
Reinforcement Learning in Large Multi-agent Systems

Adrian Agogino
UC Santa Cruz, NASA Ames Research Center

Mailstop 269-3
Moffett Field, CA 94035, USA

adrian@email.arc.nasa.gov

Kagan Tumer
NASA Ames Research Center

Mailstop 269-4
Moffett Field, CA 94035, USA

ktumer@mail.arc.nasa.gov

ABSTRACT
Enabling reinforcement learning to be effective in large-scale
multi-agent Markov Decisions Problems is a challenging task.
To address this problem we propose a multi-agent variant
of Q-learning: “Q Updates with Immediate Counterfactual
Rewards-learning” (QUICR-learning). Given a global re-
ward function over all agents that the large-scale system is
trying to maximize, QUICR-learning breaks down the global
reward into many agent-specific rewards that have the fol-
lowing two properties: 1) agents maximizing their agent-
specific rewards tend to maximize the global reward, 2) an
agent’s action has a large influence on its agent-specific re-
ward, allowing it to learn quickly. Each agent then uses
standard Q-learning type updates to form a policy to max-
imize the agent-specific rewards. Results on multi-agent
grid-world problems over two topologies, show that QUICR-
learning can be effective with hundreds of agents and can
achieve up to 300% improvements in performance over both
conventional and local Q-learning in the largest tested sys-
tems.

1. INTRODUCTION
Applying single-agent reinforcement learning algorithms

to large-scale multi-agent systems is difficult. A large-scale
system typically cannot use a single reinforcement learner
since the state-space of this single learner would be pro-
hibitively large. Furthermore, the single learner presents a
single point of failure and is unsuitable for fundamentally
distributed problems, such as satellite control where there
are communication delays.

A more promising approach is to give each agent in the
large-scale system its own reinforcement learner. The main
issue with this approach is how to entice the distributed col-
lection of learners to form policies that maximize a global
reward for the entire large-scale system. It is difficult for a
single agent’s learner to directly maximize the global reward
since so many other agents influence this reward. In Markov
Decisions Problems problems presented in this paper the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05,July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

global reward may be influenced by as many as 25,200 ac-
tions (actions of 400 agents over 63 time steps). Reinforce-
ment learners that use rewards that are more local to a par-
ticular agent are also problematic, since often the policies
formed by these learners maximize their local rewards while
reducing the global reward. As an alternative, we present “Q
Updates with Immediate Counterfactual Rewards learning”
(QUICR-learning), which uses agent-specific rewards that
suppress the impact of other agents. Rewards in QUICR-
learning are both heavily agent-sensitive, making the learn-
ing task easier and aligned with the system level goal, en-
suring that agents receiving high rewards are helping the
system as a whole. These agent-specific reward functions
are then used with standard temporal difference methods
to create a learning method that is significantly faster than
standard Q-learning in large multi-agent systems.

Most current multi-agent reinforcement learning methods
are designed to work in domains with a moderate to small
number of agents such as robotic soccer, multi-agent forag-
ing and multi-agent grid-worlds[6, 3, 2]. Large numbers of
agents are often used in ant colony algorithms [1] that solve
the coordination problem by utilizing “ant trails,” provid-
ing good results in path-finding domains. In [5] coordination
between one hundred robots is achieved through the use of
hierarchical dispatching and with spatial reasoning through
the use of topological graphs.

In this paper, we present QUICR-learning which provides
fast convergence in multi-agent learning domains. This re-
inforcement learning method is based on decomposing the
global reward into agent-specific rewards, without assuming
that the full system reward is linearly separable or requir-
ing hand tuning based on domain knowledge. In Section
2 we discuss the temporal and structural credit assignment
problems in multi-agent systems, and describe the QUICR-
learning algorithm. In Section 3 we present results on two
variants of a multi-agent gridworld problem, showing that
QUICR-learning performs up to 400% better than standard
Q-learning in multi-agent problems.

