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Abstract. Influence of a geometric transformation to positional ac-
curacy of geographic objects is discussed in this contribution. Firstly,
transformation parameters are estimated with the aid of ground control
points (GCP) by Bayesian approach. Secondly, probability distribution
of position of transformed object is derived. Uncertainty of input data in
both steps are simultaneously processed during the proposed procedure.
Therefore the procedure enables exact statistical assessment of the result-
ing spatial information. Finally, the procedure is illustrated on example
of linear conform transformation that is frequently used in practice.

1 Introduction

Geometric transformation represents an important procedure in collecting spa-
tial data from different sources. Input data of any kind (aerial photos, satellite
images of various spectral bands, digitized maps, LIDAR data, existing GIS data,
etc.) have limited positional accuracy which has to be properly processed to de-
termine spatial quality of the outcoming spatial objects in a required coordinate
system.

Position of the object in the required coordinate system is mostly determined
in two steps. Firstly, coordinates of GCPs are used to estimate transformation
parameters of some specified transformation model. Secondly, coordinates of the
object in a source coordinate system are transformed by means of transformation
equations determined in the previous step.

In the first step, transformation parameters are estimated with the aid of a
set of GCPs by solving an overdetermined system of equations. Uncertainty in
both coordinate systems has to be considered simultaneously. This requirement
makes the estimation problem nonlinear even for linear transformation. Tradi-
tionally, the least-squares method is used for the estimation. Exact estimation of
transformation parameters was designed in [1] for linear conform transformation
(generalized Helmert transformation). Classical approach based on linearization
was applied to generalized Helmert transformation in [2]. In this contribution,
nonlinear Bayesian estimation is used. In the case of linear conform transfor-
mation, Bayesian estimate gives similar result as in [1]. In addition, quality of



transformation is enabled, since Bayesian approach results in probability distri-
bution of estimated transformation parameters.

Traditionally, quality of geometric transformation obtained in the first step
is not fully considered in the second step. Usually, once a specified quality of
transformation is attained, only positional accuracy of the object in the source
coordinate system is utilized in the final assessment of spatial quality. Indeed,
uncertainty of input data processed in both steps has to be considered to ob-
tain correct estimate of spatial quality of the outcoming transformed objects.
Computational procedure which respects that requirement is proposed in this
contribution.

2 Formulation of the Problem

A geographic object is given by a set X� of points (e.g. on its border). Coor-
dinates of points from the set X� are known in some coordinate system; let
us name it source coordinate system. Position of the same object in some other
coordinate system is required; let us name it required coordinate system. Rela-
tionship between those coordinate systems is given by vector function tq called
transformation model in the sequel.

tq : IR2 → IR2 : x̌ 7→ tq(x̌) = x̂ , (1)

where

x̂ . . . coordinates of a point in the required coordinate system,
x̌ . . . coordinates of the same point in the source coordinate system,
q . . . unknown vector of transformation parameters, q = [q1, . . . , qm],
m . . . number of scalar transformation parameters qj , j ∈ {1, . . . , m} in trans-

formation model tq.

Transformation model tq is member of class of transformations defined by map-
ping

t : IRm × IR2 → IR2 : [ q , x̌ ] 7→ t(q , x̌) = tq(x̌) .

Transformation parameters q are not known in advance. They are expected to
be estimated with the aid of given set X� of GCPs. Coordinates of the GCPs
was captured in both coordinate systems.

x̂�j . . . coordinates of j-th GCP in the required coordinate system,
x̌�j . . . coordinates of the j-th GCP in the source coordinate system,
j . . . identifier of a GCP; j ∈ X� for short.

Spatial quality of the geographic object can be objectively assessed on the
basis of probability distribution of position of points from the set X�. Therefore
positional accuracy of the object is required in form of probability distribution of
position of its points in required coordinate system. Similarly, positional accuracy
of the object in source coordinate system is presupposed to be given in form of



the probability distribution of random errors in position of its points in source
coordinate system. Furthermore, probability distribution of random errors in
coordinates of the GCPs in both coordinate systems is supposed to be given as
well.

Probability distribution is always treated in form of probability density func-
tion (pdf).

The above problem formulation can be briefly summarized as follows.

