Results 1  10
of
4,305,418
2local random reductions to 3valued functions
 Computational Complexity
"... Abstract. Yao (in a lecture at DIMACS Workshop on structural complexity and cryptography, 1990) showed that if a language L is 2locally random reducible to a Boolean function, then L ∈ PSPACE/poly. Fortnow & Szegedy quantitatively improved Yao’s result to show that such languages are in fact in ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
in NP/poly (Information Processing Letters, 1992). In this paper we extend Yao’s result to show that if a language L is 2locally random reducible to a target function which takes values in
2Local Random Reductions to 3Valued Functions
"... Yao (in a lecture at DIMACS Workshop on structural complexity and cryptography) showed that if a language L is 2locallyrandom reducible to a Boolean function, then L 2 PSPACE=poly. Fortnow and Szegedy quantitatively improved Yao's result to show that such languages are in fact in NP=poly (Inf ..."
Abstract
 Add to MetaCart
=poly (Information Processing Letters, 1992). In this paper we extend Yao's result to show that if a language L is 2locallyrandom reducible to a target function which takes values in f0; 1; 2g, then L 2 PSPACE=poly. 1
PseudoRandom Generation from OneWay Functions
 PROC. 20TH STOC
, 1988
"... Pseudorandom generators are fundamental to many theoretical and applied aspects of computing. We show howto construct a pseudorandom generator from any oneway function. Since it is easy to construct a oneway function from a pseudorandom generator, this result shows that there is a pseudorandom gene ..."
Abstract

Cited by 887 (22 self)
 Add to MetaCart
Pseudorandom generators are fundamental to many theoretical and applied aspects of computing. We show howto construct a pseudorandom generator from any oneway function. Since it is easy to construct a oneway function from a pseudorandom generator, this result shows that there is a pseudorandom
Parametric Shape Analysis via 3Valued Logic
, 2001
"... Shape Analysis concerns the problem of determining "shape invariants"... ..."
Abstract

Cited by 660 (79 self)
 Add to MetaCart
Shape Analysis concerns the problem of determining "shape invariants"...
Inducing Features of Random Fields
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1997
"... We present a technique for constructing random fields from a set of training samples. The learning paradigm builds increasingly complex fields by allowing potential functions, or features, that are supported by increasingly large subgraphs. Each feature has a weight that is trained by minimizing the ..."
Abstract

Cited by 664 (14 self)
 Add to MetaCart
We present a technique for constructing random fields from a set of training samples. The learning paradigm builds increasingly complex fields by allowing potential functions, or features, that are supported by increasingly large subgraphs. Each feature has a weight that is trained by minimizing
DART: Directed automated random testing
 In Programming Language Design and Implementation (PLDI
, 2005
"... We present a new tool, named DART, for automatically testing software that combines three main techniques: (1) automated extraction of the interface of a program with its external environment using static sourcecode parsing; (2) automatic generation of a test driver for this interface that performs ..."
Abstract

Cited by 823 (41 self)
 Add to MetaCart
that performs random testing to simulate the most general environment the program can operate in; and (3) dynamic analysis of how the program behaves under random testing and automatic generation of new test inputs to direct systematically the execution along alternative program paths. Together, these three
Shallow Parsing with Conditional Random Fields
, 2003
"... Conditional random fields for sequence labeling offer advantages over both generative models like HMMs and classifiers applied at each sequence position. Among sequence labeling tasks in language processing, shallow parsing has received much attention, with the development of standard evaluati ..."
Abstract

Cited by 575 (8 self)
 Add to MetaCart
Conditional random fields for sequence labeling offer advantages over both generative models like HMMs and classifiers applied at each sequence position. Among sequence labeling tasks in language processing, shallow parsing has received much attention, with the development of standard
Markov Random Field Models in Computer Vision
, 1994
"... . A variety of computer vision problems can be optimally posed as Bayesian labeling in which the solution of a problem is defined as the maximum a posteriori (MAP) probability estimate of the true labeling. The posterior probability is usually derived from a prior model and a likelihood model. The l ..."
Abstract

Cited by 515 (18 self)
 Add to MetaCart
. The latter relates to how data is observed and is problem domain dependent. The former depends on how various prior constraints are expressed. Markov Random Field Models (MRF) theory is a tool to encode contextual constraints into the prior probability. This paper presents a unified approach for MRF modeling
Random key predistribution schemes for sensor networks
 IN PROCEEDINGS OF THE 2003 IEEE SYMPOSIUM ON SECURITY AND PRIVACY
, 2003
"... Key establishment in sensor networks is a challenging problem because asymmetric key cryptosystems are unsuitable for use in resource constrained sensor nodes, and also because the nodes could be physically compromised by an adversary. We present three new mechanisms for key establishment using the ..."
Abstract

Cited by 813 (14 self)
 Add to MetaCart
the framework of predistributing a random set of keys to each node. First, in the qcomposite keys scheme, we trade off the unlikeliness of a largescale network attack in order to significantly strengthen random key predistribution’s strength against smallerscale attacks. Second, in the multipath
Results 1  10
of
4,305,418