2. REINFORCEMENT LEARNING IN LARGE
SYSTEMS

The goal of a reinforcement learner is to maximize the
rewards received for a sequence of actions. Starting from
current time step t, the undiscounted sum of rewards till a
final time step T can be represented by:

Rt(st(a)) =

T−tX
k=0

rt+k(st+k(a)) . (1)

where a is a vector containing the actions of all agents at all
time steps, st(a) is the state function returning the state of
all agents for for a single time step, and rt(s) is the single-
time-step reward function, which is a function of the states
of all of the agents.

This reward is a function of all of the previous actions of
all of the agents. Every reward is a function of the states
of all the agents, and every state is a function of all the
actions that preceded it (even though it is Markovian, the
previous states ultimately depend on previous actions). In
a system with n agents, on average 1

2
n ∗ T actions affect

reward. Agents need to use this reward to evaluate their
single action, yet even in the idealized domains presented
Section 3, with four hundred agents and sixty-three time
steps there are an average of 12600 actions affecting the
reward!

2.1 Standard Q-Learning
Reinforcement learners such as Q-learning address how

to assign credit of future rewards to an agent’s current ac-
tion. The goal of Q-learning is to create a policy that maxi-
mizes the sum of future rewards, Rt(st(a)), from the current
state [4, 7, 8]. It does this by maintaining tables of Q-values,
which estimate the expected sum of future rewards for a par-
ticular action in a particular state. In the TD(0) version of
Q-learning, a Q-value, Q(st, at), is updated with the follow-
ing Q-learning rule 1:

∆Q(st, at) = α(rt + maxaQ(st+1, a)) . (2)

The assumption with this update is that the action at is
most responsible for the immediate reward rt, but is less re-
sponsible for the sum of future rewards,

PT−t
k=1 rt+k(st+k(a)).

This assumption is reasonable since rewards in the future are
affected by uncertain future actions and noise in state tran-
sitions. Instead of using the sum of future rewards directly
to update its table, Q-learning uses a Q-value from the next
state entered as an estimate for those future rewards. Under
benign assumptions, Q-values are shown to converge to the
actual value of the future rewards [8].

Eventhough Q-learning addresses how to account for re-
wards taken at other time steps, it does not address how to
handle rewards that are a function of the actions of many
agents. In standard Q-learning an agent will get full credit
for actions taken by all of the other agents. As a result when
they are many agents, standard Q-learning is generally slow
since it will take many episodes for an agent to figure out
its impact on a reward it barely influences.

2.2 Local Q-Learning
One way to address the problem of having a global reward

that is a function of many agents and allow for fast learning
is to assume that agents’ actions are independent. Without
this assumption, the immediate reward function for a multi-
agent reward system may be a function of all the states:

rt(st,1(a1), st,2(a1), . . . , st,n(an)) ,

where st,i(ai) is the state for agent i and is a function of
only agent i’s previous actions. The number of states deter-
mining the reward grows linearly with the number of agents,
while the number of actions that determine each state grows

1This paper uses undiscounted learning to simplify notation,
but all the algorithms also apply to discounted learning as
well.

linearly with the number of time steps. To reduce the huge
number of actions that affect this reward, often the reward
is assumed to be linearly separable:

rt(st) =
X

i

wirt,i(st,i(ai)) .

Then each agent receives a reward rt,i which is only a func-
tion of its action. Q-learning is then used to resolve the
remaining temporal problem of how to use rewards received
at other time steps. If the agents are actually independent,
this method leads to a significant speedup in learning as
an agent receives direct credit for its actions. If the agents
are coupled, then the independence assumption still allows
fast learning, but the agents will tend to converge to the
wrong policy. With loose coupling the benefits of the as-
sumption may still outweigh the costs when there are many
agents. However, when agents are tightly coupled, the in-
dependence assumption may lead to unacceptable solutions
and may even converge to a solution that is worse than ran-
dom [9].

2.3 QUICR-Learning
In this section we present QUICR-learning, a learning al-

gorithm for multi-agent systems that does not assume that
the system reward function is linearly separable. Instead
it uses a mechanism for creating rewards that are a func-
tion of all of the agents, but still provide many of the bene-
fits of hand-crafted rewards. Many hand-crafted multi-agent
learning algorithms exploit detailed knowledge about a do-
main to provide agent rewards that allow the system to max-
imize a global reward. These rewards are designed to have
two beneficial properties: they are “aligned” with the overall
learning task and they have high “sensitivity” to the actions
of the agent.

