Results 1  10
of
20,786
Using Discriminant Eigenfeatures for Image Retrieval
, 1996
"... This paper describes the automatic selection of features from an image training set using the theories of multidimensional linear discriminant analysis and the associated optimal linear projection. We demonstrate the effectiveness of these Most Discriminating Features for viewbased class retrieval ..."
Abstract

Cited by 508 (15 self)
 Add to MetaCart
This paper describes the automatic selection of features from an image training set using the theories of multidimensional linear discriminant analysis and the associated optimal linear projection. We demonstrate the effectiveness of these Most Discriminating Features for viewbased class
Efficient and Effective Querying by Image Content
 Journal of Intelligent Information Systems
, 1994
"... In the QBIC (Query By Image Content) project we are studying methods to query large online image databases using the images' content as the basis of the queries. Examples of the content we use include color, texture, and shape of image objects and regions. Potential applications include med ..."
Abstract

Cited by 503 (13 self)
 Add to MetaCart
In the QBIC (Query By Image Content) project we are studying methods to query large online image databases using the images' content as the basis of the queries. Examples of the content we use include color, texture, and shape of image objects and regions. Potential applications include
MultipleCenterofProjection Images
, 1998
"... In imagebased rendering, images acquired from a scene are used to represent the scene itself. A number of reference images are required to fully represent even the simplest scene. This leads to a number of problems during image acquisition and subsequent reconstruction. We present the multiplecent ..."
Abstract

Cited by 165 (3 self)
 Add to MetaCart
In imagebased rendering, images acquired from a scene are used to represent the scene itself. A number of reference images are required to fully represent even the simplest scene. This leads to a number of problems during image acquisition and subsequent reconstruction. We present the multiplecenterofprojection
Plenoptic Modeling: An ImageBased Rendering System
, 1995
"... Imagebased rendering is a powerful new approach for generating realtime photorealistic computer graphics. It can provide convincing animations without an explicit geometric representation. We use the “plenoptic function” of Adelson and Bergen to provide a concise problem statement for imagebased ..."
Abstract

Cited by 760 (20 self)
 Add to MetaCart
Imagebased rendering is a powerful new approach for generating realtime photorealistic computer graphics. It can provide convincing animations without an explicit geometric representation. We use the “plenoptic function” of Adelson and Bergen to provide a concise problem statement for image
Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection
, 1997
"... We develop a face recognition algorithm which is insensitive to gross variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a highdimensional space. We take advantage of the observation that the images ..."
Abstract

Cited by 2310 (17 self)
 Add to MetaCart
from this linear subspace. Rather than explicitly modeling this deviation, we linearly project the image into a subspace in a manner which discounts those regions of the face with large deviation. Our projection method is based on Fisher's Linear Discriminant and produces well separated classes
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear
Recognitionbycomponents: A theory of human image understanding
 Psychological Review
, 1987
"... The perceptual recognition of objects is conceptualized to be a process in which the image of the input is segmented at regions of deep concavity into an arrangement of simple geometric components, such as blocks, cylinders, wedges, and cones. The fundamental assumption of the proposed theory, recog ..."
Abstract

Cited by 1272 (23 self)
 Add to MetaCart
of these properties is generally invariant over viewing position and image quality and consequently allows robust object perception when the image is projected from a novel viewpoint or is degraded. RBC thus provides a principled account of the heretofore undecided relation between the classic principles
Shape and motion from image streams under orthography: a factorization method
 INTERNATIONAL JOURNAL OF COMPUTER VISION
, 1992
"... Inferring scene geometry and camera motion from a stream of images is possible in principle, but is an illconditioned problem when the objects are distant with respect to their size. We have developed a factorization method that can overcome this difficulty by recovering shape and motion under orth ..."
Abstract

Cited by 1094 (38 self)
 Add to MetaCart
orthography without computing depth as an intermediate step. An image stream can be represented by the 2FxP measurement matrix of the image coordinates of P points tracked through F frames. We show that under orthographic projection this matrix is of rank 3. Based on this observation, the factorization method
The Digital Michelangelo Project: 3D Scanning of Large Statues
, 2000
"... We describe a hardware and software system for digitizing the shape and color of large fragile objects under nonlaboratory conditions. Our system employs laser triangulation rangefinders, laser timeofflight rangefinders, digital still cameras, and a suite of software for acquiring, aligning, merg ..."
Abstract

Cited by 488 (8 self)
 Add to MetaCart
is of the David  2 billion polygons and 7,000 color images. In this paper, we discuss the challenges we faced in building this system, the solutions we employed, and the lessons we learned. We focus in particular on the unusual design of our laser triangulation scanner and on the algorithms and software we
Nonlinear total variation based noise removal algorithms
, 1992
"... A constrained optimization type of numerical algorithm for removing noise from images is presented. The total variation of the image is minimized subject to constraints involving the statistics of the noise. The constraints are imposed using Lagrange multipliers. The solution is obtained using the g ..."
Abstract

Cited by 2271 (51 self)
 Add to MetaCart
the gradientprojection method. This amounts to solving a time dependent partial differential equation on a manifold determined by the constraints. As t ~ 0o the solution converges to a steady state which is the denoised image. The numerical algorithm is simple and relatively fast. The results appear
Results 1  10
of
20,786