Results 1  10
of
10,776
Probabilistic Principal Component Analysis
 JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B
, 1999
"... Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximumlikelihood estimation of paramet ..."
Abstract

Cited by 709 (5 self)
 Add to MetaCart
of parameters in a latent variable model closely related to factor analysis. We consider the properties of the associated likelihood function, giving an EM algorithm for estimating the principal subspace iteratively, and discuss, with illustrative examples, the advantages conveyed by this probabilistic approach
Robust principal component analysis?
 Journal of the ACM,
, 2011
"... Abstract This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the ..."
Abstract

Cited by 569 (26 self)
 Add to MetaCart
rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the 1 norm. This suggests the possibility of a principled approach to robust principal component
Principal Curves
, 1989
"... Principal curves are smooth onedimensional curves that pass through the middle of a pdimensional data set, providing a nonlinear summary of the data. They are nonparametric, and their shape is suggested by the data. The algorithm for constructing principal curve starts with some prior summary, suc ..."
Abstract

Cited by 394 (1 self)
 Add to MetaCart
Principal curves are smooth onedimensional curves that pass through the middle of a pdimensional data set, providing a nonlinear summary of the data. They are nonparametric, and their shape is suggested by the data. The algorithm for constructing principal curve starts with some prior summary
On the distribution of the largest eigenvalue in principal components analysis
 ANN. STATIST
, 2001
"... Let x �1 � denote the square of the largest singular value of an n × p matrix X, all of whose entries are independent standard Gaussian variates. Equivalently, x �1 � is the largest principal component variance of the covariance matrix X ′ X, or the largest eigenvalue of a pvariate Wishart distribu ..."
Abstract

Cited by 422 (4 self)
 Add to MetaCart
Let x �1 � denote the square of the largest singular value of an n × p matrix X, all of whose entries are independent standard Gaussian variates. Equivalently, x �1 � is the largest principal component variance of the covariance matrix X ′ X, or the largest eigenvalue of a pvariate Wishart
Nonlinear component analysis as a kernel eigenvalue problem

, 1996
"... We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all ..."
Abstract

Cited by 1573 (83 self)
 Add to MetaCart
We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all
The nas parallel benchmarks
 The International Journal of Supercomputer Applications
, 1991
"... A new set of benchmarks has been developed for the performance evaluation of highly parallel supercomputers. These benchmarks consist of ve \parallel kernel " benchmarks and three \simulated application" benchmarks. Together they mimic the computation and data movement characterist ..."
Abstract

Cited by 694 (9 self)
 Add to MetaCart
characteristics of large scale computational uid dynamics applications. The principal distinguishing feature of these benchmarks is their \pencil and paper " speci cation  all details of these benchmarks are speci ed only algorithmically. In this way many of the di culties associated with conventional
PCASIFT: A more distinctive representation for local image descriptors
, 2004
"... Stable local feature detection and representation is a fundamental component of many image registration and object recognition algorithms. Mikolajczyk and Schmid [14] recently evaluated a variety of approaches and identified the SIFT [11] algorithm as being the most resistant to common image deforma ..."
Abstract

Cited by 591 (6 self)
 Add to MetaCart
Stable local feature detection and representation is a fundamental component of many image registration and object recognition algorithms. Mikolajczyk and Schmid [14] recently evaluated a variety of approaches and identified the SIFT [11] algorithm as being the most resistant to common image
Stochastic Perturbation Theory
, 1988
"... . In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a firstorder perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating the variatio ..."
Abstract

Cited by 907 (36 self)
 Add to MetaCart
. In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a firstorder perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating
Articulated body motion capture by annealed particle filtering
 In IEEE Conf. on Computer Vision and Pattern Recognition
, 2000
"... The main challenge in articulated body motion tracking is the large number of degrees of freedom (around 30) to be recovered. Search algorithms, either deterministic or stochastic, that search such a space without constraint, fall foul of exponential computational complexity. One approach is to intr ..."
Abstract

Cited by 494 (4 self)
 Add to MetaCart
The main challenge in articulated body motion tracking is the large number of degrees of freedom (around 30) to be recovered. Search algorithms, either deterministic or stochastic, that search such a space without constraint, fall foul of exponential computational complexity. One approach
CARUSO – Project Goals and Principal Approach
"... Abstract: This paper proposes CARUSO – a new SoC approach that emphasizes ..."
Abstract
 Add to MetaCart
Abstract: This paper proposes CARUSO – a new SoC approach that emphasizes
Results 1  10
of
10,776