Results 1  10
of
7,788
A Bayesian approach to filtering junk Email
 PAPERS FROM THE 1998 WORKSHOP, AAAI
, 1998
"... In addressing the growing problem of junk Email on the Internet, we examine methods for the automated construction of filters to eliminate such unwanted messages from a user’s mail stream. By casting this problem in a decision theoretic framework, we are able to make use of probabilistic learning m ..."
Abstract

Cited by 545 (6 self)
 Add to MetaCart
In addressing the growing problem of junk Email on the Internet, we examine methods for the automated construction of filters to eliminate such unwanted messages from a user’s mail stream. By casting this problem in a decision theoretic framework, we are able to make use of probabilistic learning
K.B.: MultiInterval Discretization of ContinuousValued Attributes for Classication Learning. In:
 IJCAI.
, 1993
"... Abstract Since most realworld applications of classification learning involve continuousvalued attributes, properly addressing the discretization process is an important problem. This paper addresses the use of the entropy minimization heuristic for discretizing the range of a continuousvalued a ..."
Abstract

Cited by 832 (7 self)
 Add to MetaCart
formally derive a criterion based on the minimum description length principle for deciding the partitioning of intervals. We demonstrate via empirical evaluation on several realworld data sets that better decision trees are obtained using the new multiinterval algorithm.
High confidence visual recognition of persons by a test of statistical independence
 IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1993
"... A method for rapid visual recognition of personal identity is described, based on the failure of a statistical test of independence. The most unique phenotypic feature visible in a person’s face is the detailed texture of each eye’s iris: An estimate of its statistical complexity in a sample of the ..."
Abstract

Cited by 621 (8 self)
 Add to MetaCart
imply a theoretical “crossover ” error rate of one in 131000 when a decision criterion is adopted that would equalize the false accept and false reject error rates. In the typical recognition case, given the mean observed degree of iris code agreement, the decision confidence levels correspond formally
Improved Boosting Algorithms Using Confidencerated Predictions
 MACHINE LEARNING
, 1999
"... We describe several improvements to Freund and Schapire’s AdaBoost boosting algorithm, particularly in a setting in which hypotheses may assign confidences to each of their predictions. We give a simplified analysis of AdaBoost in this setting, and we show how this analysis can be used to find impr ..."
Abstract

Cited by 940 (26 self)
 Add to MetaCart
improved parameter settings as well as a refined criterion for training weak hypotheses. We give a specific method for assigning confidences to the predictions of decision trees, a method closely related to one used by Quinlan. This method also suggests a technique for growing decision trees which turns
The Transferable Belief Model
 ARTIFICIAL INTELLIGENCE
, 1994
"... We describe the transferable belief model, a model for representing quantified beliefs based on belief functions. Beliefs can be held at two levels: (1) a credal level where beliefs are entertained and quantified by belief functions, (2) a pignistic level where beliefs can be used to make decisions ..."
Abstract

Cited by 489 (16 self)
 Add to MetaCart
and are quantified by probability functions. The relation between the belief function and the probability function when decisions must be made is derived and justified. Four paradigms are analyzed in order to compare Bayesian, upper and lower probability, and the transferable belief approaches.
Model Selection and Model Averaging in Phylogenetics: Advantages of Akaike Information Criterion and Bayesian Approaches Over Likelihood Ratio Tests
, 2004
"... Model selection is a topic of special relevance in molecular phylogenetics that affects many, if not all, stages of phylogenetic inference. Here we discuss some fundamental concepts and techniques of model selection in the context of phylogenetics. We start by reviewing different aspects of the sel ..."
Abstract

Cited by 407 (8 self)
 Add to MetaCart
selection in phylogenetics, and that approaches like the Akaike Information Criterion (AIC) and Bayesian methods offer important advantages. In particular, the latter two methods are able to simultaneously compare multiple nested or nonnested models, assess model selection uncertainty, and allow
Speaker, Environment And Channel Change Detection And Clustering Via The Bayesian Information Criterion
, 1998
"... In this paper, we are interested in detecting changes in speaker identity, environmental condition and channel condition; we call this the problem of acoustic change detection. The input audio stream can be modeled as a Gaussian process in the cepstral space. We present a maximum likelihood approach ..."
Abstract

Cited by 272 (2 self)
 Add to MetaCart
approach to detect turns of a Gaussian process; the decision of a turn is based on the Bayesian Information Criterion (BIC), a model selection criterion wellknown in the statistics literature. The BIC criterion can also be applied as a termination criterion in hierarchical methods for clustering of audio
Xmeans: Extending Kmeans with Efficient Estimation of the Number of Clusters
 In Proceedings of the 17th International Conf. on Machine Learning
, 2000
"... Despite its popularity for general clustering, Kmeans suffers three major shortcomings; it scales poorly computationally, the number of clusters K has to be supplied by the user, and the search is prone to local minima. We propose solutions for the first two problems, and a partial remedy for the t ..."
Abstract

Cited by 418 (5 self)
 Add to MetaCart
for the third. Building on prior work for algorithmic acceleration that is not based on approximation, we introduce a new algorithm that efficiently, searches the space of cluster locations and number of clusters to optimize the Bayesian Information Criterion (BIC) or the Akaike Information Criterion (AIC
Determinants of longterm growth: a Bayesian Averaging of Classical Estimates (BACE) approach
, 2003
"... This paper examines the robustness and joint interaction of explanatory variables in crosscountry economic growth regressions. It employs a novel approach, Bayesian Averaging of Classical Estimates (BACE), which constructs estimates as a weighted average of OLS estimates for every possible combina ..."
Abstract

Cited by 374 (3 self)
 Add to MetaCart
combination of included variables. The weights applied to individual regressions are justified on Bayesian grounds in a way similar to the wellknown Schwarz model selection criterion. Of 67 explanatory variables we find 18 to be robustly partially correlated with longterm growth and another three variables
The Foundations of CostSensitive Learning
 In Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence
, 2001
"... This paper revisits the problem of optimal learning and decisionmaking when different misclassification errors incur different penalties. We characterize precisely but intuitively when a cost matrix is reasonable, and we show how to avoid the mistake of defining a cost matrix that is economically i ..."
Abstract

Cited by 402 (6 self)
 Add to MetaCart
that changing the balance of negative and positive training examples has little effect on the classifiers produced by standard Bayesian and decision tree learning methods. Accordingly, the recommended way of applying one of these methods in a domain with differing misclassification costs is to learn a
Results 1  10
of
7,788