Results 1  10
of
5,098
Parallelization of the Algorithm kmeans Applied in Image Segmentation
"... Algorithm kmeans is useful for grouping operations; however, when is applied to large amounts of data, its computational cost is high. This research propose an optimization of kmeans algorithm by using parallelization techniques and synchronization, which is applied to image segmentation. In the r ..."
Abstract
 Add to MetaCart
Algorithm kmeans is useful for grouping operations; however, when is applied to large amounts of data, its computational cost is high. This research propose an optimization of kmeans algorithm by using parallelization techniques and synchronization, which is applied to image segmentation
Identification of Potential Student Academic Ability using Comparison Algorithm KMeans and Farthest First
"... The paper is tell about how to measure the potential of students ' academic skills by using the parameter values and the area by using clustering analysis comparing two algorithms, algorithm KMeans and Farthest First algorithm. The data used in this paper is the student data of private univers ..."
Abstract
 Add to MetaCart
The paper is tell about how to measure the potential of students ' academic skills by using the parameter values and the area by using clustering analysis comparing two algorithms, algorithm KMeans and Farthest First algorithm. The data used in this paper is the student data of private
Kmeans++: The advantages of careful seeding.
 In Proceedings of the Eighteenth Annual ACMSIAM Symposium on Discrete Algorithms, SODA ’07,
, 2007
"... Abstract The kmeans method is a widely used clustering technique that seeks to minimize the average squared distance between points in the same cluster. Although it offers no accuracy guarantees, its simplicity and speed are very appealing in practice. By augmenting kmeans with a very simple, ran ..."
Abstract

Cited by 478 (8 self)
 Add to MetaCart
, randomized seeding technique, we obtain an algorithm that is Θ(log k)competitive with the optimal clustering. Preliminary experiments show that our augmentation improves both the speed and the accuracy of kmeans, often quite dramatically.
Constrained Kmeans Clustering with Background Knowledge
 In ICML
, 2001
"... Clustering is traditionally viewed as an unsupervised method for data analysis. However, in some cases information about the problem domain is available in addition to the data instances themselves. In this paper, we demonstrate how the popular kmeans clustering algorithm can be pro tably modi ed ..."
Abstract

Cited by 488 (9 self)
 Add to MetaCart
Clustering is traditionally viewed as an unsupervised method for data analysis. However, in some cases information about the problem domain is available in addition to the data instances themselves. In this paper, we demonstrate how the popular kmeans clustering algorithm can be pro tably modi ed
An Efficient kMeans Clustering Algorithm: Analysis and Implementation
, 2000
"... Kmeans clustering is a very popular clustering technique, which is used in numerous applications. Given a set of n data points in R d and an integer k, the problem is to determine a set of k points R d , called centers, so as to minimize the mean squared distance from each data point to its ..."
Abstract

Cited by 417 (4 self)
 Add to MetaCart
nearest center. A popular heuristic for kmeans clustering is Lloyd's algorithm. In this paper we present a simple and efficient implementation of Lloyd's kmeans clustering algorithm, which we call the filtering algorithm. This algorithm is very easy to implement. It differs from most other
Data Clustering: 50 Years Beyond KMeans
, 2008
"... Organizing data into sensible groupings is one of the most fundamental modes of understanding and learning. As an example, a common scheme of scientific classification puts organisms into taxonomic ranks: domain, kingdom, phylum, class, etc.). Cluster analysis is the formal study of algorithms and m ..."
Abstract

Cited by 294 (7 self)
 Add to MetaCart
(unsupervised learning) from classification or discriminant analysis (supervised learning). The aim of clustering is exploratory in nature to find structure in data. Clustering has a long and rich history in a variety of scientific fields. One of the most popular and simple clustering algorithms, Kmeans
Xmeans: Extending Kmeans with Efficient Estimation of the Number of Clusters
 In Proceedings of the 17th International Conf. on Machine Learning
, 2000
"... Despite its popularity for general clustering, Kmeans suffers three major shortcomings; it scales poorly computationally, the number of clusters K has to be supplied by the user, and the search is prone to local minima. We propose solutions for the first two problems, and a partial remedy for the t ..."
Abstract

Cited by 418 (5 self)
 Add to MetaCart
) measure. The innovations include two new ways of exploiting cached sufficient statistics and a new very efficient test that in one Kmeans sweep selects the most promising subset of classes for refinement. This gives rise to a fast, statistically founded algorithm that outputs both the number of classes
Refining Initial Points for KMeans Clustering
, 1998
"... Practical approaches to clustering use an iterative procedure (e.g. KMeans, EM) which converges to one of numerous local minima. It is known that these iterative techniques are especially sensitive to initial starting conditions. We present a procedure for computing a refined starting condition fro ..."
Abstract

Cited by 317 (5 self)
 Add to MetaCart
for both discrete and continuous data. We demonstrate the application of this method to the popular KMeans clustering algorithm and show that refined initial starting points indeed lead to improved solutions. Refinement run time is considerably lower than the time required to cluster the full database
A comparison of document clustering techniques
 In KDD Workshop on Text Mining
, 2000
"... This paper presents the results of an experimental study of some common document clustering techniques: agglomerative hierarchical clustering and Kmeans. (We used both a “standard” Kmeans algorithm and a “bisecting ” Kmeans algorithm.) Our results indicate that the bisecting Kmeans technique is ..."
Abstract

Cited by 613 (27 self)
 Add to MetaCart
This paper presents the results of an experimental study of some common document clustering techniques: agglomerative hierarchical clustering and Kmeans. (We used both a “standard” Kmeans algorithm and a “bisecting ” Kmeans algorithm.) Our results indicate that the bisecting Kmeans technique
Scalable KMeans++
"... Over half a century old and showing no signs of aging, kmeans remains one of the most popular data processing algorithms. As is wellknown, a proper initialization of kmeans is crucial for obtaining a good final solution. The recently proposed kmeans++ initialization algorithm achieves this, obta ..."
Abstract

Cited by 24 (2 self)
 Add to MetaCart
Over half a century old and showing no signs of aging, kmeans remains one of the most popular data processing algorithms. As is wellknown, a proper initialization of kmeans is crucial for obtaining a good final solution. The recently proposed kmeans++ initialization algorithm achieves this
Results 1  10
of
5,098