
An Open Source Hands-on Course with Real-Time Linux

Herman Bruyninckx, Pieter De Troyer, Klaas Gadeyne

Katholieke Universiteit Leuven, Dept. Mechanical Engineering

Celestijnenlaan 300B, B-3001 Leuven, Belgium

herman.bruyninckx@mech.kuleuven.ac.be

Abstract

This paper describes the documentation that comes with our hands-on course on real-time systems,
as we present it to fourth-year mechatronics engineering students. This hands-on course is one part of a
cluster of three, the others being more theoretical courses on real-time software, and on processors and
interfacing for real-time systems.

The hands-on course is using real-time Linux (RTLinux and RTAI), and its examples focus on mecha-
tronic systems for mechanical engineers, i.e., mostly motion control applications. The course was first
given in Dutch, but its documentation and code examples are now reworked and extended for this year’s
course into an English version, which will be available under the GNU Free Documentation License (FDL)
license [3]. The aim is to serve as a starting point for cooperation in the field of educational material
for real-time courses for beginning engineering students, because there is a big need to complement the
excellent real-time operating system projects with “higher-level” documentation and guidance.

1 Introduction

Both RTLinux [11] and RTAI [6] have become ma-
ture real-time operating systems, which are ready
for serious industrial use. They both also have suc-
ceeded in building up an active community of users
and co-developers (e.g., the Comedi library for DAQ-
like device drivers [7]). However, offering real-time
operating system primitives of good quality is not
sufficient to reach real-time application programs of
good quality: one needs documentation and course
material of comparable scope and quality. And cur-
rently, the lack of both documentation and courses
in the open source real-time world is apparent.
The goal of this paper is to stimulate the creation
of an open source initiative to fill this gap. As with
development of code, also documentation and course
projects need an initial design and implementation,
that others can then comment on and extend, in or-
der to eventually reach a decent level of contents and
scope. The authors believe that their course notes on
real-time systems could be such a starting point.
This course is given to fourth-year mechatronics en-
gineering students at the K.U.Leuven, Belgium, and
consists of three parts:

• A theoretical course on real-time software.

• A theoretical course on processor architectures.

• A set of hands-on sessions.

For the hands-on sessions, an extensive documen-
tation is currently being developed, and accessi-
ble on-line on http://www.mech.kuleuven.ac.be/

~bruyninc/rthowto/. This course has been given
last year, in a shorter, Dutch version, and is cur-
rently being extended and translated into English.
The following Sections explain the hands-on course
(Section 2), our vision on how to further develop the
contents of the accompanying documentation (Sec-
tion 3), and how we see an open source project being
created around it (Section 4).

2 Hands-on

The public of the course are mechatronic engineering
students. This means:

• they have only a very basic knowledge about
computing (and certainly about operating sys-
tems) and about electronic interfacing.

• their field of interest is mainly in mechatronics,
such as machine control and robotics.

In many ways, this is a perfect public to try out gen-
eral documentation and course notes, because almost
everything is new to them. (More advanced courses



could be derived from the general one, by a combi-
nation of selection and addition, see Section 4).
The hands-on sections have the following purpose:

• To illustrate the two theoretical courses. It has
been our experience, however, that students
are not always motivated to prepare the hands-
on sessions by first going through the theoret-
ical classroom notes; therefore, we decided to
make the notes of the hands-on sessions as self-
contained as possible. (Another reason for this
decision is that the theoretical courses don’t
publish their material in open source form.)

• To demonstrate and explain the software be-
hind typical mechatronic systems. We’ve built
a couple of low degrees-of-freedom motion con-
trol setups, that illustrate the following:

compiling, linking and loading. Students
have almost no experience and under-
standing of these basic things. . .

threads: scheduling, periodic timing, static
priorities.

interrupts: an ISR shapes the pulses for a
stepper motor; another ISR detects when
a probe comes in contact with the envi-
ronment; still another ISR is responsible
for filling in the initial encoder value dur-
ing a homing sequence.

interprocess communication (IPC): the
motion controller consists of: (i) the
command interpreter thread, that re-
ceives commands from the user, and dis-
tributes the appropriate information to
the other threads; (ii) the trajectory gen-

erator thread, that processes high-level
motion commands into setpoints for the
servo thread; (iii) the servo thread, that
takes these setpoints as inputs to its con-
trol algorithm (a simple proportional con-
trol in the hands-on); and (iv) the diag-

nosis thread, that returns status infor-
mation about the whole motion control
system. The trajectory generator and the
servo thread communicate with a FIFO
(i.e., the producer-consumer pattern).

device drivers: for a parallel port, incremen-
tal encoder, DA and AD conversion, and
a force sensor.

