Results 1 -
4 of
4
NOVEL COMPACT DUAL-BAND BANDPASS MICROSTRIP FILTER
"... Abstract—In this paper, a novel microstrip structure is developed to realize a dual-band bandpass filter. The proposed bandpass structure uses a microstrip resonator with two independently controlled resonance frequencies producing two frequency bands of interest controlled by adjusting the dimensio ..."
Abstract
-
Cited by 3 (0 self)
- Add to MetaCart
.85 % and 9.92 % fractional bandwidths respectively. We achieved a compact second-order dual-band bandpass filter with controllable resonance frequencies and low insertion losses in the passband with high selectivity. The measured results are in good agreement with simulated results. Additionally, it can
COMPACT MULTIBAND TRANSVERSAL BANDPASS FILTERS WITH MULTIPLE TRANSMISSION ZEROES
"... Abstract—Novel compact multiband microstrip transversal bandpass filters (BPF) using short-circuited or open-circuited stub-loaded half-wavelength resonators (SLR) are presented. The dual-band BPF consists of two SLRs and two T-shaped feedlines, and the tri-band BPF can be implemented by a simple re ..."
Abstract
- Add to MetaCart
reconfiguration of adding one resonator above the original circuit of the dual-band BPF. Multiple transmission zeroes are created to improve the selectivity of the filters. Furthermore, the high degree of design freedom obtained for every passband of dual- or triple-band BPF is achieved by independent resonators
MicroNano2008-70023 A BULK MICROMACHINED TUNABLE DUAL-MODE MICROWAVE BANDPASS FILTER ON COPLANAR WAVEGUIDE
"... ABSTRACT This paper proposes a bulk micromachined bandpass filter on 0.5mm-thick Pyrex glass, whose operation is based on the splitting of the odd and even degenerate mode in a dual-mode resonator, with the addition of a perturbation element. In such a way, a filter may require only half resonators ..."
Abstract
- Add to MetaCart
resonators of a traditional one, resulting in a more compact configuration over those ever reported. A 4%-bandwidth bandpass filter centered at 17GHz was designed. The square-ring-like coplanar waveguide (CPW) act as a dual-mode resonator, and an open-circuited stub attached to the inner corner of the square
1Sub-Nyquist Sampling: Bridging Theory and Practice
"... [ A review of past and recent strategies for sub-Nyquist sampling] Signal processing methods have changed substantially over the last several decades. In modern applications, an increasing number of functions is being pushed forward to sophisticated software algorithms, leaving only delicate finely- ..."
Abstract
- Add to MetaCart
[ A review of past and recent strategies for sub-Nyquist sampling] Signal processing methods have changed substantially over the last several decades. In modern applications, an increasing number of functions is being pushed forward to sophisticated software algorithms, leaving only delicate finely-tuned tasks for the circuit level. Sampling theory, the gate to the digital world, is the key enabling this revolution, encompassing all aspects related to the conversion of continuous-time signals to discrete streams of numbers. The famous Shannon-Nyquist theorem has become a landmark: a mathematical statement which has had one of the most profound impacts on industrial development of digital signal processing (DSP) systems. Over the years, theory and practice in the field of sampling have developed in parallel routes. Contributions by many research groups suggest a multitude of methods, other than uniform sampling, to acquire analog signals [1]–[6]. The math has deepened, leading to abstract signal spaces and innovative sampling techniques. Within generalized sampling theory, bandlimited signals have no special preference, other than historic. At the same time, the market adhered to the Nyquist paradigm; state-of-the-art analog to digital conversion (ADC) devices provide values of their input at equalispaced time points [7], [8]. The footprints of Shannon-Nyquist are evident