The first property of alignment means that when an agent
maximizes its own reward it tends to maximize the overall
system reward. Without this property, a large multi-agent
system can lead to agents performing useless work, or worse,
working at cross-purposes. Reward sensitivity means that
an agent’s reward is more sensitive to its own actions than to
other agents actions. This property is important for agents
to learn quickly.

QUICR-learning is based on providing agents with re-
wards that are both aligned with the system goals and sen-
sitive to the agent’s states. It aims to provide the benefits of
hand-crafted algorithms without requiring detailed domain
knowledge. In a task where the reward can be expressed
as in Equation 1, let us introduce the difference reward
(adapted from [9]) given by:

Di
t(st(a)) = Rt(st(a))−Rt(st(a− at,i))

where a − at,i denotes a counterfactual state where agent
i has not taken the action it took in time step t (e.g., the
action of agent i has been removed from the vector contain-
ing the actions of all the agents before the system state has
been computed). Decomposing further, we obtain:

Di
t(st(a)) =

T−tX
k=0

rt+k(st+k(a))− rt+k(st+k(a− at,i))

=

T−tX
k=0

dt+k(st+k(a), st+k(a− at,i)) . (3)

where dt(s1, s2) = rt(s1)− rt(s2). (We introduce the single
time step “difference” reward dt to keep the parallel between
Equations 1 and 3). This reward is much more sensitive
to an agent’s action than rt since much of the effects of
the other agents are subtracted out with the counterfactual
[9]. Unfortunately in general dt(s1, s2) is non-Markovian
since the second parameter may depend of previous states,
making its use troublesome in a learning task involving both
a temporal and structural credit assignment.

In order to overcome this shortcoming of Equation 3, let
us make the following two assumptions:

1. The counterfactual a− at,i action moves agent i to an
absorbing state, sb that is independent of of its current
state.

2. The future state of agents other than agent i are not
affected by the actions of agent i.

The first assumption forces us to compute a counterfac-
tual state that is not necessarily a minor modification to
agent i’s current state. Therefore, differential function esti-
mation techniques that rely on a small change in agent i’s
(e.g., Taylor series expansion) state cannot be used. How-
ever, each agent’s countefactual state is for itself (e.g, not
computed for other agents) and a single time step (e.g., the
countefactual states do not propagate through time). The
second assumption holds in many multi-agent systems, since
to reduce the state-space to manageable levels, agents often
do not directly observe each other (though are still coupled
through the reward).

Given these conditions, the counterfactual state for time
t + k is computed from the actual state at time t + k, by
replacing the state of agent i at time t with sb. Now the
difference reward can be made into a Markovian function:

di
t(st) = rt(st)− rt(st − st,i + sb) , (4)

where the expression st − st,i + sb denotes replacing agent
i’s state with state sb.

Now the Q-learning rule can be applied to the difference
reward, resulting in the QUICR-learning rule:

∆Q(st, at) = α(rt(st)− rt(st − st,i + sb)

+maxaQ(st+1, a))

= α(di
t(st) + maxaQ(st+1, a)) (5)

Note that since this learning rule is Q-learning, albeit ap-
plied to a different reward structure, it shares all the conver-
gens properties of Q-learning. In order to show that Equa-
tion 5 leads to good system level behavior, we need to show
that agent i maximizing di

t(st) (e.g., following Equation5)
will maximize the system reward rt. Note that by definition
(st− st,i + sb) is independent of the actions of agent i, since
it is formed by moving agent i to the absorbing state sb from
which it cannot emerge. This effectively means the partial
differential of di

t(st) with respect to agent i is2:

2Though in this work we show this result for differentiable
states, the principle applies to more general states, including
discrete states.

