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Abstract

Due to its high performance and comprehensibility, fuzzy modelling is becoming more

and more popular in dealing with nonlinear, uncertain and complex systems for tasks

such as signal processing, medical diagnosis and financial investment. However, there

are no principal routine methods to obtain the optimum fuzzyrule base which is not

only compact but also retains high prediction (or classification) performance. In order

to achieve this, two major problems need to be addressed. First, as the number of input

variables increases, the number of possible rules grows exponentially (termedcurse of

dimensionality). It inevitably deteriorates the transparency of the rule model and can

lead to over-fitting, with the model obtaining high performance on the training data but

failing to predict the unknown data successfully. Second, gaps may occur in the rule

base if the problem is too compact (termedsparse rule base). As a result, it cannot be

handled by conventional fuzzy inference such as Mamdani.

This Ph.D. work proposes a rule base simplification method and a family of fuzzy

interpolation methods to solve the aforementioned two problems. The proposed sim-

plification method reduces the rule base complexity viaRetrieving Data from Rules

(RDFR). It first retrieves a collection of new data from an original rule base. Then

the new data is used for re-training to build a more compact rule model. This method

has four advantages: 1) It can simplify rule bases without using the original training

data, but is capable of dealing with combinations of rules and data. 2) It can integrate

with any rule induction or reduction schemes. 3) It implements the similarity merging

and inconsistency removal approaches. 4) It can make use of rule weights. Illustrative

examples have been given to demonstrate the potential of this work.

The second part of the work concerns the development of a family of transfor-

mation based fuzzy interpolation methods (termedHS methods). These methods first

introduce the general concept of representative values (RVs), and then use this to in-

terpolate fuzzy rules involving arbitrary polygonal fuzzysets, by means of scale and

move transformations. This family consists of two sub-categories: namely, theorigi-

nal HS methods and theenhancedHS methods. The HS methods not only inherit the

common advantages of fuzzy interpolative reasoning – helping reduce rule base com-

plexity and allowing inferences to be performed within simple and sparse rule bases –
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but also have two other advantages compared to the existing fuzzy interpolation meth-

ods. Firstly, they provide a degree of freedom to choose various RV definitions to

meet different application requirements. Secondly, they can handle the interpolation

of multiple rules, with each rule having multiple antecedent variables associated with

arbitrary polygonal fuzzy membership functions. This makes the interpolation infer-

ence a practical solution for real world applications. The enhanced HS methods are the

first proposed interpolation methods which preserve piece-wise linearity, which may

provide a solution to solve the interpolation problem in a very high Cartesian space in

the mathematics literature.

The RDFR-based simplification method has been applied to a variety of applica-

tions including nursery prediction, the Saturday morning problem and credit appli-

cation. HS methods have been utilized in truck backer-uppercontrol and computer

hardware prediction. The former demonstrates the simplification potential of the HS

methods, while the latter shows their capability in dealingwith sparse rule bases. The

RDFR-based simplification method and HS methods are furtherintegrated into a novel

model simplification framework, which has been applied to a scaled-up application

(computer activity prediction). In the experimental studies, the proposed simplification

framework leads to very good fuzzy rule base reductions whilst retaining, or improv-

ing, performance.
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Chapter 1

Introduction

In 1965, Lotfi A. Zadeh of the University of California at Berkeley published “Fuzzy

Sets,” [Zad65, Zad73] which laid out the mathematics of fuzzy set theory and, by

extension, fuzzy logic. Although, the technology was introduced in the U.S., U.S. and

European scientists and researchers largely ignored it foryears, perhaps because of its

unconventional name. But fuzzy logic was readily accepted in Japan, China and other

Asian countries.

Zadeh separatedhard computingbased on boolean logic, binary systems, numeri-

cal analysis and crisp software fromsoft computingbased on fuzzy logic, neural nets

and probabilistic reasoning. The former has the characteristics of precision and cat-

egoricity and the latter, approximation and dispositionality. Although in hard com-

puting, imprecision and uncertainty are undesirable properties, in soft computing the

tolerance for imprecision and uncertainty is exploited to achieve tractability, lower

cost, high Machine Intelligence Quotient (MIQ) and economyof communication.

1.1 Soft Computing

The principal constituents of soft computing are fuzzy logic, artificial neural networks

and probabilistic reasoning, with the latter subsuming belief networks, genetic algo-

rithms etc. The principal contribution of fuzzy logic relates to its provision of a foun-

dation for approximate reasoning, while neural network theory provides an effective

1
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methodology for learning from examples, and probabilisticreasoning systems furnish

computationally effective techniques for representing and propagating probabilities

and beliefs in complex inference networks.

Since the last decade, the research on fuzzy sets and systemshas drawn more and

more attention. In fact, fuzzy modelling [Zad65, Men95] is now one of the most fa-

mous ways in dealing with nonlinear, uncertain and complex systems such as signal

processing and mechanical control [Sim00, RZK90, WM79, Jen04]. It has two im-

portant advantages: firstly, it imitates the human reasoning process using linguistic

terms, which enables its comprehensibility and transparency; and secondly it is a uni-

versal modelling technique [WM92a, Buc93, Cas95, ZK04] that can approximate any

nonlinear complex system with specified arbitrary accuracy.

Neural networks [Mit97] were developed as an attempt to realise simplified math-

ematical models of brain-like systems. The key advantage istheir ability to learn from

examples instead of requiring an algorithmic development from the designer. Com-

pared to fuzzy logic, neural networks usually produce higher performance for classifi-

cation or prediction tasks, however, they lack the transparency and comprehensibility

which fuzzy logic has. Neural networks can be implemented asneuro-fuzzy networks

which combine the advantages of both fuzzy reasoning and neural networks.

Belief networks (Bayes Nets, Bayesian Networks) [Pea88] are a vital tool in proba-

bilistic modelling and Bayesian methods. They are one classof probabilistic graphical

model. Genetic algorithms (GA) [Mit97] provide a techniqueuseful for fining ap-

proximate solutions to optimization and search problems. Genetic algorithms are a

particular class of evolutionary algorithms that use techniques inspired by evolution-

ary biology such as inheritance, mutation, natural selection, and recombination (or

crossover).

1.2 Fuzzy Inference Systems

The first kind of fuzzy inference system (FIS) focused on the ability of fuzzy logic

to model natural language [MA75]. These FISs contain fuzzy rules built from expert

knowledge and they are called fuzzy expert systems or fuzzy controllers. These FISs
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offer a high semantic level and a good generalization capability. Unfortunately, the

complexity of large systems may lead to an insufficient accuracy in the simulation

results. Expert knowledge only based FIS may show poor performance.

The other class of FIS is a data-driven fuzzy system. The fuzzy rules are ob-

tained from data rather than from the experts. Takagi-Sugeno-Kang (TSK) models

[TS85, SK88] were the first attempt at this class of FIS. Sincethat piece of work,

many methods [YS95, CLL01, WM92b, CZ97] have been designed to automatically

generate rules from databases. A extensive discussion of classical fuzzy control and

algorithms can be found in [DHR93, Ped92].

However, two major problems need to be addressed in order to obtain efficient and

effective fuzzy models. First, as the number of input variables increases, the number

of possible rules grows exponentially (termedcurse of dimensionality). It inevitably

deteriorates the transparency of the rule model and likely leads to over-fitting, with

the model obtaining high performance on the training data but failing to predict the

unknown data. Second, gaps may occur in the rule base if it is too compact (termed

sparse rule base). As a result, it cannot be handled by conventional fuzzy inferences

such as Mamdani.

1.3 Rule Base Simplification

The original motivation of rule base simplification, also called rule base optimization,

is to conquer the curse of dimensionality [Gui01, KJS02]. Ifthe induction methods are

applied to simple systems with a few variables and/or a smallquantity of data, there

is no need for optimizing the rule base. The situation is different for large systems

where many variables and/or tens of thousands of data are involved. The number of

induced rules becomes enormous, resulting in a complex rulebase. Obviously, the

rule base will be easier to interpret if they are defined by themost influential variables

and only consist of a small amount of rules. Feature selection and rule base reduction

are thus two important issues of the rule generation process. They are usually referred

to as structure optimization. Apart from that, many parameters such as membership

functions parameters and rule conclusions can also be optimised, which is called pa-
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rameter optimization [JSM97]. Unfortunately, parameter optimization inevitably leads

to semantic loss if the fuzzy sets are predefined with particular physical meaning. This

thesis focuses on a structure optimization. In particular,the rule base reduction meth-

ods are carefully reviewed and a new one is proposed towards the simplification goal.

On the other hand, attention is drawn to conquer the sparse rule base problem.

When given observations have no overlap with the antecedentrule values, classical

fuzzy inference methods have no rule to fire, but interpolative reasoning methods

[KH93a] can still obtain certain conclusions. It thus facilitates fuzzy inferences when

only limited knowledge is available. In addition, with interpolation, fuzzy rules which

may be approximated from their neighboring rules can be omitted from the rule base

[KH97]. This leads to the reduction of fuzzy models complexity.

1.4 Existing Simplification Approaches

The existing simplification approaches can be classified into categories using different

criteria. In terms of the timing, they consist of three categories: the methods taking

place before, within, and after the rule induction process.Traditionally, simplification

methods are used after the induction process to refine the rule base to be more compact.

However, due to the existence of noisy variables, or where the training schemes can-

not handle a large quantity of variables, preprocessing of the data base must be done

before the data is fed into the training schemes. This is usually called feature selection

or feature transformation. Between the “after” and “before” stage simplification meth-

ods, there are some “within” stage simplifications [Qui87] which are integrated into

the training schemes. They are, in fact, part of the trainingschemes. Once the training

schemes are finished, the “reduced” rule bases are obtained without other processing.

Despite the compact of the “within” stage simplification methods, they work depend-

ing on particular training schemes, thus cannot be reused between various training

schemes. Therefore, “before” and “after” stage simplification methods are more desir-

able due to the generalization. This thesis focuses on the “after” stage simplifications.

It studies the existing simplification methods and proposesa novel one.

Alternatively, in terms of the methodology, the existing fuzzy rule base simplifi-
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cation approaches are classified into five categories: 1) Feature based reduction, sim-

plifying via preprocessing the original training data. 2) Similarity merging and incon-

sistency removal based reduction, merging similar rules and eliminating redundancy.

3) Orthogonal transformation based reduction, which includes the Orthogonal Least

Square (OLS) method and Singular Value Decomposition (SVD). 4) Interpolative rea-

soning based reduction, which has the closest relevance to part of the work carried out

in this project. 5) Hierarchical reasoning, which is based on the modification of rule

base structure.

The main concern to choose a simplification method is the preservation of the se-

mantic meaning. Otherwise, it is not worth using fuzzy modelling at all. Unfortunately,

some simplification methods, such as the similarity mergingand most of the transfor-

mation based methods, destroy the predefined fuzzy linguistic terms and hence result in

loss of comprehensibility. The other concern to choose a proper simplification method

is to avoid generating sparse rule bases. In fact it is highlylikely that this will happen.

Imagine that a fuzzy rule is eliminated in the reduction process, the data fired by this

rule may no longer be fired by any other existing rules in the reduced rule base. Such

sparse rule bases can be handled by fuzzy interpolative reasoning.

1.5 The Proposed Simplification Framework

This thesis proposes a rule base simplification method and a family of fuzzy interpola-

tion methods to address the two concerns mentioned above. Firstly, in order to achieve

a compact rule base under the conditions that no significant performance is sacrificed

and no semantic meaning is destroyed, this thesis proposes anovel rule base simpli-

fication method via the technique ofretrieving data from rules(RDFR). In particular,

RDFR is carried out over the original rule sets to obtain new “training data”. The

new “training data” are then used for re-training to generate the final rule sets. Due to

the flexibility of choosing the second rule induction algorithms, this in fact provides a

general framed work to simplify the original given rule bases.

Secondly, in order to cope with the case that the simplified rule bases are sparse, a

family of transformation based fuzzy interpolation methods has been proposed. These
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methods first introduce the general concept of representative values (RVs), and then

uses them to interpolate fuzzy rules involving arbitrary polygonal fuzzy sets, by means

of scale and move transformations. Compared to other existing fuzzy interpolation

methods, this family offers a degree of freedom to provide a variety of unique, normal

and valid results.

1.6 Thesis Structure

The rest of this thesis is structured as follows (with an indication of the publications

produced as a result of this research):

• Chapter 2:Background. An overview of the existing simplification approaches,

including feature based simplification, similarity merging, inconsistency removal,

orthogonal based reduction, interpolative reasoning, andhierarchical reasoning

are given. In particular, more detailed description is given to the interpolation

methods which have the closest relation to this project.

• Chapter 3:RDFR Based Simplification Method. This chapter proposes a novel

simplification method by means ofretrieving data from rules (RDFR)procedure.

It first retrieves a set of new data from an original rule base.Then the new data

are re-trained to build a more compact rule model while maintaining a satisfac-

tory performance. Illustrative examples are provided to demonstrate the success

of this work. The contents of this chapter can be found in [HS05b].

• Chapter 4:Transformation Based Interpolation: Specific Examples. This chap-

ter provides specific example studies of the proposed interpolative reasoning

methods. In particular, therepresentative valuesare introduced and defined for

the most widely used fuzzy terms (triangular, trapezoidal and hexagonal). This

follows by the illustration of the interpolations via scaleand move transforma-

tions. The contents of this chapter have been published in [HS03, HS04b].

• Chapter 5:Transformation Based Interpolation: General Approach. This chap-

ter extends the work presented in chapter 4 so that the proposed family of in-

terpolation methods can be applied to arbitrarily complex polygonal fuzzy sets
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with flexible RV definitions. A family of enhanced interpolation methods has

been further developed which not only reduces the computation efforts but also

preserves piecewise linearity (see chapter 6). The interpolation and extrapolation

involving multiple antecedent variables and multiple rules have been extended.

Partial contents of this chapter have been published in [HS05d, HS04a, HS06,

HS05c].

• Chapter 6:Transformation Based Interpolation: Evaluations. This chapter com-

pares the interpolative reasoning methods proposed in Chapter 5 to other existing

approaches such as the first proposed fuzzy interpolation method (KH) [KH93a]

and the general method, in terms of the dependency of the fuzziness of the con-

clusion on the observation, the preservation of the piecewise linearity and the

computational complexity.

• Chapter 7:Transformation Based Interpolation: Realistic Applications. This

chapter presents the interpolation based fuzzy rule base inference and demon-

strates its usages on both simplifying fuzzy rule bases and facilitating fuzzy in-

ferences. Partial contents of this chapter can be found in [HS05a].

• Chapter 8:Scaled-up Applications. This chapter demonstrates the combination

of the RDFR-based rule base simplification and the proposed interpolation based

inference in a real world database (computer activity). Despite the large quantity

of variables and data, the proposed framework leads to very good reductions.

The results between various interpolation methods are thoroughly compared.

• Chapter 9:Conclusion. The thesis is concluded in this chapter, and details of

future work to be carried out in this area are presented.



Chapter 2

Background

It becomes difficult for conventional classifiers to handle massive databases. There-

fore, fuzzy rule base simplification methods are desirable to resolve this problem.

These methods usually consist of two categories: parameterand structure simplifi-

cation methods. The former refer to the optimization of the membership functions

(either the conditional or conclusion one). Although they are widely used to fine tune

the fuzzy sets [JSM97], they are not included in this thesis as they inevitably destroy

the semantic meaning. The latter consist of feature selection and rule base reduction

(which is the concern of this thesis). This chapter reviews the existing fuzzy sim-

plification techniques including feature-based reduction, merging and removal-based

reduction, orthogonal transformation based methods, interpolative reasoning methods

and hierarchical fuzzy reasoning. The comparisons betweendifferent simplification

techniques are also summarised.

2.1 Feature Based Reduction

As machine learning tools become more and more important to help extract and man-

age knowledge, they must meet many challenges such as handling massive amounts

of data. The situation becomes worse if each datum has many features (or variables).

One way to resolve this is to choose a set of informative features before feeding data

to machine learning tools. This technique is called featurebased reduction, which

8
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has two sub-categories: feature transformation and feature selection [LM98]. Feature

transformation constructs additional features from the given ones or extracts a set of

new features to replace the old ones. The former does not helpsimplify the dataset

while the latter does so by generating low dimensional data.This approach changes

the physical meaning of features, and hence may be criticized as losing semantics.

Feature selection on the other hand overcomes this shortcoming by selecting a subset

of the most influential features.

Feature based reduction is no doubt an important component of fuzzy model sim-

plification. However, it is not the focus of this PhD work which attempts to simplify

fuzzy rule models after the rule induction process. Nevertheless, in order to provide a

complete overview of fuzzy model simplification, a brief explanation of feature based

reductions are presented in following subsections.

2.1.1 Feature Transformation

Feature transformation reduces the dimensionality of the data so that the analysis be-

comes less difficult. A typical method of feature transformation is Sammon’s nonlin-

ear projection [Sam69]. It maps high dimensional data to lowdimensional ones while

keeping the underlying data structure. In particular, supposeN vectors in anL-space

RL (which is Euclidean space of dimensionalityL) are denoted asXi, i = 1, . . . ,N. The

goal is to constructN vectorsYi , i = 1, . . . ,N which correspond toXi, but in d-space

Rd (d = 2 or 3). Let the distance between the vectorsXi andXj in RL be denoted as

d⋆
i j = dist[Xi,Xj ], and likewise, the distance between the corresponding vectorsYi and

Yj in Rd asdi j = dist[Yi,Yj ]. The projection begins with randomly initializedN vectors

in Rd. A steepest descent procedure is then utilized to search fora minimum of error

defined as

E =
1

∑i< j [d
⋆
i j ]

N

∑
i< j

[d⋆
i j −di j ]

2

d⋆
i j

. (2.1)

Extensions to Sammon’s method can be found in [MJ92, MJ95, PEM02, PE98].

There are many other methods such as Principal Components Analysis [Jol86] and

Multidimensional Scaling [Tor52] which act the same as Sammon’s method – deter-

mine the Euclidean structure of a dataset’s internal relationships in a low dimension.
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These methods effectively reduce the complexity of the training data with little or no

information loss, but suffer from the loss of the models’ physical meaning.

2.1.2 Feature Selection

Feature selection is defined as the problem of finding a minimum set ofM features from

N original ones (M ≤ N). This is essential since in real life there are irrelevant or noisy

features which do not significantly contribute to the systems considered. Elimination

of these features will speed up the learning procedure or resolve the problem that many

learning applications cannot work very well with a huge database. In addition, it may

lead to more general models. The generality here stands for that the outcoming model

may obtain less performance in the training stage, but lead to higher performance when

tested with unknown data. Because of these merits, feature selection has long been the

focus of research in pattern recognition and statistics. A detailed review of feature

selection techniques devised for classification tasks can be found in [DL97, BL97,

KS96].

The basic idea of feature selection is to search an optimal set of useful features us-

ing some criteria (or evaluations). As it is not practical tocarry out exhaustive searches

for most datasets, heuristic is often used to guide the processes: the evaluation func-

tions test if the selected features are sufficient to represent the underlying models.

Feature selection algorithms may be classified into two categories based on their eval-

uation procedure. If an algorithm performs independently of any learning algorithm

(i.e. it is a completely separate preprocessor), then it is afilter approach. RELIEF

[KR92] and FOCUS [AD91] etc. fall in this category. In effect, irrelevant attributes

are filtered out before induction. Filters tend to be applicable to most domains as they

are not tied to any particular induction algorithm.