3 Documentation

The documentation that comes with the above-
mentioned hands-on course consists of two major

parts. We don’t give full details of the contents, be-
cause these things are quite well known in the real-
time Linux community, and the full course notes are
readily accessible on-line, [2].

• Part 1. Introduction to the concepts of a real-
time operating system.

• Part 2. Discussion about how to design a real-
time application.

3.1 Part 1: Concepts

The contents of the first Part are:

Real-time and embedded operating systems.
A brief overview of the whole first Part, i.e.,
the responsibilities of an operating system
(general-purpose and real-time); trade-offs
that designers of an OS have to make; the
importance of the concept of “time” in an
RTOS; a discussion on the appropriateness of
standard Linux for real-time and embedded
applications; operating system standards.

Task management and scheduling. With the
following sections: POSIX thread manage-
ment; scheduling; priority-based scheduling;
the Linux scheduler; real-time scheduling for
Linux.

Interrupts, with emphasis on the need for, and the
difference between, an Interrupt Service Rou-
tine and its Deferred Service Routine(s).

Interprocess communication (IPC), subdivided
into synchronization (i.e., events and locks)
and data exchange (i.e., FIFOs, messages,
buffers, etc.).

Memory management.

Real-time device drivers, with a discussion on
Comedi, and the rt-net and rtcom projects.

Linux variants for real-time and embedded,
with discussions on RTLinux, RTAI, miniRTL,
AtomicRTAI, uCLinux and Etlinux.

Non-Linux RTOSs, with discussion on eCos, RT-
EMS, CubeOS, FIASCO and DROPS, Real-
time micro-kernel, and KISS Realtime Kernel.

Compilation, tracing and debugging, with, for
example, gdb and the Linux Trace Toolkit.



As can already been seen from this contents descrip-
tion, the documentation tries to cover the whole
range of open source software for real-time program-
ming (and embedded programming, although this
part of the documentation is much less mature still),
and doesn’t want to concentrate on RTLinux or
RTAI alone. The authors think there is a definite
need for this “larger-scale” view on the open source
evolutions in the real-time domain.

3.2 Part 2: Design

The second Part wants to guide the students in their
task to design the software for a real-time project
they have to work on. Our experience is that design
is by far the most difficult part of the course, because:
(i) there exists very little literature on what to do
when designing software for a real-time application,
(ii) the standard theoretical course on real-time soft-
ware doesn’t spend much time on design because it
has its hands more than full on explaining the RTOS
primitives, and (iii) design is inherently difficult, es-
pecially for non-experienced users. So, we go into
a bit more detail in presenting the contents of this
Part 2:

Decoupling structure and functionality. This
chapter speaks about the basic issues in design:
components, modules, architectures, coupling,
etc. Students should understand the impor-
tance of separating the structure of an applica-
tion from its functionality. The functionality
is the set of all algorithms needed to perform
the purpose of the application; the structure
is the way in which the algorithms are dis-
tributed over tasks (threads), and how these
tasks are synchronized. Most (mature) appli-
cation domains have a relatively fixed structure
of cooperating tasks that has grown over the
years by experimenting in the domain, while
the functionality of some of the tasks tends to
change more quickly (adding features, trying
out alternative functionality, etc.) Examples
of such mature domains are: telecom, motion
control, networking, data bases, . . .

A lot of the real-time developments are done
in small, isolated groups, where often the ma-
jority of developers are not computer scien-
tists but specialists in the application domain;
and new students in the field are concentrat-
ing more on understanding the real-time prim-
itives than on learning to design software appli-
cations. This often leads to “spaghetti code” or
abuse of the available real-time and IPC prim-
itives.

Software patterns. A Software Pattern [4, 8] is
a proven, non-obvious, and constructive solu-
tion to a common problem in a well-defined
context, taking into account interactions and
trade-offs (“forces”) that each tend to drive
the solution into different directions. A Pat-
tern describes the interaction between a group
of components, hence it is a higher-level ab-
straction than classes or objects. It’s also not
an implementation, but a textual description
of a solution and its context. Patterns are very
important while designing the structure of an
application, because finding the relevant pat-
tern(s) solves most of the structuring problem
already.

The patterns discussed in the course are: the
distributed components patterns (described al-
ready very well by Douglas Schmidt in ACE [9]
and TAO [10]; and the patterns for low-level
motion control.

Frameworks. A framework [5] is a set of computer
code files that implement a reusable software
solution for a particular problem domain. In
that sense a framework is much broader (“pro-
gramming in the large”) than a software pat-
tern (“programming in the small”). A frame-
work typically contains several patterns, but a
pattern doesn’t contain frameworks; a frame-
work contains code, a pattern doesn’t. Soft-
ware frameworks are constructed in such a way
that similar applications within the same do-
main can benefit from the same structures and
abstractions, but may need re-implementation
of some parts of the framework.