Required Result:

h . . . pdf of points from X� in required coordinate system.

Given Input Data:

X� . . . set of points characterizing a geographic object,
X� . . . set of GCPs,
x̌� . . . vector of source coordinates of object points; x̌� = [x̌j | j ∈ X�],
x̌� . . . vector of source coordinates of GCPs; x̌� = [x̌�k | k ∈ X�],
x̂� . . . vector of required coordinates of GCPs; x̂� = [x̂�k | k ∈ X�],
f̌� . . . pdf of random errors of x̌�,
f̌� . . . pdf of random errors of x̌�,
f̂� . . . pdf of random errors of x̂�,
tq . . . transformation model for some unknown parameter q ∈ IRm

3 Solution of the Problem

Firstly, Bayesian approach is applied to estimate the transformation parameters
with the aid of coordinates of GCPs. The quality of the transformation is spec-
ified by a posterior probability distribution of the transformation parameters
q. This probability distribution is then joined to the probability distribution
of points that have to be transformed. The resulting probability distribution
of points of the outcoming spatial objects is obtained by means of standard
statistical technique.

3.1 Bayesian Estimation of Transformation Parameters

Transformation model (1) has to be valid also for coordinates of GCPs, so that

x̂�j = tq(x̌�j ) , ∀ j ∈ X� . (2)



Reparametrization. It is convenient to separate the unknown parameters q
from given variables x̌�j , x̂�j to respect uncertainty of position of GCP in both
coordinate systems. The separation can be most generally achieved by changing
parameters of the fundamental transformation equation (2).[

x̌�j

x̂�j

]
= τj(r) . (3)

Here function
τj : IRn → IR4 : r 7→ τj(r)

have to be defined for all j ∈ X�. Furthermore, inequality

n ≥ m (4)

has to be held.
The most apparent way of changing parameters is

r = [ q , q̃1, q̃2, . . . , q̃m ] ,

τj(r) =

[
q̃j

tq(q̃j)

]
,

but in a specified case of transformation some more convenient change of param-
eters is usually feasible. Example of changing parameters in the case of linear
conform transformation is presented in the contribution.

Equation (3) can be written repeatedly for ∀ j ∈ X� and modified to have
clear vector form that is suitable for estimation of parameters r.

ε + η = τ (r) , (5)

where

ε . . . random errors of coordinates [x̌�j , x̂�j ]; ε = [ε̌, ε̂],
η . . .measured values of coordinates of GCPs; η = [η̌, η̂],

η̌ + ε̌ = x̌�j , η̂ + ε̂ = x̂�j ,
τ . . . vector function that collects all the functions τj = [τ̌j , τ̂j ]T ;

τ = [τ̌ , τ̂ ], τ̌ = [τ̌j | j ∈ X�], τ̂ = [τ̂j | j ∈ X�].

Bayesian Inference. Parameters r of transformation model in form (5) can
now be easily estimated with the aid of Bayes theorem.

g(r |η) =
f(η − τ (r)) p(r)∫

R

f(η − τ (z)) p(z) dz

, (6)

where



g . . . a posterior pdf of transformation parameters r,
f . . . pdf of coordinate errors of GCPs,
p . . . a prior pdf of transformation parameters r,
R . . . set of acceptable values of transformation parameters r.

Random errors ε̌, ε̂ are usually statistically independent in practice. There-
fore pdf f can be evaluated as product of pdfs f̌ , f̂ , i.e.

f(ε) = f̌(ε̌) f̂(ε̂) .

A prior pdf p is often not known in advance. Therefore it is assumed to be
noninformative, i.e. constant over the whole range R.

Using the two assumptions in (6) results in following simplified version of
Bayes theorem.

g(r |η) =
f̌(η̌ − τ̌ (r)) f̂(η̂ − τ̂ (r))∫

R

f̌(η̌ − τ̌ (z)) f̂(η̂ − τ̂ (z)) dz

. (7)

Return to the Original Transformation Parameters. Relationship be-
tween new parameters r and the original parameters q can be easily obtained
after substitution (3) in (2) for sufficient number of points j ∈ J ⊆ X�.