∂

∂i
di

t(st) =
∂

∂i
(rt(st)− rt(st − st,i + sb))

=
∂

∂i
rt(st)−

∂

∂i
rt(st − st,i + sb)

=
∂

∂i
rt(st)− 0

=
∂

∂i
rt(st). (6)

Therefore any agent i using a learning algorithm to max-
imize di

t(st) will also maximize rt(st). Furthermore, note
that QUICR-learning converges not only to a globally de-
sirable solution (e.g., it statisfies the first property of being
aligned with the system level goal), but it also converges
faster since the rewards are more sensitive to the actions of
agent i because it removes much of the effects of the other
agents through the counterfactual subtraction.

3. MULTI-AGENT GRID WORLD EXPER-
IMENTS

We performed a series of simulations to test the perfor-
mance of Q-Learning, Local Q-Learning and QUICR-Learning
for large-scale multi-agent systems. We selected the the
multi-agent Grid World Problem, a variant of the standard
Grid World Problem [7]. In this problem, at each time step,
the agent can move up, down, right or left one grid square,
and receives a reward (possibly zero) after each move. The
observable state space for the agent is its grid coordinate
and the reward it receives depends on the grid square to
which it moves. In the episodic version, which is the focus
of this paper, the agent moves for a fixed number of time
steps, and then is returned to its starting location.

In this paper we compare learning algorithms in a multi-
agent version of the grid world problem. In this instance of
the problem there are multiple agents navigating the grid si-
multaneously influencing each others’ rewards. In this prob-
lem agents are rewarded for observing tokens located in the
grid. Each token has a value between zero and one, and
each grid square can have at most one token. When an
agent moves into a grid square it observes a token and re-
ceives a reward for the value of the token. Rewards are only
received on the first observation of the token. Future obser-
vations from the agent or other agents do not receive rewards
in the same episode. If two agents move into the same square
at the same time. More precisely, rt is computed by sum-
ming the agents at the same location as unobserved tokens,
weighted by the value of the tokens:

rt(st) =
X

i

X
j

VjI
t
st,i=Lj

. (7)

where It is the indicator function which returns one when an
agent in state st,i is in the location an unobserved token Lj .
The global objective of the multi-agent Grid World Problem
is to observe the highest aggregated value of tokens in a fixed
number of time steps T.

3.1 Learning Algorithms
In each algorithm below, we use the TD(0) update rule.

The standard Q-learning is based on the full reward rt:

∆Q(st, at) = α(rt(st) + maxaQ(st+1, a)) . (8)

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 0 2 4 6 8 10 12 14 16 18

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

Figure 1: Distribution of Token Values in “Cliff”
World.

Local Q-learning is only a function of the specific agent’s
own state:

∆Qloc(st, at) = α(
X

j

VjI
t,i
st,i=Lj

+ maxaQloc(st+1, a)).

QUICR-learning instead updates with a reward that is a
function of all of the states, but uses counterfactuals to sup-
press the effect of other agents’ actions:

∆QUICR(st, at) = α(rt(st)− rt(st−st,i+sb) +

maxaQUICR(st+1, a)),

where st−st,i+sb is the state resulting from removing agent
i′s state and replacing it with the absorbing state sb.

3.2 Results
To evaluate the effectiveness of QUICR-learning in the

multi-agent Grid World, we conducted experiments on two
different types of token distributions. The first set of to-
kens is designed to force congestion and tests the ability of
QUICR-learning in domains where the reward function is
far from being linearly separable. The second set is ran-
domly generated from Gaussian kernels, to illustrate that
the QUICR-learning capabilities in a non-hand crafted do-
main with spread out tokens (a domain favoring less depen-
dend, local learners).

In all the experiments the learning rate was set to 0.5, the
actions were chosen using an ε-greedy (ε = 0.15) exploration
scheme and tables were initially set to zero with ties broken
randomly.

3.3 Cliff World Token Value Distribution
The first experimental domain we investigated consisted

of a world where the value of tokens was highest at the cen-
ter and went down inversely with distance from the center.
Three quarters of the surface was then set to zero, with only
a one quarter “slice” remaining. Figure 1 conceptualizes this
distribution for a 20x20 world.

