University