If the evaluation procedure is tied to the task (e.g. classification) of the learning

algorithm, the feature selection algorithm employs the wrapper approach. For instance,

the LVF [LS96b], LVW [LS96a], the neural network-based wrapper feature selector

[SL97] and the rough and fuzzy sets based feature selector [JS04a, Jen04] belong to

this family. These methods search through the feature subset space using the estimated

accuracy from the induction algorithms as measures of subset suitability. Although
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wrappers may produce better results, they are expensive to run and can break down

with a very large number of features.

For illustration, the information gain based feature selection [Qui86] is briefly ex-

plained. Given a classification problem with training example collectionSwhich has

c target classes, to measure the purity of this collection,entropyis defined as follows:

Entropy(S) =
c

∑
i=1

−Pi log2Pi , (2.2)

wherePi is the proportion ofSwhich belongs to classi.

A statistical propertyinformation gainis used to represent how well a given feature

separates training examples into target classes. It is the expected reduction in entropy

caused by partitioning the examples according to this feature. InformationGain(S,A)

can be defined as

Gain(S,A) = Entropy(S)− ∑
ν∈Values(A)

|Sν|

|S|
×Entropy(Sν), (2.3)

Where:

Value(A) is the set of all possible values of featureA,

Sν is the subset ofS for which featureA has valueν,

|Sν| is the number of examples inSν,

|S| is the number of examples inS.

This measurement can be used to determine which features should be retained, by

keeping those whose information gains are greater than a predetermined threshold

value.

2.2 Merging and Removal Based Reduction

In fuzzy rule-based models there may exist similar, inconsistent and inactive rules.

Similar rules have almost the same meaning so they can be combined into one. In-

consistent rules are contrary to each other in reasoning andhence destroy the logical

consistency of the models. Inactive rules contribute little to the models since they are

not frequently used. All these rules inevitably result in unnecessary complexity and

therefore make models harder to understand. To tackle theseproblems respectively,
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compatible cluster merging algorithms [KF92, KB95, BV95, BRV98] have been pro-

posed for the cluster based rule induction issues. Sharing the same idea but not explic-

itly limited to clustering algorithms, similarity mergingmethods have been reported

[CCT96, SBKL98, Jin99]. These methods eliminate the redundancy by combining

similar rules into one. Also, methods for consistent checking [XL02] and inactive

evaluation [Jin99] have been proposed. Consistent checking simplifies rule bases by

removing conflicting rules, while inactive checking removes rules having lower firing

strengths than a predetermined threshold.

2.2.1 Similarity Based Merge

The compatible cluster merging algorithm [KB95] is based onthe work of Krishnapu-

ram and Freg [KF92]. It first defines clusteri, i = 1, . . . ,m, as eigenvaluesλi1, . . . ,λin

and eigenvectorsφi1, . . . ,φin, which stand for the axis lengths and axis directions re-

spectively. Then every pair of clusters, say clusteri and clusterj, are examined by the

following criteria:

|φin ·φ jn| ≥ k1,k1 close to 1, (2.4)

‖ci −c j‖ ≤ k2,k2 close to 0. (2.5)

Equation (2.4) states that the parallel hyper-plane clusters should be merged. Equation

(2.5) states that the cluster centres should be sufficientlyclose for merging. According

to these two criteria, two matricesC1[c1i j ] andC2[c2i j ] whose elements indicate the

degree of similarity between theith and jth clusters measured are obtained. By con-

sidering the combination of these two criteria, the geometric mean has been used as a

decision operator:

µi j =
√

c1i j c2i j . (2.6)

At this point a similarity matrixShas been achieved. This matrix has a predetermined

problem-dependent valueγ as a threshold. That is to say, any two clusters with a

similarity more thanγ should be merged.

Sharing the same idea, Chao, Chen and Teng [CCT96] utilize fuzzy similarity-

based merging. They first derive simple triangular approximate equations from Gaussian-

shaped fuzzy sets. Then the measurement between two triangular fuzzy sets is pro-
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posed, and similar linguistic terms are merged into one. This indirectly results in de-

creasing of the number of rules. In particular, they use the following fuzzy similarity

measure on two fuzzy sets:

E(A1,A2) =
A1∩A2

A1∪A2
, (2.7)

where∩ and∪ denote the intersection and union of fuzzy setsA1 andA2, respectively.

According to the definition, 0≤ E(A1,A2) ≤ 1. To make computation simple, a tri-

angular function is employed to approximate a Gaussian function. Thus the similarity

measure of two Gaussian fuzzy sets can be directly applied byusing the approximation

equations. Note that in the event of complicated fuzzy shapes, this measurement may

be computed as

S(A,B) =
∑m

j=1[µA(x j)∧µB(x j)]

∑m
j=1[µA(x j)∨µB(x j)]

, (2.8)

where j = 1, . . . ,m are the intervals discretized in the variable domain.

Similarity measure on rules follows similarity measure on conditions and conse-

quences. In conditions, the smallest similarity between a variable-pair is chosen as

the similarity of conditionsEp, while in consequences, the similarityEc is discretized

to either 1 or 0 to indicate whether the conclusion is almost the same or not. If both

Ec = 1 andEp ≥ γ hold (γ is a reference value set by users), i.e., the two fuzzy rules

have almost the same consequences and the degree of similarity on the conditions is

high enough, these two rules are combined into one.

The work reported in [SBKL98] follows the same similarity merging procedure ex-

cept that different fuzzy modelling techniques (Gustafson-Kessel and fuzzyc-means

algorithms) are used. In addition, a similarity measure on trapezoid functions is used

instead of triangular ones as described in [CCT96]. After all the fuzzy sets and fuzzy

rules are merged, to improve the accuracy of the simplified model, a fine-tuning pro-

cedure for parameters that define fuzzy sets is executed using the gradient-descent

algorithm.

The similarity measure can be divided into two main groups [SBKL98]: one is set-

theoretic based and the other is geometric based. Set-theoretic based measurements are

the most suitable for capturing similarity among overlapping fuzzy sets. The geometric

based measurements represent fuzzy sets as points in a metric space and the similarity

between the sets is regarded as an inverse of their distance in this metric space. Based



Chapter 2. Background 14

on the set-theoretic operations of intersection and union,the similarity between fuzzy

sets is defined as Eqn. (2.7). The work of [CCT96, SBKL98] implement set-theoretic

based similarity measurements. As an example of geometric based similarity merging

methods, Jin [Jin99] makes use of the distance concept rather than the set operations.

Assuming a Gaussian fuzzy function is given as follows:

Ai(x) = e
−

(x−ai )
2

2b2
i , (2.9)

then the similarity of fuzzy subsetsA1 andA2 is

S(A1,A2) =
1

1+d(A1,A2)
, (2.10)

whered(A1,A2) is the distance between two fuzzy subsetsA1 andA2:

d(A1,A2) =
√

(a1−a2)2 +(b1−b2)2. (2.11)

Another distinction to the previous methods [CCT96, SBKL98] is that, in Jin’s work,

the similarity measure makes use of the training data. In particular, [Jin99] refines a

given rule model by means of the gradient learning algorithm. During the iteration an

extra penalty termγ, which stands for the similarity of the fuzzy sets for all variables, is

added to the conventional error function to drive learning.Therefore, the modification

of the parameters depends not only on the system error but also on how the similar

fuzzy subsets converge to the same one. The parameterγ plays a very important role in

the refining stage. Ifγ is too large then the similar fuzzy subsets will be merged quickly

but the system performance may become seriously worse. On the contrary, ifγ is too

small, then the system performance will be good but the similar fuzzy subsets may

remain indistinguishable and the interpretability of the fuzzy model becomes poor.

2.2.2 Inconsistency Based Removal

Inconsistent rules have similar conditions but different consequences. It is essential

for learning mechanisms to identify possible conflicts in rule bases and to obtain

good logical coherence. For this purpose, Xiong and Litz [XL02] have introduced

a numerical assessment named “consistency index”, which helps establish the consis-

tency/inconsistency of rule bases. This index is integrated into the fitness function of a
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GA to search for a set of optimal rule conditions through two criteria: 1) the encoded

fuzzy model has good accuracy; and 2) the rule base has littleor no inconsistency.

2.3 Orthogonal Transformation Based Methods

Orthogonal transformation based methods simplify rule bases via matrix computation

[GL83]. The first work in this field was proposed some ten yearsago and research

along this line has become considerably active. These methods either work on afir-

ing strength matrix[CCG91, WM92a, WL95, NMM96, MM96, YW96] and employ

some measure index to estimate the importance of rules, or work on thefuzzy rule

consequences matrix[Yam97, YBY99] and construct new fuzzy rule bases in terms of

newly constructed fuzzy sets. Briefly, thefiring strength matrixbased methods [YW97,

YW99] include an orthogonal least squares (OLS) method [CCG91, WM92a, WL95],

an eigenvalue decomposition (ED) method [NMM96], a singular value decomposition

with column pivoting (SVD-QR) method [MM96], and a pure singular value decom-

position (SVD) method [YW96]. Therule consequences matrixbased methods have

been recently attempted by Yam and his colleagues [Yam97, YBY99]. In order to give

a flavour of these methods, this chapter outlines two typicalmethods from the above

two categories: the orthogonal least square method and the rule consequences matrix

based SVD method.

2.3.1 Orthogonal Least Square Method

The OLS algorithm is a one-pass regression procedure [CCG91]. It is able to generate

a robust fuzzy model which is not sensitive to noisy inputs. Chen, Cowan and Grant

[CCG91] have first provided an OLS method for the solution of radial basis function

(RBF) networks.

The OLS algorithm can be used to select RBF centres so that adequate and parsi-

monious RBF networks can be obtained. In this algorithm, an RBF network is treated

as a special case of the linear regression model:

d(t) =
M

∑
i=1

pi(t)θi + ε(t) (2.12)
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whered(t) is the desired output,θi are weight parameters, and thepi(t) is known as

the regressor which is a certain fixed function ofx(t):

pi(t) = x(t), (2.13)

the error signalε(t) is assumed to be uncorrelated with the regressorspi(t). The prob-

lem of how to choose a suitable set of RBF centres from the dataset can be regarded as

how to choose a subset of significant regressors (basis vectors) from a given candidate

set.

The geometric interpretation of the LS method is best revealed by arranging (2.12)

for t = 1 to N in the following matrix form:

d = Pθ+E, (2.14)

where

d = [d(1), . . . ,d(N)]T , (2.15)

P = [p1, . . . , pM], pi = [pi(1), . . . , pi(N)]T , 1≤ i ≤ M, (2.16)

θ = [θ1, . . . ,θM]T , (2.17)

E = [ε(1), . . . ,ε(N)]T . (2.18)

The regressor vectorspi form a set of basis vectors and the LS solutionθ satisfies the

condition thatθ be the projection ofd onto the space spanned by these basis vectors

pi .

The OLS method involves the transformation of the set ofpi into a set of orthogonal

basis vectors, and thus makes it possible to calculate the individual contribution to the

desired output of each basis vector. The regression matrixP can be decomposed into

P = WA (2.19)

whereA is anM×M upper triangular matrix,

A =

























1 α12 α13 . . . α1M

0 1 α23 . . . α2M

0 0. . .
...

...

. . . 1 αM−1M

0 . . . 0 0 1

























,
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andW is anN×M matrix with orthogonal columnswi . The space spanned by the set

of orthogonal basis vectorswi is the same space spanned by the set ofpi , and (2.14)

can be rewritten as

d = Wg+E. (2.20)

The orthogonal LS solutiong is given by

g =
wT

i d

wT
i wi

1≤ i ≤ M (2.21)

The quantitiesg andθ satisfy the triangular system

Aθ = g. (2.22)

The classical Gram-Schmidt algorithm [GL83] can be used to derive the above equa-

tion and thus to compute the LS estimateθ. The OLS method further provides the

regressors subset selection. In the case of RBF networks thenumber of data points

x(t), N, is often very large and the centres are chosen as a subset of the dataset. In gen-

eral, the number of all the candidate regressors, M, can be very large and an adequate

modelling may only requireMs(≪ M) significant regressors. These significant regres-

sors may be selected using the OLS algorithm by operating in aforward regression

manner.

The geometric interpretation of this OLS procedure is obvious. Since the original

basic vectorspi are correlated, it is hard to calculate their individual contribution to

the variance of the output variable. In order to solve this problem, orthogonal basic

vectors are calculated, to reflect the independent contributions. During the computa-

tion, the dimension of the space spanned by the selected regressors is increased one by

one. The newly added regressor maximises the increment to the expected variance of

the output variable. Orthogonality ensures that these selected rules do not have similar

conditions. Therefore, the reduced fuzzy model does not have the similarity or incon-

sistency problems. Essentially, the OLS attempts to selectthe important fuzzy rules

based on their contributions to the variance of the output. This is quite similar to the

strategy of selecting components inprincipal component regression[Jol86, Rog71],

where those components with large variances are retained inthe regression model.
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Wang and Mendel [WM92a] have proposed OLS on fuzzy basis functions rather

than radial basis functions [CCG91]. Although these two methods use the same tech-

nique, the work of [WM92a] is the first designed for the purpose of fuzzy rule base

simplification. In order to understand how it works, the inference formulae are first

defined as follows.

Definition 1 The fuzzy systems with singleton fuzzifier, product inference, centroid de-

fuzzifier, and Gaussian membership functions have the inference

f (x) =
∑M

j=1zj(∏n
i=1µA j

i
(xi))

∑M
j=1(∏

n
i=1µA j

i
(xi))

, (2.23)

where f : U ⊂ Rn → R, x = (x1,x2, ...,xn) ∈ U; µA j
i
(xi) is the Gaussian membership

function, defined by

µA j
i
(xi) = a j

i e
−

(xi−x
j
i )2

2σ j
i
2

, (2.24)

where aj
i , xj

i , andσ j
i are real-valued parameters with0≤ a j

i ≤ 1, and zj is the point in

the output space R at which µA j (z) achieves its maximum value.

Definition 2 Define fuzzy basis functions (FBFs) as

p j(x) =
∏n

i=1µA j
i
(xi)

∑M
j=1 ∏n

i=1µ
A j

i
(xi)

, j = 1,2, . . . ,M, (2.25)

where µA j
i
(xi) are the Gaussian membership functions (2.24).

The fuzzy system (2.23) is equivalent to an FBF expansion:

f (x) =
M

∑
j=1

p j(x)θ j (2.26)

whereθ j ∈ R are constants. From (2.25), an FBF corresponds to a fuzzy IF-THEN

rule. Note that this method is different from the work of [CCG91] as it uses (2.25)

rather than (2.13).

As the numerator of (2.25) gives the degree to which a particular rule fires (the

product implements the AND operation) and the denominator gives the sum of the
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degrees for all rules, (2.25) thus normalises the fire strength of one particular rule

over one particular datum in the range[0,1]. Due to this normalization, each FBF is

calculated upon the whole FBF base. The work of [WM92a] can successfully reduce to

Ms rules from the originalM rules (Ms < M). However, it is incorrect to believe that the

fuzzy model can be maximally reduced because the denominator of each FBF in (2.25)

contains all rules’ contribution, including rules belonging to theM−Ms non-selected

FBF’s. To tackle this problem Hohensohn and Mendel [HM95] have proposed a two-

pass orthogonal least-square algorithm. The first run remains the same as in [WM92a].

After that, only those selected FBFs are kept together (withthe respective antecedent

parameters(xi ,σi) recorded). They are now only normalised by∑Ms
j=1 ∏n

i=1µF j
i
(xi).

That is, the first run of the OLS is used to choose the number of FBF’s, but not the

final θ parameters in (2.26). The next step runs OLS again to determine θ based on

only Ms FBFs. This run is much faster than the first since usuallyMs≪ M. Note that

there is no need to use the same training samples in the secondrun of OLS as in the

first run. In order to obtain a precise model, the second run may use a much larger

training set than that used in the first run without requiringtoo much computation.

Sugeno-Type models [TS85] have also been attempted by meansof the OLS method

[WL95]. The only difference is that in the previous methods there areθi , i = 1,2, . . . ,Ms,

needing to be calculated, but in Sugeno-Type model, there areθi , i = 1,2, . . . ,(r +1)∗

Ms (r is the number of input variables) needing to be identified. The computation

process is the same except for the size of identified parameters.

2.3.2 Consequence Matrix Based Singular Value Decompositi on

Unlike fire strength matrix based methods, Yam and his colleagues [Yam97, YBY99]

have applied SVD to the rule consequence matrix which describes the outputs of a rule

set. The idea is to transform the original membership functions for each variable into

a fewer number of membership functions. It amounts to the reduction of the fuzzy

model since the rule number is determined by the possible combination of fuzzy sets

of each variable. In particular, consider the rule sequenceF in the SVD form

F = UΣVT , (2.27)



Chapter 2. Background 20

whereF is na× nb, andU andV arena× na andnb× nb, respectively. Similar to

the matrix computation discussed above, a close approximation toF can be obtained

by keeping those components having large singular values. Let nr be the number of

singular values to keep, the approximation becomes

F = U (r)Σ(r)V(r)T
, (2.28)

whereU (r) is na×nr andV(r) is nr ×nb. The essential idea is to construct new fuzzy

sets f j(x), j = 1, . . . , r of variablex through the original fuzzy setsfi(x), i = 1, · · · ,na

and matrixU

f j(x) =
na

∑
i=1

fi(x)Ui, j . (2.29)

The number of fuzzy sets of variablex decreases fromna to nr . Likewise, all other

variables have a decreased number of fuzzy functions. The number of possible rules

generated from these functions are hence significantly reduced.

However, from (2.29) the validity of the new fuzzy functionsin terms of normality

and nonnegativeness cannot be guaranteed. To support the discussion, the properties of

Sum Normalization (SN), Nonnegativeness (NN) and Normality (NO) are introduced.

Definition 3 Sum Normalization (SN): A set of functions fi(x), i = 1, . . . ,m, is SN if

for any value of x within the domain of interest

m

∑
i=1

fi(x) = 1. (2.30)

Without ambiguity, a matrix F is SN if

sum(F) = [1, · · · ,1]T , (2.31)

where sum(F) denotes the column vector obtained by summing over the rows of matrix

F.

Definition 4 Nonnegativeness (NN): A set of functions fi(x), i = 1, . . . ,m, is NN if for

any value of x within the domain of interest

fi(x) ≥ 0, (2.32)

for each i= 1, . . . ,m. Likewise, a matrix F is NN if every one of its elements Fi, j is

greater than or equal to zero.
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Definition 5 Normality (NO): A set of functions fi(x), i = 1, . . . ,m, is NO if it is SN

and NN and each of the functions fi(x) attains the value of 1 at least on one point

within the domain x. Correspondingly, a matrix F is NO if it isSN and NN and each

of its column contains the value 1 as an element.

A theorem follows these three definitions:

Theorem 1 Given a set of function fi(x), i = 1, . . . ,m, and a matrix F of dimension m

by q, and q new functions fj(x), j = 1, . . . ,q, such that

f j(x) =
m

∑
i=1

fi(x)Fi, j . (2.33)

Then

1. the set of functions fj(x) is SN if fi(x) and F are SN;

2. the set of functions fj(x) is NN if fi(x) and F are NN;

3. the set of functions fj(x) is NO if fi(x) and F are NO.

Since theU in (2.29) is in general neither SN nor NN, the work presented in [Yam97,

YBY99] gives the mathematical procedure for convertingU into SN and NN matrices,

and possibly, a NO matrix.

This method has been successfully implemented in [Sim00]. However, there are

several points worth noting [Tao01]: 1) the approach for determining the number of

singular values is not provided; 2) the performance is not always satisfactory; and 3)

the computational load is increased for each input since themembership functions are

modified.