Figure 2a shows the performance for 100 agents on a 400
unit-square world for the token value distribution shown in
Figure 1, and where an episode consists of 20 time steps (er-
ror bars of ± one σ are included, though in most cases they
are smaller than the symbols). The performance measure
in these figures is sum of full rewards (rt(st)) received in an
episode, normalized so that the maximum reward achievable
is 1.0. Note all learning methods are evaluated on the same
reward function, independent of the reward function that
they are internally using to assign credit to the agents.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100 200 300 400 500 600 700 800 900 1000

S
um

 o
f G

lo
ba

l R
ew

ar
ds

 A
ch

ie
ve

d

Number of Training Episodes

QUICR-Learning
Q-Learning

Local Q-Learning
(Random)

Figure 2: Learning Rates in “Cliff” World with 100
Agents.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

S
um

 o
f G

lo
ba

l R
ew

ar
ds

 A
ch

ie
ve

d

Number of Agents

QUICR-Learning
Q-Learning

Local Q-Learning
Random

Figure 3: Scaling Properties of Different Payoff
Functions.

The results show that local Q-learning generally produced
poor results. This problem is caused by all agents aim-
ing to acquire the most valuable tokens, and congregating
towards the center of the world where such tokens are lo-
cated. In essence, in this case agents using local Q-learning
competed, rather than cooperated. The agents using stan-
dard Q-learning performed even worse, as the agents were
plagued by the credit assignment problem associated with
each agent receiving the full world reward for each individual
action they took. In fact agents using local Q-learning per-
formed even worse than agents taking random moves. This
happens since these agents tend to form policies that are
somewhat arbitrary, and do not even provide the amount
of coverage achieved by a rover taking random actions. In
contrast, agents using QUICR-learning learned rapidly, out-
performing both local and standard Q-learning.

Figure 3 explores the scaling properties for each algorithm.
As the number of agents was increased, the difficulty of the
problem was kept constant by increasing the size of the grid-
world, and allocating more time for an episode. Specifically
the ratio of the number of agents to total number of grid
squares and the ratio of the number of agents to total value
of tokens was held constant. In addition the ratio of the fur-

 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

Figure 4: Distribution of Token Values in “Random”
World.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100 200 300 400 500 600 700 800 900 1000

S
um

 o
f G

lo
ba

l R
ew

ar
ds

 A
ch

ie
ve

d

Number of Training Episodes

QUICR-Learning
Q-Learning

Local Q-Learning
(Random)

Figure 5: Learning Rates in Random World with
100 Agents.

thest grid square from the agents’ starting point to the total
amount of time in an episode was also held constant (e.g., 40
agents, 20x20 grid, 20 steps, 400 agents, 63x63 grid, 63 time
steps). The scaling results show that agents using both local
and standard Q-learning deteriorate rapidly as the number
of agents increases. Agents using QUICR-learning on the
other hand were not strongly affected by the increase in the
size of the problem, and outperformed local and standard
Q-learners. This is because QUICR-learning agents received
rewards that were both aligned with the sytem goal had high
agent sensitivity (i.e.,less affected by the size of the system).
This result underscores the need for using rewards that sup-
press the affect of other agents actions in large systems.

3.4 Random World Token Value Distribution
In the second set of experiments, we investigate the be-

havior of agents in a gridworld where the token values are
randomly distributed. In this world, for n agents, there are
n/3 Gaussian ‘attractors’ whose centers are randomly dis-
tributed. Figure 4 shows an instance of the gridworld using
this distribution for the 20x20 world, used in the experi-
ments with 100 agents.

The results in Figures 5 and 6 show that agents using
QUICR-learning are insensitive to changes in the token value
distribution. Agents using local Q-learning perform signif-
icantly better in this case, showing a much larger sensitiv-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250 300 350 400

S
um

 o
f G

lo
ba

l R
ew

ar
ds

 A
ch

ie
ve

d

Number of Agents

QUICR-Learning
Q-Learning

Local Q-Learning
(Random)

Figure 6: Scaling Properties of Different Payoff
Functions.

ity to the token distribution. The improvements are due
to the spreading of tokens over a larger area, which allows
agents aiming (and failing) to collect high valued tokens to
still collect mid to low-valued tokens, surrounding the high
valued tokens. In this domain, agents using standard Q-
learning performed particularly poorly. Indeed they were
outperformed by agents performing random walks for sys-
tems of 100 agents. Due to the distributed tokens and the
large number of agents, agents using standard Q-learning
were never able to form an effective policy. These agents
essentially moved from their initial random walk to a fixed
arbitrary policy, causing them to spread out less than agents
performing independent random walks, and thus perform
slightly worse than random agents.