The above-mentioned ACE [9] and TAO [10]
open source projects are frameworks, based on
a lot of Software Patterns. The authors are
working on a similar framework for robot con-
trol, in the context of the Orocos project (Open

source Robot Control Software, [1]).

Hints. This Chapter contains a list of do’s and

dont’s, i.e., things to be aware of, or good ex-
amples of coding, in the context of real-time
programming.

There doesn’t exist a Part 3 yet, but we envisage it to
consist of detailed code examples from different ap-
plication domains. This should become an archive of
high-quality modules, where real-time programmers
come and shop for (or contribute new re-usable) com-
ponents.



4 Collaboration project

Not all of the above-mentioned chapters and topics
have already been worked out in full detail. That’s
the reason why the authors want to start an open
source project around documentation and course ma-
terial. The second reason is to improve the quality
and the scope of what is already there.
We realize that the goals of a course or of documena-
tion could be quite different for courses begin taught
by different people in their own particular context:
one could, for example, need a course for quite ex-
perienced C programmers, with interests in telecom
applications. This flexibility of shaping the course
according to different goals should be one of the de-
sign issues to be taken into account. Therefore, while
at this moment there is only a need for examples in
mechatronics, the parts of the course that treats gen-
eral real-time concepts is “application-agnostic,” in
the sense that the concrete examples are separated
from the theory, and are only combined at “compile

time.”
We think that the process of writing and maintain-
ing documentation and course notes should use the
same tools that have proven to work in the creation
of the software they accompany. One could imagine
using the well-known configure; make; make install

cycle to produce a set of course notes with the ap-
propriate selection of general theoretical discussions,
with examples of code and design in the relevant ap-
plication domain. Or to have a configuration tool as
used for the building of a Linux kernel.
This means that the documentation should be writ-
ten in more or less independent modules, separating
theory from example code, and with the option to
choose the examples from a pre-defined (but extensi-
ble) set of application domains (telecom, motion con-
trol, process control, data acquisition, . . . ). We need
a meta-formalism for specifying constraints and de-
pendencies between the different modules, such that
the user is supported in constructing course notes
that are consistent.
Currently, there is no such infrastructure imple-
mented yet for the documentation project, and there
is no clear design approach for it either. The authors
sincerely welcome suggestions in this area.

5 Conclusions

This paper presented on-going work on the creation
of an open source documentation project for real-
time programming. The documentation is software
project-agnostic (i.e., not targeted to, for example,
only RTAI), and consists of three major parts: gen-
eral theory on real-time software; support for the
design of real-time applications; and an archive of

re-usable components.
Only the first two parts have been (partially) imple-
mented yet, so it is time to start up an international
collaboration to make the initiative grow into a suc-
cesful open source project.

Acknowledgements

Herman Bruyninckx is Postdoctoral Fellow of the
Fund for Scientific Research—Flanders (F.W.O.)
in Belgium. This work was partly sponsored by
the Belgian Programme on Interuniversity Attrac-
tion Poles (IUAP), and Concerted Research Action
GOA/99/04.

References

[1] H. Bruyninckx. Open source robot control soft-
ware. http://www.orocos.org/.

[2] H. Bruyninckx. Real-time and embedded
howto. http://www.mech.kuleuven.ac.be/

~bruyninc/rthowto/.

[3] Free Software Foundation. GNU Free Doc-
umentation Licence. http://www.fsf.org/

copyleft/fdl.html.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design patterns: elements of reusable

object-oriented software. Addison-Wesley, Read-
ing, MA, 1995.

[5] R. E. Johnson. Frameworks = (components
+ patterns). Communications of the ACM,
40(10):39–42, 1997.

[6] P. Mantegazza. RTAI: the Real-Time Applica-
tions Interface. http://server.aero.polimi.

it/projects/rtai/.

[7] D. Schleef. Comedi: Linux control and measure-
ment device interface. http://stm.lbl.gov/

comedi/.

[8] D. Schmidt, M. Stal, H. Rohnert, and
F. Buschmann. Pattern-oriented software archi-

tecture. Patterns for concurrent and networked

objects. Wiley, 2001.

[9] D. C. Schmidt. ACE, The Adaptive Commu-
nication Environment. http://www.cs.wustl.
edu/~schmidt/ACE.html.

[10] D. C. Schmidt. TAO, The Ace Orb. http:

//www.cs.wustl.edu/~schmidt/TAO.html.

[11] V. Yodaiken and M. Barabanov. Real-time
linux. http://www.rtlinux.org.