From the semantic perspective, it is easy to see that the fire strength matrix based

methods are semantic-keeping since they simplify the fuzzymodel by selecting the im-

portant rules, while the consequence matrix based methods are semantic-losing since

they construct new fuzzy sets, which have different physical meaning from those pre-

defined.
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2.4 Interpolative Reasoning Methods

Conventional fuzzy reasoning methods such as Mamdani [MA75] and TSK [TS85,

SK88] require that the rule bases bedense. That is, the input universe of discourse is

covered completely by the rule bases. When an observation occurs, a consequence can

always be derived by using such dense rule bases. On the contrary, if fuzzy rule bases

aresparse, that is, the input universes of discourses may not be covered completely by

the rule bases, the conventional fuzzy reasoning methods encounter difficulties if an

observation occurs in a gap, resulting in no rule fired and thus no consequence derived.

This problem was initially proposed by Mizumoto and Zimmerman [MZ82] as the

tomato problem, which is shown in Equation (2.34) and Fig. 2.1.

observation: This tomato is yellow

rules: if a tomato is red then the tomato is ripe

if a tomato is green then the tomato is unripe

conclusion: ???

(2.34)

The intuitive consequence by the human being would be that this tomato is half ripe.

unripe ripe

?

X

Y

µ

µ

Figure 2.1: Fuzzy reasoning of tomato problem

However, none of the conventional fuzzy inferences is able to reach such a conclu-

sion. Motivated by this, Kóczy and Hirota have proposed thefirst fuzzy interpolative
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reasoning method, termed the KH method [KH93a, KH93c, KH97,KHG97, KHM00,

KHM91, KH93d].

In addition to support reasoning on sparse rule bases [BB92], fuzzy interpolation

can be used to simplify the complexity of fuzzy rule bases [KH97] by eliminating the

fuzzy rules which may be approximated from their neighboring rules. This potential

opens a new door to tackle rule base simplification problems.

Despite these significant advantages, earlier work in fuzzyinterpolative reasoning

does not guarantee validity of the derived fuzzy sets [KK93,KK94b, KK94a, KK94c,

YMQ95, SM95, KC96]. In fuzzy interpolation literature, thevalidity can be defined

as follows.

Definition 6 Validity: A fuzzy set described by the membership function f(x), is valid

if for any value of x within the domain of interest, it has onlyone corresponding fuzzy

membership value f(x) (with 0 ≤ f (x) ≤ 1 normally assumed, which is always pre-

sumed throughout this thesis).

Based on this definition, fuzzy setB∗ as shown in Fig. 2.2 is invalid as it may have

two different fuzzy membership values corresponding to oneinput value. In order to

eliminate the drawback of invalidity, there has been considerable work reported in the

literature. In terms of the methodology, this work is roughly divided into two cate-

gories: theα-cut based interpolationsand theintermediate rule based interpolations.

Theα-cut based interpolations infer the results based on the computation of each

α-cut level. The KH method [KH93a, KH93c, KH97, KHG97, KHM00,KHM91,

KH93d] is a typicalα-cut based interpolation. Further development and modification

has been carried out. For instance, Vas, Kalmar and Kóczy have proposed an algorithm

[VKK92] that reduces the problem of invalid conclusions. Gedeon and Kóczy [GK96]

have enhanced the original KH method. Dubois and Prade [DP92, DPG95, DP99]

have operated all possible distances among the elements of fuzzy sets at eachα-level

and computed all conclusions for the sameα-level. Tikk and Baranyi [TB00, Tik99,

BTYK99a, BTYK99b, YBTK99, WGF00] have presented a modifiedα-cut based

method which changes the coordinates when applying the KH method, and Tikket

al. have shown that the modified method inherited the approximation stability of the

KH interpolation [TkM97, TBYk99, JKTV97]. This method was further extended in
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[TBGM01]. One of the recent methods [WGF00, WGT00] have usedthe combination

of different interpolation techniques. Despite the rapid development of theα-cut based

fuzzy interpolations, there is a drawback in this group. Theα-cut based interpolations

should consider all possibleα-cuts (an infinite number) in performing the interpola-

tion. However, all the previously listed methods only take afinite number ofα-cuts

(usually 3 or 4) into consideration. The resulting points are then connected by linear

pieces to yield an approximation of the accurate conclusion.

Intermediate rule based interpolations infer the results by reasoning an intermedi-

ate rule (together with the observation of course) rather than the given two original

fuzzy rules. In particular, an intermediate fuzzy rule is generated by the given two

rules before the interpolation process. The antecedent of the generated intermedi-

ate rule is expected to be very close to the given observation. Thus, the interpola-

tion problem actually becomes the similarity reasoning [DP92, DSM89, DSM92]:the

more similar between the observation and an antecedent, themore similar conclusion

must be concluded to the corresponding consequent set. This semantic interpreta-

tion is in fact the extended version of the analogical inference which was proposed

by Turksen [TZ88]. Within this category, Hsiao, Chen and Lee[HCL98] have in-

troduced a new interpolative method which exploits the slopes of the fuzzy sets to

obtain valid conclusions. Qiao, Mizumoto and Yan [QMY96] have published an im-

proved method which uses similarity transfer reasoning to guarantee valid results.

Baranyi et al. [BGK95, BK96a, BGK96, BG96, BK96b, BMK+98, BKG04] have

proposed general fuzzy interpolation and extrapolation techniques. Kawaguchiet al.

[KMK97, KM98, KM00a, KM00b] have developed the B-spline based fuzzy interpo-

lation from the semantic point of view.

Various further research has been reported in the fuzzy ruleinterpolation area.

Kováset al. have proposed an interpolation technique based on the approximation

of the vague environment of fuzzy rules and applied it in the control of an automatic

guided vehicle system [KK97c, KK97b, KK97a]. Bouchon, Marsala and Rifqi have

created an interpolative method based on graduality [BMDM+99, BM00, BMMR00,

BMDM+01]. Jenei [Jen01, JKK02] has suggested an axiomatic approach of fuzzy

quantities interpolation and extrapolation. Bouchon-Meunier has proposed a compar-
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ative view of fuzzy interpolation methods in [BMDM+01]. In addition, Yamet al. has

introduced a Cartesian based interpolation in [YK98, YK00,YWB00, YKN00, YK01],

where each fuzzy set is mapped into a point in high dimensional Cartesian space. This

method can produce multiple interpolation results but it doesn’t show how to choose a

proper one. Also, this approach is restricted to a finite number of characteristic points.

For a brief review of the available fuzzy interpolation techniques, interested users may

refer to [MBKK99, MSK99, Miz01].

For the purpose of comparing the existing typical interpolation methods and the

newly proposed one (see chapter 4 and 5), this section outlines the simplest case

(the triangular case) of the KH interpolation [KH93a, KH97], the HCL interpola-

tion [HCL98], the general interpolation [BGK95, BKG04] andthe QMY interpolation

[QMY96] methods. It is easy to spot that the KH method may leadto invalid fuzzy

sets and the HCL is limited to the interpolation of triangular fuzzy sets. However,

the drawbacks of the general interpolation and the QMY will only be identified in the

real-life experiments (see chapter 8).

2.4.1 The KH Interpolation

The basic idea of interpolation is to get the fuzzy conclusion if two rules and the

observation are given (see Fig. 2.2). An important notion ininterpolative reasoning

is the “less than” relation between two continuous, valid and normal fuzzy sets. Fuzzy

set A1 is said to be less thanA2, denoted byA1 ≺ A2, if ∀α ∈ [0,1], the following

conditions hold:

inf{A1α} < inf{A2α}, sup{A1α} < sup{A2α}, (2.35)

whereA1α andA2α are respectively theα-cut of A1 and that ofA2, inf{Aiα} is the

infimum ofAiα, and sup{Aiα} is the supremum ofAiα, i = 1,2.

For simplicity, suppose that two fuzzy rules are given:

I f X is A1 then Y is B1,

I f X is A2 then Y is B2,

Also, suppose that these two rules are adjacent, i.e., theredoes not exist a rule such

that the antecedent valueA of that rule is between the region ofA1 andA2. To entail
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the interpolation in the region between the antecedent values of these two rules, i.e., to

determine a new conclusionB∗ when an observationA∗ located between fuzzy setsA1

andA2 is given, rules in a given rule base are arranged with respectto a partial ordering

among the valid and normal fuzzy sets of the antecedents’ variables. For the above two

rules, this means that

A1 ≺ A∗ ≺ A2. (2.36)

To determine the fuzzy resultB∗, the KH interpolation uses the interpolation equation

d(A∗,A1)

d(A∗,A2)
=

d(B∗,B1)

d(B∗,B2)
, (2.37)

whered(., .) is typically the Euclidean distance between two fuzzy sets (though other

distance metrics may be used as alternatives). This is illustrated in Fig. 2.2, where the

µ

µ

∗ 1α )AAd

L ( ,α∗ 2α )AAd

U( ,α∗ 2α )AAd

L ( ,α∗ 1αd B  )B L ( ,α∗ 2α )d B B

U( ,α∗ 1αd B  )B U( ,α∗ 2α )d B B

L

2
* AAA1 

X

1 2
*B B

Y

α

B

α

( ,α∗ 1α )AAd

U( ,α

Figure 2.2: Fuzzy interpolative reasoning with an invalid conclusion on a sparse fuzzy

rule base

lower and upper distances betweenα-cutsA1α andA2α are defined as follows:

dL(A1α,A2α) = d(inf{A1α}, inf{A2α}), (2.38)

dU(A1α,A2α) = d(sup{A1α},sup{A2α}). (2.39)
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From (2.38) and (2.39), (2.37) can be rewritten as:

min{B∗
α} =

inf{B1α}
dL(A∗

α,A1α) +
inf{B2α}

dL(A∗
α,A2α)

1
dL(A∗

α,A1α) + 1
dL(A∗

α,A2α)

, (2.40)

max{B∗
α} =

sup{B1α}
dU (A∗

α,A1α) +
sup{B2α}

dU (A∗
α,A2α)

1
dU (A∗

α,A1α) + 1
dU (A∗

α,A2α)

. (2.41)

From this,B∗
α = (min{B∗

α},max{B∗
α}) results. And the conclusion fuzzy setB∗ can be

constructed by the representation principle of fuzzy sets:

B∗ =
[

α∈[0,1]

αB∗
α. (2.42)

Despite this method’s capability of handling the tomato problem, it does not guar-

antee validity (although they may be normal, asB∗ shown in Fig. 2.2).

2.4.2 The HCL Interpolation

The HCL interpolation method [HCL98] is an interpolative reasoning method based on

the KH method. The difference is that it not only interpolates the bottoms of the fuzzy

set, but also interpolates the highest point of fuzzy set. Itcan guarantee that “If fuzzy

rulesA1 ⇒ B1, A2 ⇒ B2 and the observationA∗ are defined by triangular member-

ship functions, the interpolated conclusionB∗ will also be triangular-type”. However,

this method is specially designed for triangular cases, andthus the piecewise linearity

property (see chapter 6 for more detailed discussion) is notpreserved in general fuzzy

sets (such as the trapezoidal).

The HCL interpolation method calculates the bottom ofB∗ in the same way as the

KH method does, but calculates the top point in a different way. Fig. 2.3 shows the

typical fuzzy interpolation problem, wherek1, t1, k, t, k2, t2, h1, m1, h, m, h2, and

m2 represent the slopes of corresponding fuzzy sets. The process to determine the top

point ofB∗ is described as follows:

1. Deciding the slopesh andm of the triangular type membership functionB∗. Let

k = k1x+k2y, (2.43)

t = t1x+ t2y, (2.44)
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Figure 2.3: HCL fuzzy interpolation

wherex andy are real numbers. If

k1

t1
6=

k2

t2
,

then uniquex andy are computed by solving (2.43) and (2.44) simultaneously.

Let

h = |h1x+h2y|c, (2.45)

m = −|m1x+m2y|c, (2.46)

wherec is a constant. Otherwise, let

h = kc, (2.47)

m = tc, (2.48)

wherec is a constant.

2. Deciding the position of the top pointb∗1 by solving the following equation,

1
CP(B∗)− in f (B∗)

:
−1

sup(B∗)−CP(B∗)
= h : m, (2.49)

whereCP(A) is the centre point of the specified fuzzy setA. It is defined as

follows:
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Definition 7 The centre point of a given fuzzy set A∈ F(X) is: CP(A) = (Aα +

Aα)/2, whereα = height(A). Aα denotes theα-cut of A.

The centre point of a triangular fuzzy set is just its top point (of membership

value of 1).

Equation (2.49) can be reformulated as

CP(B∗) =
m·sup(B∗)−h · in f (B∗)

m−h
. (2.50)

2.4.3 The General Interpolation

As a member of the intermediate rule based interpolation family, the general interpola-

tion [BGK96, BKG04] is capable of handling arbitrary membership functions, which

is the main advantage of this approach. The general interpolation claims two groups

of developed algorithms: one is based on the interpolation of fuzzy relations and the

other is based on the interpolation of semantic relations. This subsection discusses the

original and most typical method of this family, which consists of two key techniques:

thesolid cuttingand therevision principle.

Solid cutting [BGK95, BK96a, BGK96, BG96, BK96b] is used to obtain the inter-

mediate fuzzy setA′ if the observationA∗ and two fuzzy rules,A1 ⇒ B1 andA2 ⇒ B2

are given. A ratio ofλ (0≤ λ ≤ 1) is calculated to represent the important impact ofA2

upon the construction of intermediate rule antecedentA′ with respect toA1. The solid

cutting method uses the centre point of the fuzzy set to represent its overall location.

Theλ thus can be computed as:

λ =
d(A1,A∗)

d(A1,A2)
(2.51)

=
d(CP(A1),CP(A∗))

d(CP(A1),CP(A2))
, (2.52)

whered(., .) stands for the distance between centre points of two fuzzy sets. In the

extreme cases: ifλ = 0, A2 plays no part in constructingA′, while if λ = 1, A2 plays a

full role in determiningA′.

Fig. 2.4 shows how to calculateA′ if A1, A2 andλ are given. DimensionSis orthog-

onal to planeµ×X. Let gk(s, tk), s∈ S, tk = CP(Ak), andk = {1,2}, be the function
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that is obtained by rotating the membership functionAk: µAk(x) by 90◦ around the axis

tk: gk(x− tk, tk) = µAk(x). Let a solid be constructed by fitting a surface on generatrices

gk(s, tk). Let g′(s, t) be the cross-section of this imagined solid at positiont = CP(A′),

whereCP(A′) = Γ(CP(A1),CP(A2),λ) andΓ() stands for thelinear interpolation of

two points:

Definition 8 The linear interpolation of two points x1 and x2 is

x′ = Γ(x1,x2,λ) = (1−λ)x1+λx2, λ ∈ [0,1].

Turning backg′(s, t) into its original position, the interpolated fuzzy setAi : µA′(x) =

g′(x−cp(A′),cp(A′)) is obtained.

A1 A2

A1cp( ) A’ A2

g1(s, t1 )

g’(s, t)

g2(s, t2 )

µ

X

X

S

t

µ

cp( ) cp(

A

)

’

t1 t2

Figure 2.4: Interpolating fuzzy sets by solid cutting

For fuzzy interpolations only concerning triangular fuzzysets, the solid cutting

method works in the same way as the linear interpolation by using λ:

a′0 = (1−λ)a10+λa20, (2.53)

a′1 = (1−λ)a11+λa21, (2.54)

a′2 = (1−λ)a12+λa22, (2.55)

which are collectively abbreviated to

A′ = (1−λ)A1+λA2. (2.56)
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Similarly, the consequent fuzzy setB′ can be obtained by

b′0 = (1−λ)b10+λb20, (2.57)

b′1 = (1−λ)b11+λb21, (2.58)

b′2 = (1−λ)b12+λb22, (2.59)

with abbreviated notation:

B′ = (1−λ)B1+λB2. (2.60)

In so doing, the newly derived ruleA′ ⇒ B′ involves the use of only normal and valid

fuzzy sets. The fuzzy setA′ has the same centre of point asA∗. The revision principle

based technique [SDM88, SDM93, MDS90, DSM89, DSM92] is usedto infer the

fuzzy conclusion by the new rule and the observation:

Definition 9 The revision function y= Λ(x,p1,p2), where x∈ [x,x], y∈ [y,y], p1 =

[p1,1p1,2 . . . p1,m]∈RM, where p1,1 = a and p1,M = b, andp2 = [p2,1p2,2 . . . p2,m]∈RM,

where p2,1 = c and p2,M = d, subject to pi,m ≤ pi,m+1, i = 1,2.

The revision function is a piecewise linear function where the linear pieces are defined

by point-pairs(p1,m, p2,m). Fig. 2.5 shows a revision function withM = 4.

(c)

1,1 P1,2 P1,3 P1,4

P2,1

P2,2

P2,3

P2,4

X

Y

x

(a) (b)

y

(d)

P

Figure 2.5: A revision function

In the triangular cases, the top point of the resulting fuzzysetB∗ keeps the same

position as that ofB′. That is,b∗1 = b′1. The left and right points are determined by the
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revision principle:

b∗0 = Λ(a∗0,p1,p2), (2.61)

b∗2 = Λ(a∗2,p1,p2), (2.62)

where

p1 = [x A′ CP(A′) A′ x],

p2 = [y B′ CP(B′) B′ y].

2.4.4 The QMY Interpolation

As with the general fuzzy interpolation, Equations (2.56) and (2.60) are used to con-

struct an intermediate ruleA′ ⇒ B′, whereA′ has the same centre point asA∗. To

determine the left and right points ofB∗, The QMY method [QMY96] suggests fuzzy

reasoning in the following way:

1. Define a certain kind of similarity between two fuzzy sets.

2. CompareA∗ andA′ to get their similarity.

3. FromB′ reconstructB∗ according to the similarity transferred from the antecedent

part.

This method is referred to as thesimilarity transfer(ST) reasoning method. The

similaritiesbetween two fuzzy sets are defined as follows.

Definition 10 Given two normal and valid fuzzy sets A and A′ on the universe of dis-

course X, the lower similarity and the upper similarity between A and A′ are respec-

tively defined as follows.

SL(A,A′)(α) =
d(in f (Aα),CP(A))

d(in f (A′
α),CP(A))

(2.63)

SU(A,A′)(α) =
d(sup(Aα),CP(A))

d(sup(A′
α),CP(A))

(2.64)

whereα ∈ [0,1].
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Then the consequenceB∗ is derived from the following equations:

CP(B∗) = CP(B′), (2.65)

SL(A∗,A′)(α) = SL(B∗,B′)(α), (2.66)

SU(A∗,A′)(α) = SU(B∗,B′)(α). (2.67)

Combining (2.63)– (2.67) gives

in f (B∗
α) = SL(A∗,A′)(α)d(in f (B′

α),CP(B′))+CP(B′), (2.68)

sup(B∗
α) = SU(A∗,A′)(α)d(sup(B′

α),CP(B′))+CP(B′). (2.69)

Thus the consequenceB∗ can be calculated with the representation principle of fuzzy

sets.

2.5 Hierarchical Fuzzy Reasoning

An alternative way of dealing with the “curse of dimensionality” is to use hierarchical

fuzzy systems [RZK91, RZ93]. Such a system consists of a number of hierarchically

connected low-dimensional fuzzy systems. Fig. 2.6 shows a typical example of hier-

archical fuzzy systems. Thisn input hierarchical fuzzy system comprisesn−1 low-

dimensional fuzzy systems, with each low-dimensional fuzzy system having two in-

puts. Ifm fuzzy sets are defined for each variable, the total number of rules is(n−1)m2

which is a linear function of the number of input variablesn.

Earlier research work focuses on the proof of the availability of this approach.

