Results 1 - 10
of
39,461
Robust Real-time Object Detection
- International Journal of Computer Vision
, 2001
"... This paper describes a visual object detection framework that is capable of processing images extremely rapidly while achieving high detection rates. There are three key contributions. The first is the introduction of a new image representation called the “Integral Image ” which allows the features ..."
Abstract
-
Cited by 1184 (4 self)
- Add to MetaCart
This paper describes a visual object detection framework that is capable of processing images extremely rapidly while achieving high detection rates. There are three key contributions. The first is the introduction of a new image representation called the “Integral Image ” which allows the features
Object Detection with Discriminatively Trained Part Based Models
"... We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While deformable part models have become quite popular, their ..."
Abstract
-
Cited by 1422 (49 self)
- Add to MetaCart
We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While deformable part models have become quite popular
A general framework for object detection
- Sixth International Conference on
, 1998
"... This paper presents a general trainable framework for object detection in static images of cluttered scenes. The detection technique we develop is based on a wavelet representation of an object class derived from a statistical analysis of the class instances. By learning an object class in terms of ..."
Abstract
-
Cited by 395 (21 self)
- Add to MetaCart
This paper presents a general trainable framework for object detection in static images of cluttered scenes. The detection technique we develop is based on a wavelet representation of an object class derived from a statistical analysis of the class instances. By learning an object class in terms
An extended set of Haar-like features for rapid objection detection
- IEEE ICIP
"... Recently Viola et al. [5] have introduced a rapid object detection scheme based on a boosted cascade of simple feature classifiers. In this paper we introduce a novel set of rotated haar-like features. These novel features significantly enrich the simple features of [5] and can also be calculated ef ..."
Abstract
-
Cited by 577 (4 self)
- Add to MetaCart
Recently Viola et al. [5] have introduced a rapid object detection scheme based on a boosted cascade of simple feature classifiers. In this paper we introduce a novel set of rotated haar-like features. These novel features significantly enrich the simple features of [5] and can also be calculated
Rapid object detection using a boosted cascade of simple features
- ACCEPTED CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION 2001
, 2001
"... This paper describes a machine learning approach for visual object detection which is capable of processing images extremely rapidly and achieving high detection rates. This work is distinguished by three key contributions. The first is the introduction of a new image representation called the " ..."
Abstract
-
Cited by 3283 (9 self)
- Add to MetaCart
This paper describes a machine learning approach for visual object detection which is capable of processing images extremely rapidly and achieving high detection rates. This work is distinguished by three key contributions. The first is the introduction of a new image representation called
Object Detection in Images by Components
, 1999
"... In this paper we present a component based person detection system that is capable of detecting frontal, rear and near side views of people, and partially occluded persons in cluttered scenes. The framework that is described here for people is easily applied to other objects as well. The motivatio ..."
Abstract
-
Cited by 319 (13 self)
- Add to MetaCart
In this paper we present a component based person detection system that is capable of detecting frontal, rear and near side views of people, and partially occluded persons in cluttered scenes. The framework that is described here for people is easily applied to other objects as well
A Trainable System for Object Detection
, 2000
"... This paper presents a general, trainable system for object detection in unconstrained, cluttered scenes. The system derives much of its power from a representation that describes an object class in terms of an overcomplete dictionary of local, oriented, multiscale intensity differences between adj ..."
Abstract
-
Cited by 344 (8 self)
- Add to MetaCart
This paper presents a general, trainable system for object detection in unconstrained, cluttered scenes. The system derives much of its power from a representation that describes an object class in terms of an overcomplete dictionary of local, oriented, multiscale intensity differences between
Multiple Kernels for Object Detection
"... Our objective is to obtain a state-of-the art object category detector by employing a state-of-the-art image classifier to search for the object in all possible image subwindows. We use multiple kernel learning of Varma and Ray (ICCV 2007) to learn an optimal combination of exponential χ 2 kernels, ..."
Abstract
-
Cited by 275 (10 self)
- Add to MetaCart
(CVPR 2007) based on proposing windows from scale invariant features); and (iii) introducing overlap-recall curves as a mean to compare and optimize the performance of the intermediate pipeline stages. The method is evaluated on the PASCAL Visual Object Detection Challenge, and exceeds the performances
Contextual Priming for Object Detection
- IJCV
, 2003
"... There is general consensus that context can be a rich source of information about an object's identity, location and scale. In fact, the structure of many real-world scenes is governed by strong configurational rules akin to those that apply to a single object. Here we introduce a simple framew ..."
Abstract
-
Cited by 281 (20 self)
- Add to MetaCart
There is general consensus that context can be a rich source of information about an object's identity, location and scale. In fact, the structure of many real-world scenes is governed by strong configurational rules akin to those that apply to a single object. Here we introduce a simple
Learning a Sparse Representation for Object Detection
- PRESENTED IN ECCV’02
, 2002
"... We present an approach for learning to detect objects in still gray images, that is based on a sparse, part-based representation of objects. A vocabulary of information-rich object parts is automatically constructed from a set of sample images of the object class of interest. Images are then repre ..."
Abstract
-
Cited by 293 (3 self)
- Add to MetaCart
We present an approach for learning to detect objects in still gray images, that is based on a sparse, part-based representation of objects. A vocabulary of information-rich object parts is automatically constructed from a set of sample images of the object class of interest. Images
Results 1 - 10
of
39,461