• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 35
Next 10 →

Tablei321:i32Efforti32levelsi32andi32costsi32ofi32efforti32

in unknown title
by unknown authors

Tablei326:i32Summaryi32ofi32constrainti32andi32costi32effects

in METAHEURISTIC�APPROACHES�TO�REALISTIC PORTFOLIO�OPTIMISATION
by unknown authors

Table 4: Household Investment Equations (c dv , c do ,andi h )

in A Guide to FRB/US A Macroeconomic Model of the United States
by Quantitative Studies 1996

Tablei321:i32Thei32differenti32perspectivesi32oni32componentsi32andi32theiri32promises

in CBSE and Embedded Systems - Do They Match?
by Dominik Auf der Maur, Otto Preiss, Thomas Siegrist

TABLEi323.i32Parietali32Regioni32Asymmetryi32ini32Malei32Patientsi32With Schizophreniai32andi32Healthyi32Malei32Comparisoni32Subjects

in unknown title
by unknown authors

Tablei32 1.i32 Class-by-classi32 andi32 overalli32 accuraciesi32 oni32 thei32 testi32 set,i32 usingi32 differenti32 typesi32 ofi32 SVMs,i32 andi32 numberi32 ofi32 support vectors.

in SupportVectorMachinesforRemote-SensingImageClassification
by Fabioroli Giorgio Fumera

Tablei323.i32Class-by-classi32andi32overalli32accuraciesi32oni32thei32testi32set,i32usingi32thei32besti32MLPi32andi32thei32besti32k-NNi32classifier.

in SupportVectorMachinesforRemote-SensingImageClassification
by Fabioroli Giorgio Fumera

TABLEi324.i32Volumei32Correlationsi32Betweeni32thei32Lefti32andi32Righti32In- feriori32Parietali32Lobulesi32andi32Frontali32Lobei32Structuresi32ini3215i32Male Patientsi32Withi32Schizophrenia

in unknown title
by unknown authors

TABLEi325.i32Volumei32Correlationsi32Betweeni32thei32Lefti32andi32Righti32In- feriori32Parietali32Lobulesi32andi32Temporali32Lobei32Structuresi32ini3214 Malei32Patientsi32Withi32Schizophrenia

in unknown title
by unknown authors

Table 1: SR performance of several path selection algorithms (homogeneous case). ANDI for each range in Table 1 is given by 2.49, 2.63, 2.23, 1.61, and 1.21, respectively. The number of 18

in An Efficient Algorithm for Finding a Path Subject to Two Additive Constraints
by Turgay Korkmaz, Marwan Krunz, Spyros Tragoudas 2000
"... In PAGE 18: ... The same network topology, link weights, and constraints were used in [7]. For di erent ranges of c1 and c2, Table1 shows the SR of various algorithms based on twenty 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 00 00 11 11 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 00 00 00 11 11 11 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 00000000000000000 00000000000000000 00000000000000000 00000000000000000 11111111111111111 11111111111111111 11111111111111111 11111111111111111 0000000000000 0000000000000 0000000000000 1111111111111 1111111111111 1111111111111 000 000 000 000 000 000 111 111 111 111 111 111 00 00 00 00 00 11 11 11 11 11 000 000 000 000 000 000 111 111 111 111 111 111 000 000 000 000 000 000 000 000 000 000 111 111 111 111 111 111 111 111 111 111 00 00 00 00 00 00 00 11 11 11 11 11 11 11 0000 0000 0000 0000 1111 1111 1111 1111 000 000 000 000 000 000 000 000 000 111 111 111 111 111 111 111 111 111 000 000 000 000 000 111 111 111 111 111 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 111111111 111111111 111111111 111111111 111111111 111111111 111111111 111111111 111111111 111111111 111111111 00000 11111 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 00000000 00000000 00000000 00000000 00000000 00000000 11111111 11111111 11111111 11111111 11111111 11111111 000000000 000000000 000000000 000000000 111111111 111111111 111111111 111111111 00 00 00 00 00 00 00 00 00 00 11 11 11 11 11 11 11 11 11 11 000000 000000 000000 000000 111111 111111 111111 111111 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 000 000 000 000 000 000 000 111 111 111 111 111 111 111 1 2 3 4 5 6 7 9 13 14 16 17 15 12 10 18 19 20 11 8 26 31 32 30 28 29 25 27 24 22 23 21 Figure 12: An irregular network topology.... In PAGE 19: ... Since the rst constraint is now tighter than before, the SR values for all algorithms, including the exact one, are smaller. Nonetheless, the same previously observed relative performance trends among di erent algorithms in Table1 are also observed here. Note that by making one constraint much tighter than the other, the problem almost reduces to that of nding the shortest path w.... ..."
Cited by 26
Next 10 →
Results 1 - 10 of 35
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University