[Wan98, HB99, JKTV97, ZK04] show that any continuous function can be approxi-

mated by hierarchical fuzzy systems to achieve the universal approximation property.

This enables the potential to build compact and efficient fuzzy models without the

restraint of the curse of dimensionality. As a worked example, [SGB93] makes use

of the hierarchical fuzzy system to control the unmanned helicopter. The work of

[KHM00, KH93b] attempts the combination of hierarchical and sparse rule bases.

However, the main problem of the hierarchical reasoning is that it is often diffi-

cult to determine the low-dimensional fuzzy systems. Hierarchical fuzzy systems are
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Figure 2.6: An example of an n input hierarchical fuzzy system

also criticized for transferring the complexity from the antecedent parts to the conse-

quent parts. Nevertheless, the work of [Wan98] argued that the new structure no doubt

does a better job in terms of distributing the burden somewhat “uniformly” over the

antecedent and consequent parts. Further improvements to this work and the hybrid

version of this system are desirable.

2.6 Summary

This chapter reviews the existing fuzzy simplification techniques which are vital to

machine learning, pattern recognition and signal processing. In addition to overcoming

the curse of dimensionality, simplification techniques arecapable of enhancing the

readability and transparency of reduced rule bases.

The outlined techniques consist of five categories: feature-based reduction, merg-

ing and removal-based reduction, orthogonal transformation based methods, interpola-

tive reasoning methods and hierarchical fuzzy reasoning. Feature based reduction re-

duces the number of variables before the data is fed into machine learning tools. Merg-
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ing and removal-based reduction simplify the rule bases by merging the similar rules or

fuzzy sets, and removing the inconsistent or inactive rules. Orthogonal transformation

based methods make use of matrix computation to optimise fuzzy rule bases. Inter-

polative reasoning methods not only simplify the rule base by eliminating the rules

which can be approximated by their neighbors, but also provide a wise inference so-

lution for sparse rule bases. Hierarchical fuzzy systems modify the structure of the

conventional rule models and hence avoid the curse of dimensionality.

Three concerns are considered to choose a proper simplification technique for a

question at hand. The first is about when the simplifications are to be applied: Feature-

based reduction is a technique used before the rule induction; most orthogonal transfor-

mation based methods and hierarchical fuzzy systems are techniques used within the

rule induction; and merging and removal-based reduction, some orthogonal transfor-

mation based methods and interpolative reasoning methods are techniques used after

rule induction. Based on when a technique is applied, candidates can be identified for

a given simplification task. For example, when a rule base is given and its associated

fuzzy membership functions for each attribute are fixed, thecandidates could only be

chosen from the simplification techniques after the rule induction process.

The second concern to choose a simplification method is the preservation of the

semantic meaning, as this is the major advantage of fuzzy modelling. Unfortunately,

some simplification methods, such as the similarity mergingand most of the transfor-

mation based methods, destroy the predefined fuzzy linguistic terms and hence result in

loss of comprehensibility. In contrast, feature selection, interpolative reasoning meth-

ods and hierarchical fuzzy systems are good choices.

Finally, the concern is made to avoid generating sparse rulebases. When given

observations have no overlap with the antecedent rule values, classical fuzzy inference

methods have no rule to fire, but interpolative reasoning methods can still obtain certain

conclusions. Thereby, this concern can be removed if interpolative reasoning based

fuzzy inference is adopted.

Among all the existing approaches, the interpolative reasoning methods have been

paid extra attention as they are closest to this Ph.D. project. Some typical interpolation

methods which will be used in comparison (chapter 8) have been described in detail.
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Although no significant difference can been seen through these discussions so far, these

methods do make a lot of difference when they are used in a scaled-up application in

chapter 8.



Chapter 3

RDFR Based Simplification Method

Rule model simplification techniques are desirable to alleviate thecurse of dimension-

ality [Gui01, KJS02] so that models’ effectiveness and transparency can be enhanced.

This chapter proposes a novel simplification method by meansof retrieving data from

rules. It first retrieves a collection of new data from an original rule base. Then the

new data is used for re-training to build a more compact rule model. This method has

four advantages: 1) It can simplify rule bases without usingthe original training data,

but is capable of dealing with combinations of rules and data. 2) It can integrate with

any rule induction or reduction schemes. 3) It implements the similarity merging and

inconsistency removal approaches. 4) It can make use of ruleweights. Illustrative

examples have been given to demonstrate the potential of this work.

The current rule simplification techniques are classified into three categories in

terms of execution stages: the techniques executed before rule induction (RI) pro-

cedure, such as feature selection [DL97, JS04b]; the techniques integrated in the RI

part, such as the orthogonal transformation based methods [CCG91, WM92a, YW99,

YBY99]; and the techniques after the RI part, such as similarity merging [KB95,

CCT96, SBKL98], inconsistency removal [XL02] and interpolative reasoning [KH93a,

YK98]. The simplification methods in the first two categoriesmake use of the orig-

inal training data during their processes, while the methods in the third category are

independent of the original training data (or they only needa small amount of data for

test purposes). This difference highlights the advantagesof the latter since the training

data are not always available. In addition, most current simplification methods do not

37
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consider cases where both training data and rules, which arenot necessarily obtained

from any data but may be acquired directly from domain experts, are available. An-

other common disadvantage of current simplification methods is that they fail to make

appropriate use of the rule weights (if applicable). This ignorance may destroy certain

information of the underlying rule model. To overcome thesetwo existing problems, a

novel simplification method is proposed in this chapter.

The rest of the chapter is organised as follows. Section 3.1 gives a brief overview

of the knowledge representation in IF-THEN production rules. Section 3.2 proposes

the simplification method based on retrieving data from rules (RDFR). Section 3.3

gives realistic applications to illustrate the success of this method. Finally, Section 3.4

concludes the chapter and points out important further work.

3.1 Knowledge Representation

By means of human-like reasoning, production rule modelling becomes more and more

popular in a variety of applications. The most outstanding advantage of this modelling

is that it makes problem-solving systems understandable, unlike black-box techniques

such as artificial neural networks. In particular, as an important part of rule modelling,

fuzzy rule modelling is capable of handling perceptual uncertainties and imprecise

information.

A typical fuzzy rule model consists of a set of IF-THEN rules,each of which takes

certain crisp or fuzzy terms for input variables and output classes. Depending upon

whether crisp or fuzzy terms are involved, the model is called a crisp rule modelor

fuzzy rule model. Since a multiple output rule can always be represented by several sin-

gle output rules, without losing generality, only rules which have multiple input vari-

ablesX = (x1,x2, . . . ,xn) and a single output classy are considered. Each input variable

x j , j = 1, . . . ,n, hasm( j) linguistic terms denoted asA j1,A j2, . . . ,A j ,m( j). The whole

linguistic terms of each inputx j can be defined by a vectorVj = (A j1,A j2, . . . ,A j ,m( j)).

Similarly, the whole linguistic terms of the output isVn+1 =(B1,B2, . . . ,Bm(n+1)). Then

a universal rule in a knowledge base has the following form:

i f Xp(1) = SUB1(Vp(1)) and· · ·and Xp(s) = SUBs(Vp(s)) then y= B, (3.1)
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wherep(·) is a mapping function from{1,2, . . . ,s}, (s≤ n), to {1,2, . . . ,n} satisfying

∀x 6= y, p(x) 6= p(y), SUBk(k = 1, . . . ,s) represents the subsethood operations andB∈

Vn+1.

Consider the Saturday Morning Problem [YS95] as an example,with the attributes

and their values shown in Table 3.1. A possible rule for this problem may be repre-

sented as

IF Temperature is Hot AND Outlook is{Sunny or Cloudy} THEN plan is
Swimming.

Table 3.1: Saturday Morning Problem

Attribute name Values

Outlook Sunny, Cloudy, Rain

Temperature Hot, Mild, Cool

Humidity Humid, Normal

Wind Windy, Normal

Plan Volleyball, Swimming, Weightlifting

If the first datum in Table.3.8 is given as an observation, thefuzzy inference is carried

out as follows. First, as the fuzzy linguistic term “Sunny” takes on a fuzzy membership

value of 0.9 and the “Cloudy” takes on 0.1, the logic union operator “or” calculates

the maximal value (or other S-norm operators) of these two, that is, 0.9 as the firing

strength (or confidence) ofOutlook is{Sunny or Cloudy}. Then the logic intersection

operator “and” calculates the minimal value (or other T-norm operators) ofTemper-

ature is Hot(1.0) andOutlook is{Sunny or Cloudy} (0.9), resulting in a confidence

of 0.9 to choose swimming as plan. Generally speaking, more than one rule may be

fired for a given observation. All these rule results are aggregated to generate the final

output.
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3.2 The RDFR Based Simplification Method

3.2.1 Framework

The idea of the proposed method is inspired by the interchangeable usage of rules and

data. In particular, the training data may be treated as specific rules. For instance

in orthogonal transformation based methods [CCG91, WM92a,YW99], each training

datum can be regarded as an individual “rule” (perhaps with fuzzification of attribute

values) and only the “important rules” are retained to construct models. The reverse

treatment that regards rules as data is attempted here. Thatis, the rules within an

original rule base are used as training data to achieve a morecompact rule model.

However, some rules may not involve certain input variables, thus it is impossible for

them to get re-trained directly. In order to solve this problem, a retrieving procedure is

performed on each rule to assign vacant attributes (in that rule) with proper values, so

that the retrieved data are ready for re-training.

The high level design (Fig. 3.1) of this method shows that thetraditional rule induc-

tion and reduction procedures usually take place in the leftdashed box. Rule induction

algorithms (RIA) are generalization schemes which are usedto learn from an original

dataset (ODS) to derive an original rule set (ORS). Additionally, dimensionality reduc-

tion (DR) is applied before the training so that irrelevant or noisy input variables can

be filtered out. Rule reductions (RR) such as similarity based rule merging [SBKL98]

are applied to the original rule set to obtain a new one that ismore compact. The main

idea of the present simplification method is that it introduces a procedure of retrieving

data from rules (RDFR) and a re-training procedure which is shown in the right dashed

box. The RDFR based method builds a flexible and modular framework since any rule

induction or reduction methods can be used in the right dashed box.

3.2.2 Retrieving Data From Rules (RDFR)

To formalise the description of the retrieving procedure, the following concepts and

notations are introduced:

Definition 11 The rule expressed in (3.1) is astructure-complete ruleif all input vari-
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RDS −− Reduced Data Set
RIA −− Rule Induction Algorithms FRS −− Final Rule Set

ORS −− Original Rule Set
RDFR −− Retrieve Data from Rules
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Figure 3.1: Simplification via Retrieving Data from Rules

ables are involved, i.e., s= n. Other rules are termednon-structure-complete rules.

Structure-complete rules are not preferred in modelling asthey cannot represent as

many data as non-structure-complete rules do.

Definition 12 The rule of form (3.1) is amulti-term ruleif at least one input Xp(i), i =

1, . . . ,s takes more than one linguistic or fuzzy term. i.e.,∃k∈ {i = 1, . . . ,s} such that

SUBk(Vp(k)) involves more than one term.

Multi-term rules represent logical union between alternative terms for certain variables.

In contrast to multi-term rules,single-term rulescontain variables which merely take

one linguistic or fuzzy term. Obviously, a multi-term rule can be divided into many

single-term rules without losing information. All the rules used later only concern

single-term rules.

Definition 13 A rule is acomplete-single-term ruleif it is a single-termrule as well

as astructure-completerule.

In terms of the coverage of domain space, applying non-structure-complete rules is

better than using structure-complete ones alone. This is because the former are more

general than the latter. Let non-structure-complete rulesbe the “real rules” and the
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complete-single-term rules be “data”, the procedure of retrieving “data” from rules

is implemented as retrieving complete-single-term rules from non-structure-complete

rules. This implementation can be described as follows.

1: create a new datum in which each input variable is assigned null value and the

class variable is assigned the linguistic class term of the given rule

2: for each input variabledo

3: if the variable is involved in the given rulethen

4: assign the linguistic fuzzy term of this variable in the given rule as the value

of the new datum for this variable

5: else

6: assign anappropriatelinguistic fuzzy term as the value of the new datum for

this variable

7: end if

8: end for

If the process retrieves all possible data from the given rule, this retrieval is called

exhaustive retrieval. Otherwise, it is callednon-exhaustive retrieval. Note that in the

exhaustive case, there is no need to assign anappropriate linguistic fuzzy term to

the newly constructed datum each time (as stated in line 6), as all the possible com-

binations of values of the vacant variables will be obtainedanyway. However, for the

non-exhaustive retrieval, such an assignment has to be considered. The next subsection

gives examples to show how different assignments work.

3.2.3 Illustrative Examples

All the examples given in this subsection involve two inputsx1 andx2 and an outputy.

Assuming that each of them takes three linguistic (or fuzzy)terms which are denoted

asA1, A2, A3, B1, B2, B3, andC1, C2, C3 respectively.
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3.2.3.1 Exhaustive Retrieval

Example 1. This example shows how to retrieve data from a rule model in a simple

case. If a non-structure-complete rule is given as

i f x1 = A1 then y= C1.

This rule is applied by RDFR to generate three data, which areshown in Table 3.2.

As every datum has one fuzzy linguistic term associated witheitherx1 or x2, it can

also be called a complete-single-term rule. Therefore, RDFR actually retrieves three

complete-single-term rules from the given rule.

Table 3.2: Retrieve data from a non-structure-complete rule

No x1 x2 y

1 A1 B1 C1

2 A1 B2 C1

3 A1 B3 C1

Example 2. If two rules with different outputs are given:

i f x1 = A1 then y= C1,

i f x2 = B1 then y= C2.

A total of six data are retrieved and they are presented in Table 3.3. As can be seen, the

first and the fourth data have the same inputs but derive different outputs, resulting in

an inconsistency. In this case, if weights are being assigned to rules to reflect their im-

portance, the data retrieved from the higher weighted rule ought to be retained and the

others removed. This treatment makes use of rule weights andimplements the method

of inconsistency removal [XL02] at the data level rather than rule level. An experiment

of such a treatment is given in section 3.3 to show its successin building compact and

effective rule models. If however the weighting information is not available, voting

can be used to choose the dominant datum from the retrieved inconsistent dataset.
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Table 3.3: Retrieve data from two rules with different outputs

No x1 x2 y

1 A1 B1 C1

2 A1 B2 C1

3 A1 B3 C1

4 A1 B1 C2

5 A2 B1 C2

6 A3 B1 C2

Example 3. If two rules with the same outputs are given:

i f x1 = A1 then y= C1,

i f x2 = B1 then y= C1.

A total of six data are retrieved as shown in Table 3.4. The first and the fourth data

are identical. Clearly it is sufficient to keep one datum in this case. Such a treatment

implements the similarity merging [KB95, CCT96, SBKL98] (identity merging in fact)

at the data level rather than rule level. In the case of a scaled-up model, massive

identical data may be retrieved. Such a process leads to lesscomputation effort in

re-training, thereby resulting in a more compact model.

Table 3.4: Retrieve data from two rules with the same output

No x1 x2 y

1 A1 B1 C1

2 A1 B2 C1

3 A1 B3 C1

4 A1 B1 C1

5 A2 B1 C1

6 A3 B1 C1
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3.2.3.2 Non-exhaustive Retrieval

The previous three examples illustrate retrieving all possible data from certain rules.

Such exhaustive retrieval is hereafter referred to as ERDFR. Alternatively,non-exhaustive

retrieval retrieves only partial of the whole possible data from givenrules. The imple-

mentation of non-exhaustive retrieval is to assign an appropriate fuzzy linguistic term

to each vacant variable (there is no need to assign to the variables which have already

been associated with certain fuzzy linguistic terms). In particular, the implementations

include assigning to each vacant variable:

• the most frequently used fuzzy linguistic term,

• the medium fuzzy linguistic term (if applicable),

• a randomly generated fuzzy linguistic term.

For later reference, the procedure ofrandomly retrieving data from rulesis hereafter

denoted as RRDFR.

Example 4.Given the same rules as in example 3,

i f x1 = A1 then y= C1,

i f x2 = B1 then y= C1.

Suppose that the first and second rules have different weights, say 1.0 and 0.5, obtained

from certain training schemes (assuming the weights of rules are in the range of[0,1]).

As the second rule is regarded to be not so confident as the first, one datum rather

than three, may be retrieved from it, to reflect the lesser significance of this rule. One

of the implementations is to choose the most frequently usedterm of x1 (say,A2) to

generate the only datax1 = A2∧x2 = B1 ⇒ y=C1 from the second rule. The results are

presented in Table 3.5. This retrieving strategy makes use of the rule weights, leading

to a small amount of retrieved data which however may better represent the underlying

model structure.

RDFR can be applied to simplify a model which has a combination of rules and

data. In this case, the data retrieved from the given rule base are combined with the

given data, to form a new training data set. Further processing will be carried out to

the new training dataset to obtain the reduced models.
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Table 3.5: Non-exhaustive retrieve data from two different weighted rules

No x1 x2 y

1 A1 B1 C1

2 A1 B2 C1

3 A1 B3 C1

4 A2 B1 C1

3.3 Realistic Applications

The RDFR based method is applied in the same manner to either crisp or fuzzy rule

models. Three examples concerned with both cases are given in this section to demon-

strate the success of this work. In particular, the application for nursery prediction

shows a crisp case, and the Saturday morning problem and credit applications show

fuzzy cases.

3.3.1 Nursery Prediction

The Nurserydatabase [HBM98] has eight nominal input variables and five output

classes. It was derived from a hierarchical decision model originally developed to

rank applications for nursery schools. Table 3.6 shows the variable names and val-

ues involved in the given database. A total of 12960 data in this database are divided

evenly for training and test purposes. 55 rules are generated by the well-known deci-

sion tree algorithm (C4.5) [Qui86] with leaf objects set as 20 (a criterion to terminate

C4.5 training) and the prediction accuracy on the test data is 92.48%. For further per-

formance comparison, a simplified C4.5 tree (with minimal leaf objects set to 70) is

obtained with 24 rules but having a lower prediction rate (89.77%).

The ERDFR and RRDFR are applied to retrieve all possible data(12960 in this

case) and approximately 10% (1254) from the original rule set (produced by C4.5)

respectively. The implementation of ERDFR and RRDFR in thisexample removes

the inconsistency by following the firstin first kept principle. That is to say, during

the retrieving process, if the previously retrieved dataset has a datum whose inputs are



Chapter 3. RDFR Based Simplification Method 47

Table 3.6: Nursery data base

Attribute name Values

parents usual, pretentious, greatpret

hasnurs proper, lessproper, improper, critical, verycrit

form complete, completed, incomplete, foster

children 1, 2, 3, more

housing convenient, lessconv, critical

finance convenient, inconv

social non-prob, slightlyprob, problematic

health recommended, priority, notrecom

class not recom, recommend, veryrecom, priority, specprior

identical to the newly retrieved one, the newly retrieved will be dropped.

After ERDFR and RRDFR procedures, different classificationschemes including

decision trees (C4.5) [Qui86], PART [FW98, WF99] and Ridor [WF99] are applied

to the retrieved data to generate more compact rule sets. PART is a classifier which

generates a decision list rather than a collection of equally weighted rules. Ridor per-

forms a tree-like expansion of exceptions with the leaf having only a default rule. The

exceptions are a set of rules that predict a class different from the one that would be

obtained if the default rule is fired. Using these classifiersthe test results, in terms of

rule number, average variable number (including the outputclass) and prediction rate

on test data, are collectively presented in Table 3.7. Rule number stands for the number

of rules for the rule sets obtained by classification schemes, average variable number

stands for how many variables are averagely involved in a rule in the rule sets (used

as an indicator to show how complex a rule set is), and the prediction rate on test data

shows the prediction accuracy.

