Results 1  10
of
69,308
Training Linear SVMs in Linear Time
, 2006
"... Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for highdimensional sparse data commonly encountered in applications like text classification, wordsense disambiguation, and drug design. These applications involve a large number of examples n ..."
Abstract

Cited by 549 (6 self)
 Add to MetaCart
as well as a large number of features N, while each example has only s << N nonzero features. This paper presents a CuttingPlane Algorithm for training linear SVMs that provably has training time O(sn) for classification problems and O(sn log(n)) for ordinal regression problems. The algorithm
Pointsto Analysis in Almost Linear Time
, 1996
"... We present an interprocedural flowinsensitive pointsto analysis based on type inference methods with an almost linear time cost complexity. To our knowledge, this is the asymptotically fastest nontrivial interprocedural pointsto analysis algorithm yet described. The algorithm is based on a nons ..."
Abstract

Cited by 595 (3 self)
 Add to MetaCart
We present an interprocedural flowinsensitive pointsto analysis based on type inference methods with an almost linear time cost complexity. To our knowledge, this is the asymptotically fastest nontrivial interprocedural pointsto analysis algorithm yet described. The algorithm is based on a non
A LinearTime Heuristic for Improving Network Partitions
, 1982
"... An iterative mincut heuristic for partitioning networks is presented whose worst case computation time, per pass, grows linearly with the size of the network. In practice, only a very small number of passes are typically needed, leading to a fast approximation algorithm for mincut partitioning. To d ..."
Abstract

Cited by 524 (0 self)
 Add to MetaCart
An iterative mincut heuristic for partitioning networks is presented whose worst case computation time, per pass, grows linearly with the size of the network. In practice, only a very small number of passes are typically needed, leading to a fast approximation algorithm for mincut partitioning
Inference in Linear Time Series Models with Some Unit Roots,”
 Econometrica
, 1990
"... This paper considers estimation and hypothesis testing in linear time series models when some or all of the variables have unit roots. Our motivating example is a vector autoregression with some unit roots in the companion matrix, which might include polynomials in time as regressors. In the genera ..."
Abstract

Cited by 390 (14 self)
 Add to MetaCart
This paper considers estimation and hypothesis testing in linear time series models when some or all of the variables have unit roots. Our motivating example is a vector autoregression with some unit roots in the companion matrix, which might include polynomials in time as regressors
Linear pattern matching algorithms
 IN PROCEEDINGS OF THE 14TH ANNUAL IEEE SYMPOSIUM ON SWITCHING AND AUTOMATA THEORY. IEEE
, 1972
"... In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching in linear time. Related problems, such as those discussed in [4], have previously been solved by efficient but suboptimal algorithms. In this paper, we introduce an interesting data structure called a bitree. A linear ti ..."
Abstract

Cited by 546 (0 self)
 Add to MetaCart
In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching in linear time. Related problems, such as those discussed in [4], have previously been solved by efficient but suboptimal algorithms. In this paper, we introduce an interesting data structure called a bitree. A linear
A NEW POLYNOMIALTIME ALGORITHM FOR LINEAR PROGRAMMING
 COMBINATORICA
, 1984
"... We present a new polynomialtime algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than the ell ..."
Abstract

Cited by 860 (3 self)
 Add to MetaCart
We present a new polynomialtime algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than
The Linear TimeBranching Time Spectrum II  The semantics of sequential systems with silent moves
, 1993
"... ion Rule (KFAR) (Baeten, Bergstra & Klop [3]), expresses a global fairness assumption. It says that when possible a system will escape from any cycle of internal actions. Some form of KFAR is crucial for many protocal verifications with unreliable channels, and for that reason preorders and equi ..."
Abstract

Cited by 375 (21 self)
 Add to MetaCart
ion Rule (KFAR) (Baeten, Bergstra & Klop [3]), expresses a global fairness assumption. It says that when possible a system will escape from any cycle of internal actions. Some form of KFAR is crucial for many protocal verifications with unreliable channels, and for that reason preorders and equivalences that satisfy KFAR are of special interest. Must preorders and divergence sensitive ones cannot satisfy KFAR. In Bergstra, Klop & Olderog [7] it is shown that the combination of KFAR with failure semantics is inconsistent, but they formulate a weaker version of KFAR that is satisfied in failure maysemantics. Still the combination of KFAR \Gamma and the liveness requirement appears to require global testing, and is only satisfied in the semantics between contrasimulation (C) and stability respecting branching bisimulation (BB s ). These requirements would reduce the number of suitable preorders to 18. It is in general a good strategy to do your verifications using the finest preorde...
Alternatingtime Temporal Logic
 Journal of the ACM
, 1997
"... Temporal logic comes in two varieties: lineartime temporal logic assumes implicit universal quantification over all paths that are generated by system moves; branchingtime temporal logic allows explicit existential and universal quantification over all paths. We introduce a third, more general var ..."
Abstract

Cited by 620 (53 self)
 Add to MetaCart
Temporal logic comes in two varieties: lineartime temporal logic assumes implicit universal quantification over all paths that are generated by system moves; branchingtime temporal logic allows explicit existential and universal quantification over all paths. We introduce a third, more general
Longitudinal data analysis using generalized linear models”.
 Biometrika,
, 1986
"... SUMMARY This paper proposes an extension of generalized linear models to the analysis of longitudinal data. We introduce a class of estimating equations that give consistent estimates of the regression parameters and of their variance under mild assumptions about the time dependence. The estimating ..."
Abstract

Cited by 1526 (8 self)
 Add to MetaCart
SUMMARY This paper proposes an extension of generalized linear models to the analysis of longitudinal data. We introduce a class of estimating equations that give consistent estimates of the regression parameters and of their variance under mild assumptions about the time dependence
Depth first search and linear graph algorithms
 SIAM JOURNAL ON COMPUTING
, 1972
"... The value of depthfirst search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and ar algorithm for finding the biconnected components of an undirect ..."
Abstract

Cited by 1406 (19 self)
 Add to MetaCart
of an undirect graph are presented. The space and time requirements of both algorithms are bounded by k 1V + k2E d k for some constants kl, k2, and k a, where Vis the number of vertices and E is the number of edges of the graph being examined.
Results 1  10
of
69,308