Results 1  10
of
265,663
The Nature of Statistical Learning Theory
, 1999
"... Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the deve ..."
Abstract

Cited by 13236 (32 self)
 Add to MetaCart
Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based
Maximum likelihood from incomplete data via the EM algorithm
 JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B
, 1977
"... A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value situat ..."
Abstract

Cited by 11972 (17 self)
 Add to MetaCart
situations, applications to grouped, censored or truncated data, finite mixture models, variance component estimation, hyperparameter estimation, iteratively reweighted least squares and factor analysis.
Bayesian Data Analysis
, 1995
"... I actually own a copy of Harold Jeffreys’s Theory of Probability but have only read small bits of it, most recently over a decade ago to confirm that, indeed, Jeffreys was not too proud to use a classical chisquared pvalue when he wanted to check the misfit of a model to data (Gelman, Meng and Ste ..."
Abstract

Cited by 2194 (63 self)
 Add to MetaCart
generalization of Jeffreys’s ideas is to explicitly include model checking in the process of data analysis.
Longitudinal data analysis using generalized linear models”.
 Biometrika,
, 1986
"... SUMMARY This paper proposes an extension of generalized linear models to the analysis of longitudinal data. We introduce a class of estimating equations that give consistent estimates of the regression parameters and of their variance under mild assumptions about the time dependence. The estimating ..."
Abstract

Cited by 1526 (8 self)
 Add to MetaCart
SUMMARY This paper proposes an extension of generalized linear models to the analysis of longitudinal data. We introduce a class of estimating equations that give consistent estimates of the regression parameters and of their variance under mild assumptions about the time dependence
Calibrating noise to sensitivity in private data analysis
 In Proceedings of the 3rd Theory of Cryptography Conference
, 2006
"... Abstract. We continue a line of research initiated in [10, 11] on privacypreserving statistical databases. Consider a trusted server that holds a database of sensitive information. Given a query function f mapping databases to reals, the socalled true answer is the result of applying f to the datab ..."
Abstract

Cited by 649 (60 self)
 Add to MetaCart
the ith row of the database and g maps database rows to [0, 1]. We extend the study to general functions f, proving that privacy can be preserved by calibrating the standard deviation of the noise according to the sensitivity of the function f. Roughly speaking, this is the amount that any single
Biclustering algorithms for biological data analysis: a survey.
 IEEE/ACM Transactions of Computational Biology and Bioinformatics,
, 2004
"... Abstract A large number of clustering approaches have been proposed for the analysis of gene expression data obtained from microarray experiments. However, the results of the application of standard clustering methods to genes are limited. These limited results are imposed by the existence of a num ..."
Abstract

Cited by 481 (15 self)
 Add to MetaCart
Abstract A large number of clustering approaches have been proposed for the analysis of gene expression data obtained from microarray experiments. However, the results of the application of standard clustering methods to genes are limited. These limited results are imposed by the existence of a
Statistical Analysis with Missing Data
, 2002
"... Subsample ignorable likelihood for regression ..."
Probabilistic Principal Component Analysis
 JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B
, 1999
"... Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximumlikelihood estimation of paramet ..."
Abstract

Cited by 709 (5 self)
 Add to MetaCart
Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximumlikelihood estimation
Survey on Independent Component Analysis
 NEURAL COMPUTING SURVEYS
, 1999
"... A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation of the ..."
Abstract

Cited by 2309 (104 self)
 Add to MetaCart
A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation
Results 1  10
of
265,663