Table 3.7 shows that ERDFR + C4.5 is able to achieve the same performance as

the original simplified C4.5 model. It is worth noting that the RDFR based method

achieves this performance without using the original data.The ERDFR + PART

scheme reduces the rule number to 39, while maintaining the same prediction accuracy
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Table 3.7: Results comparison between C4.5 and RDFR simplification method

Performance

Schemes Rule number Average variable Prediction rate

number on test data

C4.5 55 4.81 92.48%

C4.5 (simplified) 24 3.83 89.77%

ERDFR + C4.5 24 3.83 89.77%

ERDFR + PART 39 3.26 92.48%

ERDFR + Ridor 25 3.28 91.27%

RRDFR + C4.5 21 3.67 89.38%

RRDFR + PART 34 3.04 92.61%

RRDFR + Ridor 26 3.32 91.16%

(92.48%) as produced by the original C4.5 model. The ERDFR + Ridorsimplifies the

rule model to 25 rules with a satisfactory prediction accuracy (91.27%), which is still

higher than 89.77% produced by the original simplified C4.5 model. These experi-

ments show that the ERDFR based simplification methods help simplify rule models

while being capable of maintaining the same, or even improving, performance of the

original rule set.

The experiments based on RRDFR produce more encouraging results. In partic-

ular, RRDFR + C4.5 achieves a model consisting of only 21 rules but with a lower

prediction accuracy (89.38%), RRDFR + PART achieves the highest prediction rate

(92.61%) with only 34 rules. RRDFR + Ridor generates a satisfactory result (91.16%)

while significantly reducing the rule number from 55 to 26.

Considering the average number of the variables involved ina rule model, both

ERDFR and RRDFR based methods obtain more compact models compared to the

original C4.5 ones. As can be seen, the RRDFR based experiments outperform the

ERDFR based ones. This is likely due to the fact that the randomly retrieved data

generated from RRDFR may contain sufficient information to represent the underlying

model structure. As it has much less data (1254 vs. 12960), itis more likely to result
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in effective and compact rule models.

3.3.2 Saturday Morning Problem

The Saturday morning problem [YS95] concerns the prediction of sports plan (volley

ball, swimming and weight lifting) based on the status of outlook (sunny, cloudy and

rain), temperature (hot, mild and cool), humidity (humid and normal) and wind (windy

and not windy). Table 3.8 shows the given training set which includes 16 fuzzy data.

A fuzzy decision tree generation method [YS95] has been applied to this dataset to

generate six fuzzy rules which are presented below. The performance of the fuzzy

decision tree over the training data is 81.25%.

Rule 1: IF Temperature is Hot AND Outlook is Sunny

THEN Swimming (S = 0.85)

Rule 2: IF Temperature is Hot AND Outlook is Cloudy

THEN Swimming (S = 0.72)

Rule 3: IF Temperature is Hot AND Outlook is Rain

THEN Weight_lifting (S = 0.73)

Rule 4: IF Temperature is Mild AND Wind is Windy

THEN Swimming (S = 0.81)

Rule 5: IF Temperature is Mild AND Wind is Not_windy

THEN Volleyball (S = 0.81)

Rule 6: IF Temperature is Cool THEN Weight_lifting (S = 0.88)

Note that Rule 3 can be simplified to Rule 3’:

Rule 3’: IF Outlook is Rain THEN Weight_lifting (S = 0.89)

Also, note thatS is the classification truth level at the leaf.
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Table 3.8: Saturday Morning Problem dataset

Case Outlook Temperature Humidity Wind Plan

Sunny Cloudy Rain Hot Mild Cool Humid Normal Windy Not windy Volleyball Swimming Wlifting

1 0.9 0.1 0.0 1.0 0.0 0.0 0.8 0.2 0.4 0.6 0.0 0.8 0.2

2 0.8 0.2 0.0 0.6 0.4 0.0 0.0 1.0 0.0 1.0 1.0 0.7 0.0

3 0.0 0.7 0.3 0.8 0.2 0.0 0.1 0.9 0.2 0.8 0.3 0.6 0.1

4 0.2 0.7 0.1 0.3 0.7 0.0 0.2 0.8 0.3 0.7 0.9 0.1 0.0

5 0.0 0.1 0.9 0.7 0.3 0.0 0.5 0.5 0.5 0.5 0.0 0.0 1.0

6 0.0 0.7 0.3 0.0 0.3 0.7 0.7 0.3 0.4 0.6 0.2 0.0 0.8

7 0.0 0.3 0.7 0.0 0.0 1.0 0.0 1.0 0.1 0.9 0.0 0.0 1.0

8 0.0 1.0 0.0 0.0 0.2 0.8 0.2 0.8 0.0 1.0 0.7 0.0 0.3

9 1.0 0.0 0.0 1.0 0.0 0.0 0.6 0.4 0.7 0.3 0.2 0.8 0.0

10 0.9 0.1 0.0 0.0 0.3 0.7 0.0 1.0 0.9 0.1 0.0 0.3 0.7

11 0.7 0.3 0.0 1.0 0.0 0.0 1.0 0.0 0.2 0.8 0.4 0.7 0.0

12 0.2 0.6 0.2 0.0 1.0 0.0 0.3 0.7 0.3 0.7 0.7 0.2 0.1

13 0.9 0.1 0.0 0.2 0.8 0.0 0.1 0.9 1.0 0.0 0.0 0.0 1.0

14 0.0 0.9 0.1 0.0 0.9 0.1 0.1 0.9 0.7 0.3 0.0 0.0 1.0

15 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.8 0.2 0.0 0.0 1.0

16 1.0 0.0 0.0 0.5 0.5 0.0 0.0 1.0 0.0 1.0 0.8 0.6 0.0
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Retrieving is now applied to the these rules. As there are only 38 data retrieved by

ERDFR, it is not necessary to apply RRDFR. The RRDFR procedure is thus omitted

in this example. Within the retrieved 38 data by ERDFR, thereare two pairs of incon-

sistent data as shown in Table 3.9. In particular, data 1 and 2constitute an inconsistent

pair, and data 3 and 4 form another. Data 1 and 3 are retrieved from rule 5 and data

2 and 4 are from rule 3′. Since the weight (truth level) of rule 5 is 0.81 whilst that of

rule 3′ is 0.89, data 2 and 4 are of a higher confidence than data 1 and 3 respectively.

Data 1 and 3 are hence removed from the retrieved 38 data. For comparison purposes,

both of these two datasets are used to construct new fuzzy models and they are referred

to asdata 38anddata 36hereafter. For each dataset, three classification schemes in-

cluding C4.5, PART and JRip [WF99] are adopted. The final results are compared to

the work of [YS95] in terms of rule number, average number of variables involved and

prediction rate on the original training data. These results are presented in Table 3.10

and Table 3.11 (for data 38 and data 36 respectively). Note that the prediction rates on

theretrieveddata are also given in the tables.

Table 3.9: Two pairs of inconsistent data after ERDFR

No Outlook Temperature Humidity Wind Plan

1 rain mild humid not-windy volleyball

2 rain mild humid not-windy weightlifting

3 rain mild normal not-windy volleyball

4 rain mild normal not-windy weightlifting

Table 3.10 shows that ERDFR + C4.5 produces the same prediction rate (81.25%)

on the original data as the work of [YS95], despite the prediction rate on the retrieved

data being much higher (94.74%). The ERDFR + PART achieves the same prediction

accuracy. It however reduces the average number of variables involved per rule from

2.67 to 2.17, resulting in a more compact fuzzy rule base. ERDFR + JRip effectively

reduces the rule number from six to three. Unfortunately, itbrings down the prediction

rate to 75%.
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Table 3.10: Results comparison based on data 38

Performance

Schemes Rule number Average variable Prediction rate Prediction rate

number on retrieved data on original data

Fuzzy Decision Trees 6 2.67 81.25% 81.25%

ERDFR + C4.5 6 2.67 94.74% 81.25%

ERDFR + PART 6 2.17 94.74% 81.25%

ERDFR + JRip 3 2.00 84.21% 75%

Table 3.11: Results comparison based on data 36

Performance

Schemes Rule number Average variable Prediction rate Prediction rate

number on retrieved data on original data

Fuzzy Decision Trees 6 2.67 81.25% 81.25%

ERDFR + C4.5 8 2.88 100% 81.25%

ERDFR + PART 6 2.17 100% 93.75%

ERDFR + JRip 4 2.50 94.44% 81.25%

Table 3.11 shows a much improved performance. Although ERDFR + C4.5 in

fact increases the rule number, ERDFR + PART reduces the average number of vari-

ables per rule from 2.67 to 2.17 while achieving a high prediction accuracy (93.75%).

ERDFR + JRip reduces the number of rules from 6 to 4 while keeping the same pre-

diction accuracy as the work of [YS95]. These two successfulsimplified fuzzy models

are provided below. Note that PART and JRip generate orderedfuzzy rules, a firing

thresholdα = 0.7 is imposed on both models to classify new data. That is, if any rule

in the ordered list has a firing strength (for the given data) more than this threshold, the

prediction will be determined by this rule.

ERDFR + PART on data 36:

Rule 1: IF Temperature is Cool THEN Weight_lifting

Rule 2: IF Temperature is Hot AND Outlook is Sunny THEN Swimming

Rule 3: IF Temperature is Mild AND Wind is Windy THEN Weight_lifting
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Rule 4: IF Outlook is Rain THEN weight_lifting

Rule 5: IF Temperature is Hot THEN Swimming

Rule 6: Volleyball

ERDFR + JRip on data 36:

Rule 1: IF Temperature is Mild and Wind is not_windy THEN Volleyball

Rule 2: IF Temperature is Hot and Outlook is Cloudy THEN Swimming

Rule 3: IF Temperature is Hot and Outlook is Sunny THEN Swimming

Rule 4: Weight_lifting

The comparison between Table 3.10 and Table 3.11 indicates that inconsistency re-

moval helps filter out noisy information, contributing to the construction of compact

and effective models. This step is particularly useful whenthe performance of the

original rule base is poor, as it is very likely there are inconsistent or conflicting infor-

mation existing in that rule base.

From Tables 3.10 and 3.11, the performance of the rule bases tested on the retrieved

data is not proportional to that on the original data for different classification schemes.

However for one particular classification scheme, the higher the performance on re-

trieved data, the higher the performance is likely to be obtained on the original data.

Table 3.12 and Table 3.13 show the results of different models with various training

criteria for data 38 and data 36 respectively. For instance,if ERDFR + PART results

in two models with a prediction rate of 94.74% and 89.47% on retrieved data 38 re-

spectively, it is more likely that the first model also outperforms the second (81.25%

vs. 68.75%) on the original data. This observation provides a useful guide to find an

optimum rule base reduction without the use of original data.

3.3.3 Credit Applications

The credit applications data [HBM98], provided by a large bank, is a collection of

individual applications for credit card facilities. Each application involves 9 discrete

and 6 continuous attributes, with two decision classes (accept or reject). To make the

comparison available to the results given in [Qui87], the 690 data (with 37 having one

or more than one missing value) are randomly divided into a training set of 460 and a
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Table 3.12: Results comparison based on data 38

Performance

Schemes Rule number Average variable Prediction rate Prediction rate

number on retrieved data on original data

ERDFR + C4.5 6 2.67 94.74% 81.25%

4 2.67 84.21% 75.00%

ERDFR + PART 6 2.17 94.74% 81.25%

5 2.20 89.47% 68.75%

Table 3.13: Results comparison based on data 36

Performance

Schemes Rule number Average variable Prediction rate Prediction rate

number on retrieved data on original data

ERDFR + C4.5 8 2.88 100% 81.25%

4 2.50 83.83% 75.00%

ERDFR + PART 6 2.17 100% 93.75%

5 2.20 88.89% 68.75%

test set of 230 (keeping each decision class the same proportion as that of the original

dataset). As some discrete attributes have large collections of possible values (one of

them has 14), this dataset results in broad, shallow decision trees. Also, since this data

is both scanty and noisy, the generated decision trees are extremely complex and not

very accurate on unseen cases.

The fuzzy decision tree algorithm [UOHT94] is applied to thetraining data. For

simplicity, and not to give any bias towards any variable domains, each variable is

evenly divided inton (n> 0) fuzzy partitions. The resulting rule number and prediction

accuracy are shown in Table 3.14 (with respect to the number of evenly distributed

fuzzy partitions and the number of leaf objects). As can be seen, the size of the rule

set decreases and the accuracy increases while the number ofleaf objects increases.

This is because the increasing of leaf objects removes the less general rules which

may cause model over-fitting, thereby resulting in more general fuzzy models. Further
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increasing the leaf objects to a large number, the number of rules (and the accuracy)

tends to become independent of the size of the fuzzy partitions used. This is because

all the numerical attributes are ruled out as important decision-making attributes, i.e.,

they are not involved in any of the rule sets. This indicates that the numerical attributes

are less informative than the nominal ones in this application. Table 3.15 shows that

in the extreme case (when the number of leaf objects is equal to or greater than 250),

only two rules:

Rule 1: IF A9 is true, THEN +

Rule 2: if A9 is false, THEN -

are generated with an accuracy of 86.5%. The result is obviously better than the best

result (which uses 11 rules with an average accuracy of 85.6%) produced in [Qui87].

Table 3.14: Fuzzy C4.5 results over Credit dataset

Number of Objects = 2 Objects = 10 Objects = 20 Objects = 30

fuzzy partitions Rule No Accuracy Rule No Accuracy Rule No Accuracy Rule No Accuracy

2 134 82.1% 72 85.6% 52 85.2% 45 85.2%

3 135 84.8% 74 85.2% 53 85.2% 45 85.2%

4 150 81.7% 84 86.0% 56 85.2% 47 85.2%

5 172 81.3% 82 85.2% 54 85.2% 47 85.2%

6 154 80.4% 82 84.4% 57 84.8% 48 85.2%

7 184 77.4% 89 83.5% 61 84.3% 49 85.2%

8 190 80.4% 95 84.3% 59 84.8% 50 85.2%

9 191 79.1% 102 83.4% 59 84.3% 50 85.2%

10 206 77.4% 110 83.5 62 84.8% 51 85.2%

Table 3.15: Fuzzy C4.5 results over Credit dataset

Objects 60 100 200 225 250 300

Rule number 41 28 15 3 2 2

Accuracy 85.2% 86.1% 86.1% 86.5% 86.5% 86.5%

For this dataset, such a compact rule set (consists of 2 rules) can effectively and

efficiently predict the unknown data. Thus, there is no need for further simplification.
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However, in many cases, such a satisfiable rule model may not be obtained (for in-

stance, the work of [Qui87]). To test if the RDFR-based simplification can manage to

find the model presented above, the case with 30 leaf objects and 3 fuzzy partitions is

chosen as the original rule base. Since exhaustive retrieval implies the return of far too

many data for this problem, a random retrieval is employed here to obtain 500 data.

Then these 500 data are fed to the PART (with the minimum number of instances per

rule is set to 2 as the training parameter) , resulting in a rule base with 16 rules and an

accuracy of 85.7%. If the minimum number of instances per rule for PART is setto 50

rather than 2 (in order to retain more general fuzzy rules), the rule model with exactly

the same two rules (as presented above) can be obtained.

Similarly, if the 500 randomly retrieved data are fed into the JRip algorithm (with

the minimum instances per rule set to 2 as the training parameter), 7 rules are obtained

with an accuracy of 85.7%. Again, if the minimum number of objects per rule is

changed (from 2 to 30), the same two rules can be achieved.

In summary, the RDFR-based simplification method can use thesize of the re-

trieved data to determine the complexity of the final rule base, and it is capable of

finding good solutions in the presented examples.

3.4 Summary

This chapter proposes a novel rule model simplification method via Retrieving Data

from Rules (RDFR). It first retrieves a collection of new datafrom an original rule base.

Then the new data is used for re-training to build a more compact rule model. This

method has four advantages: 1) It can simplify rule bases without using the original

training data, but is capable of dealing with combinations of rules and data. 2) It can

integrate with any rule induction or reduction schemes. 3) It implements the similarity

merging and inconsistency removal approaches. 4) It can make use of rule weights.

Illustrative examples including the nursery prediction, Saturday morning problem and

credit applications are given to demonstrate the success ofthis work.

However, much more can be carried out to improve further the performance of this

method. In particular, different retrieving methods with respect to the use of different
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weighted rules in a given rule set are worth further investigating. Also, this method

only applies tonon-structure-completerules. The retrieving techniques that can deal

with structure-completerules require further research.



Chapter 4

Transformation Based Interpolation:

Specific Examples

4.1 Motivation

As mentioned in section 2.4, fuzzy interpolative reasoningmethods not only reduce

the complexity of the fuzzy modelling, but also make inference in sparse rule bases

possible. However, some of the existing methods may includecomplex computation.

It becomes more difficult when they are extended to multiple variables interpolation.

Others may only apply to simple fuzzy membership functions limited to triangular or

trapezoidal. Almost all generate unique results while the work of [YK00, YWB00] ob-

tains more than one result; the former lack the flexibility whilst the latter does not show

how to decide the final result. This chapter proposes a novel interpolative reasoning

method which avoids the problems mentioned above. It is a method in the category of

intermediate rule based interpolations. Firstly an intermediate fuzzy rule is constructed

by its two adjacent rules. Then it together with the observation are converted into the

final results by proposed scale and move transformations, which ensure unique as well

as normal and valid fuzzy (NVF) sets.

The rest of the chapter is organised as follows. Section 4.2,4.3 and 4.4 describe

the proposed scale and move transformations with single antecedent variable having

triangular, trapezoidal and hexagonal fuzzy sets respectively. Section 4.5 gives the

58
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outline of the interpolation method based on the triangular, trapezoidal and hexagonal

examples. Section 4.6 summarises the chapter.

4.2 Single Antecedent Variable with Triangular Fuzzy

Sets

Triangular fuzzy membership functions are considered firstto demonstrate the basic

ideas of the present work, due to its simplicity and popularity. This is to be followed

by more complex functions such as trapezoidal and hexagonalin the next subsections.

For presentational simplicity, only rules involving one antecedent variable are dealt

with here, with a generalised case to be given later.

To facilitate this discussion, therepresentative valueof a triangular membership

function is defined as the average of thex coordinates of its three key points: the left

and right extreme points (whose membership values are 0) andthe normal point (whose

membership value is 1). Without losing generality, given a fuzzy setA, denoted as (a0,

a1, a2), as shown in Fig. 4.1, its representative value is

Rep(A) =
a0+a1+a2

3
. (4.1)

This representative value happens to be thex coordinate of the centre of gravity of

Rep(A)

1/3

µ

1 X

A

2
0 a0a a

Figure 4.1: Representative value of a triangular fuzzy set

such a triangular fuzzy set [HS03].

Suppose that two adjacent fuzzy rulesA1 ⇒ B1, A2 ⇒ B2 and the observationA∗,

which is located between fuzzy setsA1 andA2, are given. The case of interpolative
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fuzzy reasoning concerning two variablesX andY can be described through the modus

ponens interpretation (4.2), as illustrated in Fig. 4.2.

µ

µ

X

A A A

a aa a a a a a11 12 0 1 2 2010 21 22

1 2

Y

  0 1 2 20 21 22

B B B

b b b10 11 12  b b b b b b

a

*

*

1 2

Figure 4.2: Interpolation with triangular membership functions

observation:X is A∗

rules: ifX is A1, thenY is B1

if X is A2, thenY is B2

conclusion:Y is B∗?