τ̂j(r) = tq(τ̌j(r)) , ∀ j ∈ J . (8)

Function
ω : IRm+n → IR2 |X�| : [q, r] 7→ ω(q, r)

such that
ω(q, r) = [τ̂j(r)− tq(τ̌j(r)) | j ∈ J ]

implicitly defines another function

w : IRn → IRm : r 7→ w(r)

which makes possible expressing the original parameters q by means of the new
ones r.

q = w(r) . (9)

Elements of vector function ω must fulfill presumptions of theorem on implicit
functions to define function w properly. These presumptions are usually held if
parameters r and functions τj were reasonably chosen.

Thanks to inequality (4), pdf of the original transformation parameters q
can be derived from pdf g of parameters r by application of elementary formula
of probability theory to function w defined by (9). That formula is much more
simple if

n = m . (10)

For the sake of clarity we will suppose (10). Then pdf g̃ of parameters q is (see
e.g. [3]):

g̃(q) = g(w−1(q) |η) · |det
[
∂w

∂r
(w−1(q))

]−1

| . (11)



3.2 Propagation of Spatial Uncertainty

Result (11) is utilized to determine pdf of random vector x̂�. Principle of this
phase will be shown for the object containing just one point here, because it is
much more clear than the general case with an arbitrary number of points in
the set X�. The general, multi-point case is performed in the full paper. Thus
|X�| = 1, x̌� = x̌ for now.

Pdf of x̂ can be easily obtained from pdf of x̌ with the aid of the same formula
which was applied to (9) to produce (11). Here the formula will be be applied
to mapping (1). After then, pdf f̃q of random vector x̂ outcomes.

f̃q(x̂) = f̌�(t−1
q (x̂)) · |det

[
∂tq

∂x̌
(t−1

q (x̂))
]−1

| . (12)

Pdf f̃q expressed in form (12) does not respect uncertainty of transformation
parameters q since their pdf g did not appear in (12). Transformation parameters
q encapsulated in symbol tq are actually constant in equation (12). Therefore
pdf f̃q of random vector x̂� has to be interpreted as conditional pdf. It means
that another pdf, say f̃ , has to be incorporated such that

f̃q(x̂) = f̃(x̂ | q ) . (13)

Pdf f̃ is defined with the aid of joint pdf of vectors x̂�, q. Let us denote such a
joint pdf by symbol f̄ . Then the conditional pdf f̃ is defined as follows (see e.g.
[3], p. 145).

f̃(x̂ | q ) =
f̄( x̂, q )

g̃(q)
.

Hence joint pdf f̄ that respects uncertainty of source coordinates x̌ as well as
transformation parameters q can be evaluated with the aid of known pdfs f̃ , g̃
prepared in (13), (12), (11).

f̄( x̂, q ) = f̃(x̂ | q ) g̃(q) . (14)

We are in fact not interested in joint pdf f̄ . The required pdf h is marginal
pdf of f̄

h(x̂) =
∫
Q

f̄( x̂, q ) dq =
∫
Q

f̃(x̂ | q ) g̃(q) dq .

Here Q stands for a set of permitted values of transformation parameters q.
With substitution (13) we can finally determine the required pdf h.

h(x̂) =
∫
Q

f̃q(x̂) g̃(q) dq . (15)

The general solution given by (15) cannot be directly applied to any transfor-
mation. Specific algorithm for evaluation of integrals in (7) and (15) has to be
designed first. This problem is resolved for linear conform transformation in the
contribution.



4 Summary

Result of the proposed procedure is in form of probability distribution of points
characterizing a geographic object. Pdf of a single point is given in (15). This
solution brings hard numerical problems in general since the underlying estima-
tion model is essentially nonlinear. These computational problems are resolved
under specific assumptions on probability distribution of input data. 2D linear
conform transformation is used as an example. It is shown that the solution
is analytically tractable when the all input data are normally distributed and
when precisions of corresponding GCPs are equal. These conditions are usually
fulfilled in most practical cases.

The proposed procedure can be easily generalized to cover problems of multi-
sensor data when data from several sources are simultaneously processed. Spatial
accuracy of objects reconstructed from various images could be assessed more
reliably than it has been attempted until now (see e.g. [4]).
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