The scaling results show again that QUICR-learning per-
forms well as the number of agents increases. The interesting
result here is that QUICR-learning does better with 40 to
55 agents than with 10 agents (this is not a statistical quirk,
but a repeated phenomenon in many different random to-
ken configurations) . One potential cause is that the larger
number of agents more efficiently explore the space with-
out being beset by the problems encountered by the other
learning algorithms. The scaling results confirm that stan-
dard Q-learners perform slightly coordinated random walks
in this setting, performing ever so slightly worse than ran-
dom in all cases with more than 25 agents. With this token
distribution the rewards used in standard Q-learning appear
to be no better than random rewards, even with ten agents.
While local Q-learning performs better on this token distri-
bution than the previous one, it still scales less gracefully
that does QUICR-learning.

4. DISCUSSION
In large-scale multi-agent systems, using standard single-

agent reinforcement learners is problematic because an agent
will often have little influence over the reward it is trying
to maximize. In our example problems, an agent’s reward
received after an action could be influenced by as many
as 25,200 other actions from other time-steps and other
agents. Even temporal difference methods that perform
very well in single agent systems will be overwhelmed by
the number of actions influencing a reward in the multi-

agent setting. To show that reinforcement learning can be
used in large-scale problems, this paper introduced QUICR-
learning, which aims at reducing the impact of other agent’s
actions without assuming linearly separable reward func-
tions. Within the Q-learning framework, QUICR-learning
uses the difference reward computed with immediate coun-
terfactuals. While eliminating much of the influence of other
agents, this reward was shown mathematically to be aligned
with the global reward: agents maximizing the difference
reward will also be maximizing the global reward. Experi-
mental results in two Grid World problems with hundreds of
agents, confirm the analysis showing that QUICR-learning
learns in less time than standard Q-learning, and achieves
better results than Q-learning variants that use local re-
wards and assume linear separability. While this method
was used with TD(0) Q-learning updates, it also naturally
extends to TD(λ), Sarsa-learning and Monte Carlo estima-
tion. In domains with difficult temporal credit assignment
issues, the use of these other variants could be beneficial.

5. REFERENCES
[1] M. Dorigo and L. M. Gambardella. Ant colony systems:

A cooperative learning approach to the travelling
salesman problem. IEEE Transactions on Evolutionary
Computation, 1(1):53–66, 1997.

[2] J. Hu and M. P. Wellman. Multiagent reinforcement
learning: Theoretical framework and an algorithm. In
Proceedings of the Fifteenth International Conference
on Machine Learning, pages 242–250, June 1998.

[3] C. Jones and M. J. Mataric. Adaptive division of labor
in large-scale multi-robot systems. In IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS-03), pages 1969–1974, Las Vegas, NV,
July 2003.

[4] L. P. Kaelbling, M. L. Littman, and A. W. Moore.
Reinforcement learning: A survey. Journal of Artificial
Intelligence Research, 4:237–285, 1996.

[5] K. Konolige, D. Fox, C. Ortiz, A. Agno, M. Eriksen,
B. Limketkai, B. Morisset J. Ko, D. Schulz, B. Stewart,
and R. Vincent. Centibots: Very large scale distributed
robotic teams. In Proc. of the International Symposium
on Experimental Robotics (ISER-04), Singapore, June
2004.

[6] P. Stone, R. S. Sutton, and G. Kuhlmann.
Reinforcement learning for RoboCup-soccer keepaway.
Adaptive Behavior, 2005.

[7] R. S. Sutton and A. G. Barto. Reinforcement Learning:
An Introduction. MIT Press, Cambridge, MA, 1998.

[8] C. Watkins and P. Dayan. Q-learning. Machine
Learning, 8(3/4):279–292, 1992.

[9] D. H. Wolpert and K. Tumer. Optimal payoff functions
for members of collectives. Advances in Complex
Systems, 4(2/3):265–279, 2001.