(4.2)

Here,Ai =(ai0,ai1,ai2), Bi =(bi0,bi1,bi2), i = 1,2, andA∗ =(a0,a1,a2), B∗ =(b0,b1,b2).

To perform interpolation, the first step is to construct a newfuzzy setA′ which has

the same representative value asA∗. For this, the following is created first:

λRep =
d(A1,A∗)

d(A1,A2)

=
d(Rep(A1),Rep(A∗))

d(Rep(A1),Rep(A2))

=
a0+a1+a2

3 − a10+a11+a12
3

a20+a21+a22
3 − a10+a11+a12

3

, (4.3)

whered(A1,A2) = d(Rep(A1),Rep(A2)) represents the distance between two fuzzy

setsA1 andA2.
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From this,a′0, a′1 anda′2 of A′ are calculated as follows:

a′0 = (1−λRep)a10+λRepa20, (4.4)

a′1 = (1−λRep)a11+λRepa21, (4.5)

a′2 = (1−λRep)a12+λRepa22, (4.6)

which are collectively abbreviated to

A′ = (1−λRep)A1+λRepA2. (4.7)

Now, A′ has the same representative value asA∗.

proof 1

Rep(A′) =
a′0+a′1 +a′2

3
.

With (4.4)–(4.6) and (4.3),

Rep(A′) = (1−λRep)
a10+a11+a12

3
+λRep

a20+a21+a22

3
= (1−λRep)Rep(A1)+λRepRep(A2)

= Rep(A∗).

Importantly, in so doing,A′ is generated to be a valid fuzzy set as the following

holds givena10 ≤ a11 ≤ a12, a20 ≤ a21≤ a22 and 0≤ λRep≤ 1:

a′1−a′0 = (1−λRep)(a11−a10)+λRep(a21−a20) ≥ 0,

a′2−a′1 = (1−λRep)(a12−a11)+λRep(a22−a21) ≥ 0.

The second step of performing interpolation is carried out in a similar way to the

first, such that the consequent fuzzy setB′ can be obtained as follows:

b′0 = (1−λRep)b10+λRepb20, (4.8)

b′1 = (1−λRep)b11+λRepb21, (4.9)

b′2 = (1−λRep)b12+λRepb22, (4.10)
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with abbreviated notation:

B′ = (1−λRep)B1+λRepB2. (4.11)

As a result, the newly derived ruleA′ ⇒ B′ involves the use of only NVF sets.

As A′ ⇒ B′ is derived fromA1 ⇒ B1 andA2 ⇒ B2, it is feasible to perform fuzzy

reasoning with this new rule without further reference to its originals. The interpolative

reasoning problem is therefore changed from expression (4.2) to the new modus ponens

interpretation:

observation:X is A∗

rule: if X is A′, thenY is B′

conclusion:Y is B∗?

(4.12)

This interpretation retains the same results as (4.2) in dealing with the extreme cases:

If A∗ = A1, then it follows from (4.3) thatλRep= 0, and according to (4.7) and (4.11),

A′ = A1 andB′ = B1, so the conclusionB∗ = B1. Similarly, if A∗ = A2, thenB∗ = B2.

Other than the extreme cases,similarity measures are used to support the appli-

cation of this new modus ponens as done in [QMY96]. In particular, (4.12) can be

interpreted as

The more similar X to A′, the more similar Y to B′. (4.13)

Suppose that a certain degree of similarity betweenA′ andA∗ is established, it is intu-

itive to require that the consequent partsB′ andB∗ attain the same similarity degree.

The question is now how to obtain an operator which can represent the similarity de-

gree between fuzzy setsA′ andA∗, and to allow transformingB′ to B∗ with the desired

degree of similarity. In this respect, two transformationsare proposed as follows.

Scale Transformation Given ascale rate s(s≥ 0), in order to transform the

current support(a2−a0), of fuzzy setA = (a0,a1,a2), into a new support(s∗ (a2−

a0)) while keeping the same representative value and ratio of left-support(a′1−a′0) to

right-support(a′2−a′1) of the transformed fuzzy set,A′ = (a′0,a′1,a′2), as those of its

original, that is,Rep(A′) = Rep(A) and a′1−a′0
a′2−a′1

= a1−a0
a2−a1

, the newa′0, a′1 anda′2 must
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satisfy (as illustrated in Fig. 4.3):

a′0 =
a0(1+2s)+a1(1−s)+a2(1−s)

3
, (4.14)

a′1 =
a0(1−s)+a1(1+2s)+a2(1−s)

3
, (4.15)

a′2 =
a0(1−s)+a1(1−s)+a2(1+2s)

3
. (4.16)

In fact, to satisfy the conditions imposed over the transformation, the linear equations

a0a0’ a1’ a1 a2 a2’

A’µ A

1/3

0 X

Figure 4.3: Triangular scale transformation

below must hold simultaneously:















a′0+a′1+a′2
3 = a0+a1+a2

3
a′1−a′0
a′2−a′1

= a1−a0
a2−a1

a′2−a′0 = s(a2−a0)

Solving these equations leads to the solutions as given in (4.14)–(4.16). Note that

this scale transformation guarantees that the transformedfuzzy sets are valid as the

following holds givena0 ≤ a1 ≤ a2 ands≥ 0:

a′1−a′0 = s(a1−a0) ≥ 0

a′2−a′1 = s(a2−a1) ≥ 0

The above shows how to obtain the resultant fuzzy setA′ when the original fuzzy

setA and a scale rates are given. Conversely, in the case where two fuzzy setsA =
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(a0,a1,a2) andA′ = (a′0,a
′
1,a

′
2) which have the same representative value are given,

the scale rate is calculated as follows:

s=
a′2−a′0
a2−a0

≥ 0. (4.17)

This measure reflects the similarity degree betweenA andA′: the closer iss to 1, the

more similar isA to A′. It is therefore used to act as, or to contribute to, the desirable

similarity degree in order to transformB′ to B∗.

Move Transformation Given a moving distancel , in order to transform the cur-

rent fuzzy support(a2− a0) from the starting locationa0 to a new starting position

a0 + l while keeping the same representative value and length of support of the trans-

formed fuzzy set as its original, i.e.,Rep(A′) = Rep(A) anda′2−a′0 = a2−a0, the new

a′0, a′1 anda′2 must be (as shown in Fig. 4.4):

2a0’ a1’ aa a0 2’

µ

a1

A’A"

0

maxl

X

A

1/3

B

Figure 4.4: Triangular move transformation

a′0 = a0+ l , (4.18)

a′1 = a1−2l , (4.19)

a′2 = a2+ l . (4.20)

These can be obtained by solving the equations which are imposed to the transforma-
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tion:














a′0+a′1+a′2
3 = a0+a1+a2

3

a′0 = a0+ l

a′2−a′0 = a2−a0

To ensureA′ to be valid, the condition of 0≤ l ≤ lmax = (a1− a0)/3 must hold.

If l > lmax, the transformation will generate invalid fuzzy sets. For instance, consider

the extreme case in whichA is transformed toA′′, where the left slope ofA′′ becomes

vertical (i.e. a′0 = a′1) as shown in Fig. 4.4. Here,l = lmax. Any further increase inl

will lead to the resulting transformed fuzzy set being a non-NVF set. To avoid this, the

move ratioM is introduced:

M =
l

(a1−a0)/3
. (4.21)

The closer isM to 0, the less move (in terms of moving displacementl ) is being made,

and the closer isM to 1, the more move is being made. If move ratioM ∈ [0,1], then

l ≤ lmax holds. This ensures that the transformed fuzzy setA′ to be normal and valid if

A is itself an NVF set.

Note that the move transformation has two possible moving directions, the above

discusses the right-direction case (from the viewpoint ofa0) with l ≥ 0, the left direc-

tion with l ≤ 0 should hold by symmetry:

M =
l

(a2−a1)/3
∈ [−1,0]. (4.22)

As with the description for scale transformation, the abovedescribes how to cal-

culate resultant fuzzy setA′ given the original fuzzy setA and a moving distancel (or

move ratioM). Now, consider the case where two valid triangular setsA = (a0,a1,a2)

andA′ = (a′0,a
′
1,a

′
2) which have the same representative value and have the same sup-

port lengths are given, the move ratioM can be calculated as follows:

M =

{

3(a′0−a0)
a1−a0

i f a′
0 ≥ a0

3(a′0−a0)
a2−a1

i f a′
0 ≤ a0

(4.23)

This reflects the similarity degree betweenA andA′: the closer isM to 0, the more

similar isA to A′. As A andA′ both are valid,M ∈ [0,1] (whena′0 ≥ a0) or M ∈ [−1,0]

(whena′0 ≤ a0) must hold.
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Thus, in general, the third step of the interpolation process is to calculate the simi-

larity degree in terms of scale rate and move ratio betweenA′ andA∗, and then obtain

the resultant fuzzy setB∗ by transformingB′ with the same scale rate and move ratio.

Through interpolation steps 1 - 3, given a normal and valid triangular fuzzy set as

the observation, a new normal and valid fuzzy set can be derived using two adjacent

rules.

4.3 Single Antecedent Variable with Trapezoidal Fuzzy

Sets

It is potentially very useful to extend the above interpolative reasoning method to ap-

ply to rules involving more complex fuzzy membership functions. This subsection

describes the interpolation involving trapezoidal membership functions.

Consider a trapezoidal fuzzy setA, denoted as(a0,a1,a2,a3), as shown in Fig. 4.5,

for notation convenience, thebottom support, left slope, right slopeandtop supportof

A are defined asa3−a0, a1−a0, a3−a2 anda2−a1, respectively. The representative

value ofA is defined as:

Rep(A) =
1
3
(a0+

a1+a2

2
+a3). (4.24)

This definition subsumes the representative value of a triangular set as its specific case.

1 a2a0 a3

µ

1/3

A

a Rep(A) X
0

Figure 4.5: Representative value of a trapezoidal fuzzy set
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This is because whena1 anda2 in a trapezoid are collapsed into a single valuea1, it

degenerates into a triangle. In this case, the representative value definitions for trape-

zoidals (4.24) and triangles (4.1) remain the same. Of course, alternative definitions

(e.g.,Rep(A) = a0+a1+a2+a3
4 ) may be used, but this will destroy its compatibility with

the triangular representation.

The calculation of the intermediate fuzzy ruleA′ ⇒ B′ follows a similar process as

applying to triangular membership functions except thatA′ andB′ here are trapezoidals

rather than triangulars. It is straightforward to verify the extreme cases (such as if

A∗ = A1 thenB∗ = B1) in the same way as with triangular cases. To adapt the proposed

method to be suitable for trapezoidal fuzzy sets, attentionis only drawn to the two

transformations.

Scale Transformation Given twoscale rates sb andst (sb ≥ 0 andst ≥ 0) for bot-

tom support scale and top support scale respectively, in order to transform the current

bottom support(a3−a0) to a new bottom support(sb∗ (a3−a0)), and the top support

(a2−a1) to a new top support(st ∗ (a2−a1)) while keeping the representative value

and the ratio of left slope(a′1−a′0) to right slope(a′3−a′2) of the transformed fuzzy

set the same as those of its original, that is,Rep(A′) = Rep(A) anda′1−a′0
a′3−a′2

= a1−a0
a3−a2

, the

newa′0, a′1, a′2 anda′3 must satisfy (as illustrated in Fig. 4.6):

a1 a2

a0’

a1’ a2’

a3’a3a0

A’

µ

0
X

A

Figure 4.6: Trapezoidal scale transformation
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a′0 = A−
C(2a1+a3−2a0−a2)−D(a1+a2−a0−a3)

B
, (4.25)

a′1 = A−
C(a0+a3−a1−a2)−D(5a0+a2−5a1−a3)

B
, (4.26)

a′2 = A−
C(a0+a3−a1−a2)−D(a1+5a3−a0−5a2)

B
, (4.27)

a′3 = A−
C(a0+2a2−a1−2a3)−D(a1+a2−a0−a3)

B
, (4.28)

whereA = 2a0+a1+a2+2a3
6 , B = 6(a1+a3−a0−a2), C = 2sb(a3−a0) andD = st(a2−

a1). These results can be achieved by solving conditions below,imposed over the

transformation:


























1
3(a′0+

a′1+a′2
2 +a′3) = 1

3(a0+ a1+a2
2 +a3)

a′1−a′0
a′3−a′2

= a1−a0
a3−a2

a′3−a′0 = sb(a3−a0)

a′2−a′1 = st(a2−a1)

Note that the scale transformation guarantees that the transformed fuzzy sets are valid

given thatsb andst ensure the bottom support of the resultant fuzzy set is widerthan

the top support and both left and right slopes are non-negative. This can be shown by

a′1−a′0 =
(a1−a0)(bot(A′)− top(A′))

a1+a3−a0−a2
≥ 0,

a′2−a′1 = st(a2−a1) ≥ 0,

a′3−a′2 =
(a3−a2)(bot(A′)− top(A′))

a1+a3−a0−a2
≥ 0,

wherebot(A′) and top(A′) stand for the bottom and top supports’ lengths of trans-

formed fuzzy setA′, respectively. However, arbitrarily choosingst whensb is fixed

may lead to the top support of the resultant fuzzy set becoming wider than the bottom

support. To avoid this, thescale ratioSt , which represents the actual increase of the

ratios between the top supports and the bottom supports, before and after the transfor-

mation, normalised over the maximal possible such increase(in the sense that it does

not lead to invalidity), is introduced to restrictst with respect tosb:

St =



















st (a2−a1)
sb(a3−a0)

−
a2−a1
a3−a0

1− a2−a1
a3−a0

i f st ≥ sb ≥ 0

st (a2−a1)
sb(a3−a0)−

a2−a1
a3−a0

a2−a1
a3−a0

i f sb ≥ st ≥ 0

(4.29)
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If St ∈ [0,1] (when st ≥ sb > 0) or St ∈ [−1,0] (when sb ≥ st > 0), sb(a3− a0) ≥

st(a2−a1), i.e.,bot(A′) ≥ top(A′). This can be shown as follows.

proof 2 When st ≥ sb ≥ 0, assume st(a2−a1) > sb(a3−a0),

∴

st(a2−a1)

sb(a3−a0)
> 1,

also

1≥
a2−a1

a3−a0
≥ 0,

∴ St > 1.

This conflicts withSt ∈ [0,1], and hence the assumption is wrong. So

sb(a3−a0) ≥ st(a2−a1).

When sb ≥ st ≥ 0,

∵ a3−a0 ≥ a2−a1,

∴ sb(a3−a0) ≥ st(a2−a1).

If, however, two valid trapezoidal fuzzy setsA=(a0,a1,a2,a3) andA′ =(a′0,a
′
1,a

′
2,a

′
3)

happen to have the same representative value, the bottom scale rate ofA, sb, and the

top scale ratio ofA, St , can be calculated as:

sb =
a′3−a′0
a3−a0

≥ 0, (4.30)

St =























a′2−a′1
a′3−a′0

−
a2−a1
a3−a0

1− a2−a1
a3−a0

∈ [0,1] i f
a′2−a′1
a2−a1

≥
a′3−a′0
a3−a0

≥ 0

a′2−a′1
a′3−a′0

−
a2−a1
a3−a0

a2−a1
a3−a0

∈ [−1,0] i f
a′3−a′0
a3−a0

≥
a′2−a′1
a2−a1

≥ 0

(4.31)

Thus, in this case,sb is free to take on any positive value whileSt ∈ [0,1] or St ∈ [−1,0]

(depending on whethera
′
2−a′1

a2−a1
≥

a′3−a′0
a3−a0

or not) must hold given thatA andA′ are both

valid. The closer isSt to 0, the closer is the ratio betweentop(A′) andbot(A′) to that



Chapter 4. Transformation Based Interpolation: Specific Examples 70

betweentop(A) andbot(A). Correspondingly, the closer isSt to 1, the closer is the

ratio betweentop(A′) andbot(A′) to 1. Similarly, the closer isSt to −1, the closer

is the ratio betweentop(A′) andbot(A′) to 0. The ranges ofSt values (as shown in

(4.31)) are proven as follows:

proof 3 When
a′2−a′1
a2−a1

≥
a′3−a′0
a3−a0

≥ 0,

∵ 1≥
a′2−a′1
a′3−a′0

≥
a2−a1

a3−a0
≥ 0,

∴ 1≥ St ≥ 0.

When
a′3−a′0
a3−a0

≥
a′2−a′1
a2−a1

≥ 0,

∵ 1≥
a2−a1

a3−a0
≥

a′2−a′1
a′3−a′0

≥ 0,

∴ 0≥ St ≥−1.

Move Transformation Given a moving distancel , in order to transform the cur-

rent fuzzy set from the starting locationa0 to a new starting positiona0+ l while keep-

ing the same representative value, the length of support(a3−a0) and the length of the

top support(a2−a1), i.e.,Rep(A′) = Rep(A), a′3−a′0 = a3−a0 anda′2−a′1 = a2−a1,

the newa′0, a′1, a′2 anda′3 must be (as shown in Fig. 4.7):

a′0 = a0+ l , (4.32)

a′1 = a1−2l , (4.33)

a′2 = a2−2l , (4.34)

a′3 = a3+ l . (4.35)

These can be obtained by solving the equations which are imposed to the transforma-
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0a’

1a’ 2a’

3a’

a1 a2

a0 a3

A’

µ

0
X

A

Figure 4.7: Trapezoidal move transformation

tion:


























1
3(a′0+

a′1+a′2
2 +a′3) = 1

3(a0+ a1+a2
2 +a3)

a′0 = a0 + l

a′3−a′0 = a3−a0

a′2−a′1 = a2−a1

To ensureA′ to be valid, the condition of 0≤ l ≤ lmax = (a1− a0)/3 must hold.

If l > lmax, the transformation will generate invalid fuzzy sets. As with the triangular

case, themove ratioM is introduced to avoid invalidity:

M =
l

(a1−a0)/3
. (4.36)

If the move ratioM ∈ [0,1], thenl ≤ lmax holds. Similar to triangular move transfor-

mation, there is another moving direction withl ≤ 0. In that case the condition

M =
l

(a3−a2)/3
∈ [−1,0] (4.37)

is imposed to ensure the validity of the transformed fuzzy sets.

As with the scale transformation, if two valid trapezoidal setsA = (a0,a1,a2,a3)

andA′ = (a′0,a
′
1,a

′
2,a

′
3) which have the same representative value and have the same

support lengths are given, the move ratioM can be calculated as follows:

M =

{

3(a′0−a0)
a1−a0

i f a′
0 ≥ a0

3(a′0−a0)
a3−a2

i f a′
0 ≤ a0

(4.38)
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As A andA′ both are valid,M ∈ [0,1] (if a′0 ≥ a0) or M ∈ [−1,0] (if a′0 ≤ a0) must

hold.

It is easy to see that trapezoidal transformations are a generalization of the triangu-

lar ones. In fact, ifa1 = a2 the trapezoidal fuzzy set becomes a triangular one. Sub-

stitutinga1 = a2 andst = 0 in the trapezoidal transformation formulae (4.25)-(4.28)

and (4.32)-(4.35) leads to the same results by the triangular transformation formulae

(4.14)-(4.16) and (4.18)-(4.20).

4.4 Single Antecedent Variable with Hexagonal Fuzzy

Sets

A fairly general case, the interpolation of the hexagonal fuzzy sets, is described in this

subsection. This is to be followed by dealing with the interpolation of any complex

polygonal fuzzy membership functions in the next chapter. One open issue for such an

extension is to determine the representative value for a given complex, asymmetrical

polygonal fuzzy set. For computational simplicity, the average of thex coordinate val-

ues of all characteristic points is defined as the representative value for more complex

polygonal fuzzy sets than trapezoidals.

