Results 1  10
of
36,195
Maximum likelihood from incomplete data via the EM algorithm
 JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B
, 1977
"... A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value situat ..."
Abstract

Cited by 11972 (17 self)
 Add to MetaCart
situations, applications to grouped, censored or truncated data, finite mixture models, variance component estimation, hyperparameter estimation, iteratively reweighted least squares and factor analysis.
Nonparametric model for background subtraction
 in ECCV ’00
, 2000
"... Abstract. Background subtraction is a method typically used to segment moving regions in image sequences taken from a static camera by comparing each new frame to a model of the scene background. We present a novel nonparametric background model and a background subtraction approach. The model can ..."
Abstract

Cited by 545 (17 self)
 Add to MetaCart
can handle situations where the background of the scene is cluttered and not completely static but contains small motions such as tree branches and bushes. The model estimates the probability of observing pixel intensity values based on a sample of intensity values for each pixel. The model adapts
Longitudinal data analysis using generalized linear models”.
 Biometrika,
, 1986
"... SUMMARY This paper proposes an extension of generalized linear models to the analysis of longitudinal data. We introduce a class of estimating equations that give consistent estimates of the regression parameters and of their variance under mild assumptions about the time dependence. The estimating ..."
Abstract

Cited by 1526 (8 self)
 Add to MetaCart
SUMMARY This paper proposes an extension of generalized linear models to the analysis of longitudinal data. We introduce a class of estimating equations that give consistent estimates of the regression parameters and of their variance under mild assumptions about the time dependence
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 738 (16 self)
 Add to MetaCart
Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence
Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts
"... Volatility permeates modern financial theories and decision making processes. As such, accurate measures and good forecasts of future volatility are critical for the implementation and evaluation of asset and derivative pricing theories as well as trading and hedging strategies. In response to this, ..."
Abstract

Cited by 561 (45 self)
 Add to MetaCart
, in empirically realistic situations the models actually produce strikingly accurate interdaily forecasts f...
Dynamic Conditional Correlation: A simple class of multivariate Generalized Autoregressive Conditional Heteroskedasticity Models.
 Journal of Business & Economic Statistics
, 2002
"... Abstract Time varying correlations are often estimated with Multivariate Garch models that are linear in squares and cross products of the data. A new class of multivariate models called dynamic conditional correlation (DCC) models is proposed. These have the flexibility of univariate GARCH models ..."
Abstract

Cited by 711 (17 self)
 Add to MetaCart
coupled with parsimonious parametric models for the correlations. They are not linear but can often be estimated very simply with univariate or two step methods based on the likelihood function. It is shown that they perform well in a variety of situations and provide sensible empirical results.
Shape modeling with front propagation: A level set approach
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1995
"... Shape modeling is an important constituent of computer vision as well as computer graphics research. Shape models aid the tasks of object representation and recognition. This paper presents a new approach to shape modeling which retains some of the attractive features of existing methods and over ..."
Abstract

Cited by 808 (20 self)
 Add to MetaCart
comes some of their limitations. Our techniques can be applied to model arbitrarily complex shapes, which include shapes with significant protrusions, and to situations where no a priori assumption about the object’s topology is made. A single instance of our model, when presented with an image having more
The genetical evolution of social behaviour
 I. J. Theor. Biol.
, 1964
"... A genetical mathematical model is described which allows for interactions between relatives on one another's fitness. Making use of Wright's Coefficient of Relationship as the measure of the proportion of replica genes in a relative, a quantity is found which incorporates the maximizing p ..."
Abstract

Cited by 932 (2 self)
 Add to MetaCart
and possibility of limited selfsacrifices. Special cases of the model are used to show (a) that selection in the social situations newly covered tends to be slower than classical selection, (b) how in populations of rather nondispersive organisms the model may apply to genes affecting dispersion, and (c) how
Computational LambdaCalculus and Monads
, 1988
"... The λcalculus is considered an useful mathematical tool in the study of programming languages, since programs can be identified with λterms. However, if one goes further and uses fijconversion to prove equivalence of programs, then a gross simplification is introduced, that may jeopardise the ap ..."
Abstract

Cited by 501 (6 self)
 Add to MetaCart
the applicability of theoretical results to real situations. In this paper we introduce a new calculus based on a categorical semantics for computations. This calculus provides a correct basis for proving equivalence of programs, independent from any specific computational model.
GOLOG: A Logic Programming Language for Dynamic Domains
, 1994
"... This paper proposes a new logic programming language called GOLOG whose interpreter automatically maintains an explicit representation of the dynamic world being modeled, on the basis of user supplied axioms about the preconditions and effects of actions and the initial state of the world. This allo ..."
Abstract

Cited by 628 (74 self)
 Add to MetaCart
This paper proposes a new logic programming language called GOLOG whose interpreter automatically maintains an explicit representation of the dynamic world being modeled, on the basis of user supplied axioms about the preconditions and effects of actions and the initial state of the world
Results 1  10
of
36,195