Consider a generalised hexagonal fuzzy setA, denoted as(a0,a1,a2,a3,a4,a5), as

shown in Fig. 4.8,a2 anda3 are two normal, characteristic points (whose membership

values are 1),a0 and a5 are two extreme, characteristic points (whose membership

values are 0), anda1 and a4 are the two intermediate, characteristic points (whose

membership values are the same and both are between 0 and 1 exclusively). For no-

tational convenience, threesupports(the horizontal intervals between a pair of char-

acteristic points which involve the same membership value)are denoted as thebottom

support(a5−a0), middle support(a4−a1) andtop support(a3−a2), and fourslopes

(non-horizontal intervals between two consecutive characteristic points) are denoted

asa1−a0, a2−a1, a4−a3 anda5−a4. Also, as indicated above, for computational

simplicity, the representative value ofA is defined as:

Rep(A) =
a0+a1 +a2+a3 +a4+a5

6
. (4.39)
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Alternative definitions may be used to apply the transformations. For example, below

0 a1 a3 a4 a5a2

a1’ a4’

a

A

Rep(A)

µ

X

α

0

Figure 4.8: Representative value of a hexagonal fuzzy set

shows a definition making use of fuzzy membership values:

Rep(A) =
1

5−α
[(a0+a5)+(1−

α
2
)(a1+a4)+

1
2
(a2+a3)], (4.40)

whereα is the membership value of botha1 anda4. This definition assigns different

weights to different pairs of points. The weighted average is then taken as the repre-

sentative value of such a fuzzy set. Another alternative definition, which is compatible

to the less complex fuzzy sets (including triangular, trapezoidal and pentagonal fuzzy

sets), can be defined as:

Rep(A) =
1
3
[a0+(1−

α
2
)(a1−a′1)+

1
2
(a2+a3)+(1−

α
2
)(a4−a′4)+a5], (4.41)

wherea′1 = αa2 + (1−α)a0 anda′4 = αa3 + (1−α)a5 (see Fig 4.8). Note that the

interpolation by using either of these alternative definitions follows the same procedure

as the one employing the simple definition (4.39).

The calculation of intermediate fuzzy ruleA′ ⇒ B′ follows the triangular or trape-

zoidal cases. Attention is again drawn to the scale and move transformations as de-

scribed below.
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Scale Transformation Given threescale rates sb, sm andst (sb ≥ 0, sm ≥ 0 and

st ≥ 0) representing the bottom support, middle support and top support scale respec-

tively, the fuzzy setA=(a0,a1,a2,a3,a4,a5) can be transformed toA′ =(a′0,a
′
1,a

′
2,a

′
3,a

′
4,a

′
5)

by solving


















































a′0+a′1+a′2+a′3+a′4+a′5
6 = a0+a1+a2+a3+a4+a5

6
a′1−a′0
a′5−a′4

= a1−a0
a5−a4

a′2−a′1
a′4−a′3

= a2−a1
a4−a3

a′5−a′0 = sb(a5−a0)

a′4−a′1 = sm(a4−a1)

a′3−a′2 = st(a3−a2)

The solution of this is omitted here. As with the trapezoidalcase, the resultant fuzzy

setA′ must have property thata′0 ≤ a′1 ≤ a′2 ≤ a′3 ≤ a′4 ≤ a′5, given that the desired top

support is narrower than the middle support and the middle support is narrower than

the bottom support. Therefore, certain constraints shouldbe imposed oversm if sb is

fixed, and overst if sm is fixed. For this reason, the scale ratios of middle and top

supports ofA, denoted asSm andSt , are introduced to constrain the scale ratessm and

st respectively:

Sm =



















sm(a4−a1)
sb(a5−a0) −

a4−a1
a5−a0

1−
a4−a1
a5−a0

i f sm ≥ sb ≥ 0

sm(a4−a1)
sb(a5−a0)

−
a4−a1
a5−a0

a4−a1
a5−a0

i f sb ≥ sm ≥ 0

(4.42)

St =



















st (a3−a2)
sm(a4−a1)−

a3−a2
a4−a1

1−
a3−a2
a4−a1

i f st ≥ sm ≥ 0

st (a3−a2)
sm(a4−a1)−

a3−a2
a4−a1

a3−a2
a4−a1

i f sm ≥ st ≥ 0

(4.43)

If Sm ∈ [0,1] (whensm ≥ sb ≥ 0) orSm ∈ [−1,0] (whensb ≥ sm ≥ 0) whilstSt ∈ [0,1]

(whenst ≥ sm≥ 0) orSt ∈ [−1,0] (whensm≥ st ≥ 0), thena′5−a′0 ≥ a′4−a′1 ≥ a′3−a′2.

Interested readers may refer to proof 6 in subsection 5.2.2 for the discussion of the

general polygonal fuzzy membership function case. The constraints ofSm andSt along

with the scale transformation thus lead to a unique and CNF set A′.
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Conversely, if two valid hexagonal fuzzy setsA = (a0,a1,a2,a3,a4,a5) andA′ =

(a′0,a
′
1,a

′
2,a

′
3,a

′
4,a

′
5) which have the same representative value are given, the scale rate

of the bottom support,sb, and the scale ratios of the middle and top supports,Sm and

St , are calculated as:

sb =
a′5−a′0
a5−a0

≥ 0 (4.44)

Sm =























a′4−a′1
a′5−a′0

−
a4−a1
a5−a0

1−
a4−a1
a5−a0

∈ [0,1] i f a′4−a′1
a4−a1

≥
a′5−a′0
a5−a0

≥ 0

a′4−a′1
a′5−a′0

−
a4−a1
a5−a0

a4−a1
a5−a0

∈ [−1,0] i f
a′5−a′0
a5−a0

≥
a′4−a′1
a4−a1

≥ 0

(4.45)

St =























a′3−a′2
a′4−a′1

−
a3−a2
a4−a1

1−
a3−a2
a4−a1

∈ [0,1] i f
a′3−a′2
a3−a2

≥
a′4−a′1
a4−a1

≥ 0

a′3−a′2
a′4−a′1

−
a3−a2
a4−a1

a3−a2
a4−a1

∈ [−1,0] i f
a′4−a′1
a4−a1

≥
a′3−a′2
a3−a2

≥ 0

(4.46)

Again, the proof ofSm ∈ [−1,1] andSt ∈ [−1,1] given thatA andA′ are both valid is

referred to proof 7 in subsection 5.2.2.

Move Transformation It is slightly more complicated to apply move transforma-

tions to hexagonal fuzzy sets although they still follow thesame principle. Compared

to the cases of triangular and trapezoidal fuzzy sets, whereonly one move transforma-

tion is carried out in order to obtain the resultant fuzzy set, this case needs two moves

(referred to assub-moveshereafter) to achieve the resultant fuzzy set.

Given two moving distanceslb andlm, in order to transform the bottom support of

the fuzzy setA = (a0,a1,a2,a3,a4,a5) from the starting locationa0 to a new starting

positiona′0 = a0+ lb, and to transform the middle support froma1 to a′1 = a1+ lm while

keeping the representative value, the lengths of three supports to remain the same (as

shown in Fig. 4.9), two sub-moves are carried out.

First, a sub-move to the desired bottom support position is attempted. If it moves

a0 to the right position, 0≤ lb ≤ lbmax= (a0+a1+a2
3 −a0) must hold. In the extreme

position wherelb = lbmax, the resultant fuzzy setA′′ = (a′′0,a
′′
1,a

′′
2,a

′′
3,a

′′
4,a

′′
5), i.e., the

dotted hexagonal set in Fig. 4.9, hasa′′0 = a′′1 = a′′2. If lb > lbmax, it will lead to an

invalid fuzzy set. As with the triangular and trapezoidal cases, the bottom move ratio
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Figure 4.9: Hexagonal bottom move transformation

is introduced to avoid this potential invalidity:

Mb =
lb

a0+a1+a2
3 −a0

. (4.47)

If the move ratioMb ∈ [0,1], thenlb ≤ lmax holds. The moving distance of the point

ai (i = 0,1,2) is calculated by multiplyingMb with the distance between the extreme

position (a0+a1+a2
3 ) and itself. In so doing,a0, a1 anda2 will move the same proportion

of their respective distances to the extreme positions. Theother three pointsa3, a4 and

a5 can therefore be determined by attaining the same lengths ofthe three supports,

respectively. The fuzzy setA′ after this sub-move is thus calculated by:

a′′0 = a0+Mb(
a0+a1 +a2

3
−a0), (4.48)

a′′1 = a1+Mb(
a0+a1 +a2

3
−a1), (4.49)

a′′2 = a2+Mb(
a0+a1 +a2

3
−a2), (4.50)

a′′3 = a3+Mb(
a0+a1 +a2

3
−a2), (4.51)

a′′4 = a4+Mb(
a0+a1 +a2

3
−a1), (4.52)

a′′5 = a5+Mb(
a0+a1 +a2

3
−a0). (4.53)
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From (4.48)-(4.53), it is clear thatA′′ is valid as the following holds givenMb ∈ [0,1]:

a′′1−a′′0 = (a1−a0)(1−Mb) ≥ 0,

a′′2−a′′1 = (a2−a1)(1−Mb) ≥ 0,

a′′3−a′′2 = a3−a2 ≥ 0,

a′′4−a′′3 = a4−a3 +Mb(a2−a1) ≥ 0,

a′′5−a′′4 = a5−a4 +Mb(a1−a0) ≥ 0.

It can be verified thatA′′ has the same representative value asA. This is because,

according to equations (4.48)-(4.53),

Rep(A′′) =
a′′0 +a′′1 +a′′2 +a′′3 +a′′4 +a′′5

6

=
a0+a1 +a2+a3 +a4+a5

6
= Rep(A).

For the opposite moving direction wherelb ≤ 0, the condition

Mb =
lb

a5−
a3+a4+a5

3

∈ [−1,0] (4.54)

is imposed to ensure the validity of the transformed fuzzy set. The results ofA′′ can

similarly be written as:

a′′0 = a0+Mb(a5−
a3+a4+a5

3
), (4.55)

a′′1 = a1+Mb(a4−
a3+a4+a5

3
), (4.56)

a′′2 = a2+Mb(a3−
a3+a4+a5

3
), (4.57)

a′′3 = a3+Mb(a3−
a3+a4+a5

3
), (4.58)

a′′4 = a4+Mb(a4−
a3+a4+a5

3
), (4.59)

a′′5 = a5+Mb(a5−
a3+a4+a5

3
). (4.60)

Of course, it can be proved from (4.55)-(4.60) that this resultant fuzzy set is indeed
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valid givenMb ∈ [−1,0]:

a′′1−a′′0 = a1−a0 +Mb(a4−a5) ≥ 0,

a′′2−a′′1 = a2−a1 +Mb(a3−a4) ≥ 0,

a′′3−a′′2 = a3−a2 ≥ 0,

a′′4−a′′3 = (a4−a3)(1+Mb) ≥ 0,

a′′5−a′′4 = (a5−a4)(1+Mb) ≥ 0.

Again,A′′ andA have the same representative value, ensured by (4.55)-(4.60).

In both cases (lb ≥ 0 andlb ≤ 0),a′′0 = a0+ lb holds. This means the bottom support

of A is moved to the desired place after the first sub-move. So the second sub-move

is aimed to move the middle and the top supports to the desiredplaces fromA′′ to A′

as shown in Fig. 4.9. This sub-move does not affect the place of the bottom support

as it is already in the right place. Considering moving the middle support to the right

direction (i.e., the new move displacementl ′m = lm−(a′′1−a1)≥ 0), this move is almost

the same as the move proposed for a trapezoidal fuzzy set except that the maximal

moving distance (in the sense that it does not lead to invalidity) should be less than,

or at most equal toa
′′
2−a′′1

2 (not a′′2−a′′1
3 as in the trapezoidal case due to the difference in

the representative definition for hexagonal fuzzy sets). This is because the maximal

moving distance is also constrained to the bottom support (i.e.,l ′m≤ a′′5−a′′4) as it may

movea′′4 exceedinga′′5. It is intuitive to pick the minimal value of the two distances as

the maximal moving distance. The move ratio therefore can bedefined as:

Mm =
lm− (a′′1−a1)

min{
a′′2−a′′1

2 ,a′′5−a′′4}
. (4.61)

When applying the second sub-move, considering both upper and lower invalidity may

arise, theapplied move ratioM′
m is introduced as:

M
′
m = Mm

min{a′′2−a′′1
2 ,a′′5−a′′4}
a′′2−a′′1

2

. (4.62)

If Mm ∈ [0,1], M′
m ∈ [0,Mm]. The introduction of applied move ratio avoids the po-
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tential lower invalidity when applying the sub-move as follows:

a′0 = a′′0, (4.63)

a′1 = a′′1 +M
′
m(

a′′1 +a′′2
2

−a′′1), (4.64)

a′2 = a′′2 +M
′
m(

a′′1 +a′′2
2

−a′′2), (4.65)

a′1 = a′′3 +M
′
m(

a′′1 +a′′2
2

−a′′2), (4.66)

a′1 = a′′4 +M
′
m(

a′′1 +a′′2
2

−a′′1), (4.67)

a′5 = a′′5. (4.68)

Merging (4.61) and (4.62) into (4.64) and (4.65) leads toa′1 = a1 + lm anda′2 = a2−

lb− lm , which are the desired positions fora1 anda2 to be moved on to, respectively.

It can also be shown thatA′ is an NVF fuzzy set andRep(A′) = Rep(A′′) = Rep(A).

All these properties are maintained if in the opposite case wherel ′m ≤ 0.

As discussed above, if given two move ratiosMb ∈ [−1,1] andMm ∈ [−1,1], the

two sub-moves transform the given NVF setA = (a0,a1,a2,a3,a4,a5) to a new NVF

setA′ = (a′0,a
′
1,a

′
2,a

′
3,a

′
4,a

′
5) while keeping the representative values and the lengths

or supports to be the same.

Conversely, if two valid hexagonal fuzzy setsA = (a0,a1,a2,a3,a4,a5) andA′ =

(a′0,a
′
1,a

′
2,a

′
3,a

′
4,a

′
5) which have the same representative value and have the same sup-

port lengths are given, the move ratios which are calculatedin an order from bottom to

top must lie between[−1,1]. First, the bottom move ratio is computed by:

Mb =







a′0−a0
a0+a1+a2

3 −a0
∈ [0,1] i f a′

0 ≥ a0

a′0−a0

a5−
a3+a4+a5

3

∈ [−1,0] i f a′
0 ≤ a0

(4.69)

It is used to carry out the first sub-move ofA to generateA′′ = (a′′0,a
′′
1,a

′′
2,a

′′
3,a

′′
4,a

′′
5)

according to (4.48) - (4.53) or (4.55) - (4.60). Then, the middle move ratio can be

calculated by:

Mm =











a′1−a′′1

min{
a′′2−a′′1

2 ,a′′5−a′′4}
∈ [0,1] i f a′

1 ≥ a′′1

a′1−a′′1

min{
a′′4−a′′3

2 ,a′′1−a′′0}
∈ [−1,0] i f a′

1 ≤ a′′1
(4.70)
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4.5 Outline of the Method

On top of thescaleandmove transformations, an integrated transformation, denoted

T(A,A′), between two fuzzy setsA andA′ can be introduced such thatA′ is the derived

NVF set ofA by applying both transformation components. Obviously, two integrated

transformations are said to be identical if and only if both of their scale rate, scale

ratios (for polygonal fuzzy sets more complex than triangular) andmove ratiosare

equal.

As indicated earlier in (4.13), it is intuitive to maintain the similarity degree be-

tween the consequent partsB′ andB∗ to be the same as that between the antecedent

partsA′ andA∗, in performing interpolative reasoning. Now that the integrated trans-

formation allows the similarity degree between two fuzzy sets to be measured by the

scale rate, scale ratios(for fuzzy polygonal sets more complex than triangular) and

move ratios, the desired conclusionB∗ can be obtained by satisfying the following (as

shown in Fig. 4.10 for an interpolation involving triangular fuzzy sets):

T(B′,B∗) = T(A′,A∗). (4.71)

That is, the parameters ofscale rate, scale ratiosandmove ratioscalculated fromA′

B 1 B 2

A* A’

B* B’

A’ A*T( , )

B’ B* )

1 A 2

µ

µ T( ,

A

0

0
Y

X

Figure 4.10: Proposed interpolative reasoning method

to A∗ are used to computeB∗ from B′. Clearly,B∗ will then retain the same similarity

degree as that between the antecedent partsA′ andA∗.
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4.6 Summary

This chapter proposes a novel interpolative reasoning method based on specific exam-

ples (triangular, trapezoidal and hexagonal fuzzy sets). First an intermediate fuzzy rule

is constructed by its two adjacent rules. Then it together with the observation are con-

verted into the final results by proposed scale and move transformations, which ensure

unique as well as normal and valid results. The generalization of this work will be

discussed in the next chapter.



Chapter 5

Transformation Based Interpolation:

General Approach

This chapter extends the work presented in Chapter 4 in four aspects: 1) the represen-

tative value definitions are generalised, which provides a degree of freedom to meet

particular application requirements; 2) the interpolation method is extended to deal

with arbitrarily complex polygonal fuzzy sets; 3) further development has been made

on the scale and move transformations; and 4) the interpolation (and extrapolation)

method is extended to deal with multiple antecedent variables and/or multiple rules.

Numerical examples have been illustrated to show the use of the interpolation meth-

ods.

5.1 General Representative Value (RV) Definition

To facilitate the discussion of the transformation based interpolation method, therepre-

sentative valueof the polygonal fuzzy sets involved must be defined beforehand. This

value represents the overall location of the fuzzy set and itguides the transformations

as presented in the next section. As different RV definitionslead to different interpo-

lation results (although the transformations apply in the same manner), it provides the

flexibility to choose proper RV definitions to suit differentapplication requirements.

The RV definitions deployed in the previous chapter are firstly reviewed. Consid-

82
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ering a triangular fuzzy setA, denoted as(a0,a1,a2), as shown in Fig. 5.1, the RV

definition is written as follows:

Rep(A) =
a0+a1+a2

3
. (5.1)

This happens to be the centre of gravity of the triangular fuzzy set [HS03].

Rep(A)

1/3

µ

1 X

A

2
0 a0a a

Figure 5.1: The RV of a triangular fuzzy set

To be compatible to this definition, the definition of RV for a trapezoidal fuzzy set

A = (a0,a1,a2,a3) (as shown in Fig. 5.2) is calculated as:

Rep(A) =
1
3
(a0+

a1+a2

2
+a3). (5.2)

This definition subsumes the RV of a triangular fuzzy set as its specific case. This is

1 a2a0 a3

µ

1/3

A

a Rep(A) X
0

Figure 5.2: The RV of a trapezoidal fuzzy set

because whena1 anda2 in a trapezoidal fuzzy set are collapsed into a single valuea1,
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it degenerates into a triangular one. In this case, the representative value definitions for

trapezoidals (5.2) and triangles (5.1) remain the same.

It becomes more complicated to deal with more complex fuzzy sets such as hexag-

onal fuzzy sets (as shown in Fig. 5.3). The simplest solutionis calculating the average

of values of all points as the RV of that fuzzy set. The work of [HS04a] also suggested

the possible RV definitions as:

0 a1 a3 a4 a5a2

a1’ a4’

a

A

Rep(A)

µ

X

α

0

Figure 5.3: The RV of a hexagonal fuzzy set

Rep(A) =
(a0 +a5)+ (1− α

2 )(a1 +a4)+ 1
2(a2 +a3)

5−α
, (5.3)

whereα is the membership value of botha1 anda4. This definition assigns differ-

ent pairs of points with different weights. The weighted average is then taken as the

representative value.

Another alternative definition for the hexagonal fuzzy setsis compatible to the less

complex fuzzy sets including triangular, trapezoidal and pentagonal fuzzy sets. For

example, ifa1 anda4 happen to be on the lines betweena0, a2 anda3, a5, respectively,

such a hexagonal fuzzy set becomes a trapezoidal set, the definition is thus equal to

(5.2). Such a compatible definition can be written as:

Rep(A)=
1
3
[a0+(1−

α
2
)(a1−a′1)+

1
2
(a2+a3)

+(1−
α
2
)(a4−a′4)+a5], (5.4)

wherea′1 = αa2+(1−α)a0 anda′4 = αa3+(1−α)a5 (see Fig 5.3).
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After the review of the previously adopted RV definitions, now considering the

general RV definition for an arbitrary polygonal fuzzy set with n characteristic points,

A = (a0, . . . ,an−1), as shown in (5.4). Note that the two top points (of membership

value 1) do not need to be different. If they happen to have thesame value, they are

collapsed into one. Also, although the figure explicitly assumes that evenly paired

characteristic points are on eachα-cut, this doesn’t affect the generality of the fuzzy

set as artificial characteristic points can be created to form evenly paired characteristic

points. Clearly, a general fuzzy membership function withn characteristic points has

⌊n
2⌋ supports(horizontal intervals between a pair of characteristic points which have

the same membership value) and 2(⌈n
2⌉−1) slopes(non-horizontal intervals between

two consecutive characteristic points). A general RV definition of such an arbitrary

α

µ

α

A

Rep(A)

a

an−1

0

0

1
n−2a

n−3a

a1

a0

2

X

Figure 5.4: The RV of an arbitrarily complex fuzzy set

polygonal fuzzy set can be written as:

Rep(A) =
n−1

∑
i=0

wiai , (5.5)

wherewi is the weight assigned to pointai.

The simplest case (which is denoted as theaverage RVdefinition hereafter) is that

all points take the same weight value, i.e.,wi = 1
n. The RV is therefore written as:

Rep(A) =
1
n

n−1

∑
i=0

ai . (5.6)

Note that (5.1) belongs to this definition.
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Given a RV definition, if the RV of a fuzzy set by using more characteristic points

keeps the same value as that of the same fuzzy set but by using less characteristic

points, such a definition is called acompatible RVdefinition. One such solution can be

specified by the following rules:

1. Artificial characteristic points are assigned weights of0.

2. Bottom points (of membership value 0) are assigned weights of 1
3.

3. Top points (of membership value 1) are assigned weights of1
3 if the fuzzy sets

have odd characteristic points (e.g., triangular sets),1
6 otherwise (e.g., trape-

zoidal).

4. Intermediate characteristic points are assigned weights of 1
3 if the fuzzy sets have

odd characteristic points,1
3(1− αi

2 ) otherwise, whereαi is the fuzzy membership

value of characteristic pointai, i = {0, . . . ,n−1}.

Another alternative definition (denoted as theweighted average RVdefinition) as-

sumes that the weights increase (or decrease) upwardly fromthe bottom support to the

top support. This weight assignment strategy is inspired bythe assumption that differ-

ent characteristic points may have varied weights, and the weights may have something

to do with the fuzzy membership values. For instance, assuming the weights increase

upwardly from1
2 to 1, the weightwi can thus be calculated bywi = 1+αi

2 (whereαi is

the fuzzy membership value ofai, i = {0, . . . ,⌈n
2⌉−1}), and then be normalised by the

summary ofwi , i = {0, . . . ,n−1}. The RV therefore can be written as:

Rep(A) =
∑
⌈ n

2⌉−1
i=0

1+αi
2 (ai +an−1−i)

∑
⌈ n

2⌉−1
i=0

1+αi
2

. (5.7)

Also, the definition (5.3) is another particular case of the weight average definition

although the weight assignment is different : the weights decrease upwardly from 1 to
1
2.

One of the most widely used defuzzification methods – the centre of core can also

be used to define thecentre of core RV. In this case, the RV is solely determined by

those points with a fuzzy membership value of 1:

Rep(A) =
1
2
(a⌈ n

2⌉−1 +an−⌈ n
2⌉

). (5.8)
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The general RV definition can be simplified if the lengths of⌊n
2⌋ supportsS0, . . . ,S⌊ n

2⌋−1

(the index in ascending order from the bottom to the top) are known. Asan−1−i =

ai +Si , i = {0, . . . ,⌊n
2⌋−1}, the general RV definition (5.5) can thus be re-written as:

Rep(A)= a0(w0 +wn−1)+S0wn−1 + . . .

+a⌈ n
2⌉−1(w⌈ n

2⌉−1 +wn−⌈ n
2⌉

)+S⌈ n
2⌉−1wn−⌈ n

2⌉

=
⌈ n

2⌉−1

∑
i=0

ai(wi +wn−1−i)+C, (5.9)

whereC = S0wn−1 + . . .+ S⌈ n
2⌉−1wn−⌈ n

2⌉
is a constant. From this definition, the rep-

resentative value acts as a function with respect to the values of the points on the left

side of the fuzzy set.

The general RV definition (5.5) subsumes all the RV definitions used earlier on in

[HS03, HS04b, HS05d]. It provides more room to define suitable RVs for different

applications. In fact the general definition is the linear combination of values of all

characteristic points. Beyond this, non-linear combination of such values, such as the

one including the product of two or more points’ values, is not valid as the interpolation

is itself linear.

5.2 Base Case

5.2.1 Construct the Intermediate Rule

In fuzzy interpolation, the simplest case is commonly used to demonstrate the under-

lying techniques without losing any generality. That is, given two adjacent rules as

follows

I f X is A1 then Y is B1,

I f X is A2 then Y is B2,

which are denoted asA1 ⇒ B1, A2 ⇒ B2 respectively, together with the observationA∗

which is located between fuzzy setsA1 andA2, the interpolation is supposed to achieve

the fuzzy resultB∗. In another form this simplest case can be represented through the

modus ponens interpretation (5.10), and as illustrated in Fig. 5.5.
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µ

1 A 2A*

B 1 B 2B*

a10 a0 an−1 a20 a2,n−1a1,n−1

b10 b1,n−1 b0 bn−1 b20 b2,n−1

µ
A

X

Y

Figure 5.5: Interpolation with arbitrary polygonal fuzzy membership functions

observation:X is A∗

rules: ifX is A1, thenY is B1

if X is A2, thenY is B2

conclusion:Y is B∗?

(5.10)

Here,Ai = (ai0, . . . ,ai,n−1), Bi = (bi0, . . . ,bi,n−1), i = {1,2}, andA∗ = (a0, . . . ,an−1),

B∗ = (b0, . . . ,bn−1).

The transformation based interpolation method begins withconstructing a new

fuzzy setA′ which has the same RV asA∗. To support this work, the distance between

A1 andA2 is herein re-represented by the following:

d(A1,A2) = d(Rep(A1),Rep(A2)). (5.11)

An interpolative ratioλRep (0 ≤ λRep≤ 1) is introduced to represent the important

impact ofA2 (with respect toA1) when constructingA′:

λRep=
d(A1,A∗)

d(A1,A2)

=
d(Rep(A1),Rep(A∗))

d(Rep(A1),Rep(A2))
. (5.12)

That is to say, ifλRep= 0, A2 plays no part in the construction ofA′. While if λRep= 1,

A2 plays a full role in determiningA′. Then by using the simplest linear interpolation,
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a′i , i = {0, . . . ,n−1}, of A′ are calculated as follows:

a′i = (1−λRep)a1i +λRepa2i , (5.13)

which are collectively abbreviated to

A′ = (1−λRep)A1+λRepA2. (5.14)

Now, A′ has the same representative value asA∗.

proof 4 As Rep(A′) = ∑n−1
i=0 wia′i . With (5.13) and (5.12),

Rep(A′)

=
n−1

∑
i=0

wi [(1−λRep)a1i +λRepa2i ]

= (1−λRep)
n−1

∑
i=0

wia1i +λRep

n−1

∑
i=0

wia2i

= (1−λRep)Rep(A1)+λRepRep(A2)

= Rep(A∗) (5.15)

Also, it is worth noting thatA′ is a valid fuzzy set as the following holds givena1i ≤

a1,i+1, a2i ≤ a2,i+1, wherei = {0, . . . ,n−2}, and 0≤ λRep≤ 1:

a′i+1−a′i

= (1−λRep)(a1,i+1−a1i)+λRep(a2,i+1−a2i) ≥ 0.

Similarly, the consequent fuzzy setB′ can be obtained by

B′ = (1−λRep)B1+λRepB2. (5.16)

In so doing, the newly derived ruleA′ ⇒ B′ involves the use of only normal and valid

fuzzy sets.

As A′ ⇒ B′ is derived fromA1 ⇒ B1 andA2 ⇒ B2, it is feasible to perform fuzzy

reasoning with this new rule without further reference to its originals. The interpola-

tive reasoning problem is therefore changed from (5.10) to the new modus ponens

interpretation:

observation:X is A∗

rule: if X is A′, thenY is B′

conclusion:Y is B∗?

(5.17)
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This interpretation retains the same results as (5.10) in dealing with the extreme

cases: IfA∗ = A1, then from (5.12)λRep= 0, and according to (5.14) and (5.16),

A′ = A1 andB′ = B1, so the conclusionB∗ = B1. Similarly, if A∗ = A2, thenB∗ = B2.

Other than the extreme cases,similarity measures are used to support the applica-

tion of this new modus ponens. In particular, (5.17) can be interpreted as

The more similar X to A′, the more similar Y to B′. (5.18)

Suppose that a certain degree of similarity betweenA′ andA∗ is established, it is intu-

itive to require that the consequent partsB′ andB∗ attain the same similarity degree.

The question is now how to obtain an operator which can represent the similarity de-

gree betweenA′ andA∗, and to allow transformingB′ to B∗ with the desired degree of

similarity. To this end, the following two component transformations are proposed as

follows.

5.2.2 Scale Transformation for General RV Definition

Consider applying scale transformation to an arbitrary polygonal fuzzy membership

functionA = (a0, . . . ,an−1) (as shown in Fig. 5.6) to generateA′ = (a′0, . . . ,a
′
n−1) such

that they have the same RV, anda′n−1−i − a′i = si(an−1−i − ai), wheresi are scale

rates andi = {0, . . . ,⌊n
2⌋−1}. In order to achieve this,⌊n

2⌋ equationsa′n−1−i −a′i =

si(an−1−i −ai), i = {0, . . . ,⌊n
2⌋−1}, are imposed to obtain the supports with desired

lengths, and(⌈n
2⌉−1) equations

a′i+1−a′i
a′n−1−i−a′n−2−i

= ai+1−ai
an−1−i−an−2−i

, i = {0, . . . ,⌈n
2⌉−2} are

imposed to equalize the ratios between the left(⌈n
2⌉−1) slopes’ lengths and the right

(⌈n
2⌉−1) slopes’ lengths ofA′ to those counterparts of the original fuzzy setA. The

equation∑n−1
i=0 wia′i = ∑n−1

i=0 wiai which ensures the same representative values before

and after the transformation is added to make up of⌊n
2⌋+(⌈n

2⌉−1)+1= n equations.
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a0

a1

an−1

a’
1

a’
n−1a’

0
s

’
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0

A

µ

A

0
X

Figure 5.6: Scale transformation

All thesen equations are collectively written as:











































a′n−1−i −a′i = si(an−1−i −ai) = Si

(i = {0, . . . ,⌊n
2⌋−1})

a′i+1−a′i
a′n−1−i−a′n−2−i

= ai+1−ai
an−1−i−an−2−i

= Ri

(i = {0, . . . ,⌈n
2⌉−2})

∑n−1
i=0 wia′i = ∑n−1

i=0 wiai

(5.19)

whereSi is theith support length of the resultant fuzzy set andRi is the ratio between

the left ith slope length and the rightith slope length. Solving thesen equations simul-

taneously results in a unique and valid fuzzy setA′ given that the resultant set has a

descending order of the support lengths from the bottom to the top. This can be proved

as follows.

proof 5 As Ri ≥ 0 (i = {0, . . . ,⌈n
2⌉−2}) and Si ≥ Si+1 (i = {0, . . . ,⌊n

2⌋−2}), from
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(5.19), the conclusions below can be drawn:


























































a′i+1−a′i = Ri
1+Ri

(Si −Si+1) ≥ 0

i = {0, . . . ,⌈n
2⌉−2}

a′n−⌈ n
2⌉
−a′⌈ n

2⌉−1 = S⌈ n
2⌉−1 ≥ 0

a′i+1−a′i = 1
1+Rn−i−2

(Sn−i−2−Sn−i−1) ≥ 0

i = {n−⌈n
2⌉, . . . ,n−2}

It can be concluded from this proof that, if a fuzzy setA and the support scale rates

si are given, the RV definition doesn’t affect the geometrical shape of the resultant

fuzzy set after the scale transformation. Instead, it only affects the position of this

fuzzy set.

However, arbitrarily choosing theith support scale rate when the(i − 1)th scale

rate is fixed may lead theith support to becoming wider than the(i−1)th support, i.e.,

Si > Si−1. To avoid this, theith scale ratioSi , which represents the actual increase

of the ratios between theith supports and the(i −1)th supports, before and after the

transformation, normalised over the maximal possible suchincrease (in the sense it

does not lead to invalidity), is introduced to restrictsi with respect tosi−1:

Si =



















si (an−i−1−ai )
si−1(an−i−ai−1)

−
an−i−1−ai
an−i−ai−1

1−
an−i−1−ai
an−i−ai−1

i f si ≥ si−1 ≥ 0

si (an−i−1−ai )
si−1(an−i−ai−1)−

an−i−1−ai
an−i−ai−1

an−i−1−ai
an−i−ai−1

i f si−1 ≥ si ≥ 0

(5.20)

If Si ∈ [0,1] (whensi ≥ si−1 ≥ 0) or Si ∈ [−1,0] (whensi−1 ≥ si ≥ 0), Si−1 ≥ Si . This

can be shown as follows.

proof 6 When si ≥ si−1 ≥ 0, assume Si > Si−1, i.e, si(an−i−1−ai) > si−1(an−i −ai−1),

∴

si(an−i−1−ai)

si−1(an−i −ai−1)
> 1.

Also,

∵ 1≥
an−i−1−ai

an−i −ai−1
≥ 0,

∴ Si > 1.
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This conflicts withSi ∈ [0,1]. The assumption is therefore wrong. So Si−1 ≥ Si .

When si−1 ≥ si ≥ 0,

∵ an−i −ai−1 ≥ an−i−1−ai ,

∴ si−1(an−i −ai−1) ≥ si(an−i−1−ai),

∴ Si−1 ≥ Si .

In summary, if givensi (i = {0, . . . ,⌊n
2⌋−1) such thatSi ∈ [0,1] or Si ∈ [−1,0] (de-

pending on whethersi ≥ si−1 or not), i = {1, . . . ,⌊n
2⌋− 1}, the scale transformation

guarantees to generate an NVF fuzzy set.

Conversely, if two valid setsA = (a0, . . . ,an−1) andA′ = (a′0, . . . ,a
′
n−1) are given,

which have the same RV, the scale rate of the bottom support,s0, and the scale ratio of

the ith support,Si (Si , i = {1, . . . ,⌊n
2⌋−1}) can be calculated by:

s0 =
a′n−1−a′0
an−1−a0

(5.21)

Si =























































a′n−i−1−a′i
a′n−i−a′i−1

−
an−i−1−ai
an−i−ai−1

1−
an−i−1−ai
an−i−ai−1

∈ [0,1]

(i f
a′n−i−1−a′i
an−i−1−ai

≥
a′n−i−a′i−1
an−i−ai−1

≥ 0)

a′n−i−1−a′i
a′n−i−a′i−1

−
an−i−1−ai
an−i−ai−1

an−i−1−ai
an−i−ai−1

∈ [−1,0]

(i f
a′n−i−a′i−1
an−i−ai−1

≥
a′n−i−1−a′i
an−i−1−ai

≥ 0)

(5.22)

Given thatA andA′ are both valid, the ranges ofSi as indicated above can be proved

as follows.

proof 7 When
a′n−i−1−a′i
an−i−1−ai

≥
a′n−i−a′i−1
an−i−ai−1

≥ 0,

∵ 1≥
a′n−i−1−a′i
a′n−i −a′i−1

≥
an−i−1−ai

an−i −ai−1
≥ 0,

∴ 1≥ Si ≥ 0.
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When
a′n−i−a′i−1
an−i−ai−1

≥
a′n−i−1−a′i
an−i−1−ai

≥ 0,

∵ 1≥
an−i−1−ai

an−i −ai−1
≥

a′n−i−1−a′i
a′n−i −a′i−1

≥ 0,

∴ 0≥ Si ≥−1.

5.2.3 Move Transformation for General RV Definition

Now, consider the move transformation (as shown in Fig. 5.7)applied to an arbitrary

polygonal fuzzy membership functionA=(a0, . . . ,an−1) to generateA′ =(a′0, . . . ,a
′
n−1)

such that they have the same representative value and the same lengths of supports, and

a′i = ai + l i , i = {0, . . . ,⌈n
2⌉−2}. In order to achieve this, the move transformation is

0 an−1
’a0

’

a1
’ a1

an−1

m

’

a

1m

A

µ

A

0

X

0

Figure 5.7: Move transformation

decomposed into(⌈n
2⌉−1) sub-moves. Theith sub-move (i = {0, . . . ,⌈n

2⌉−2}) moves

the ith support (from the bottom to the top beginning with 0) to thedesired place. It

moves all the characteristic points on and above theith support, whilst keeping unal-

tered for those points under this support. To measure the degree of theith sub-move,

the first maximal possible move distance (in the sense that the sub-move doesn’t lead to
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the above invalidity) should be computed first. To simplify the description of the sub-

move procedure, only the right direction move (fromai ’s point of view) is considered

in the discussion hereafter. The left direction simply mirrors this operation.

If the ith point is supposed to move to the right direction, the maximal positiona(i)∗
i

can be calculated as follows when∑
⌈ n

2⌉−1
j=i (w j +wn−1− j) > 0:

a(i)∗
i =

∑
⌈ n

2⌉−1
j=i a j(w j +wn−1− j)−A

∑
⌈ n

2⌉−1
j=i (w j +wn−1− j )

(5.23)

whereA = ∑ wk<0
i<k<⌈ n

2⌉

[(Sk−1−Sk)∑
⌈ n

2⌉−1
m=k (wm+wn−1−m)] andSk is the length of thekth

support (either before or after move transformation as theyare the same). If however

∑
⌈ n

2⌉−1
j=i (w j +wn−1− j) < 0, the maximal positiona(i)∗

i is calculated similarly to (5.23)

except that the conditionwk < 0 in termA is changed towk > 0. The calculation of

(5.23) can be shown as follows.

proof 8 As the sub-move doesn’t change the RV and supports’ lengths,according to

(5.9), assume that

⌈ n
2⌉−1

∑
i=0

a′i(wi +wn−1−i) =
⌈ n

2⌉−1

∑
i=0

ai(wi +wn−1−i) = D

In addition, as the ith sub-move doesn’t move the points under the ith support, it can

therefore be assumed that

⌈ n
2⌉−1

∑
j=i

a′j(w j +wn−1− j) =
⌈ n

2⌉−1

∑
j=i

a j(w j +wn−1− j ) = E

Considering move point a(i−1)
i (ai ’s new position after the (i−1)th sub-move) to the
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right direction and∑
⌈ n

2⌉−1
j=i (w j +wn−1− j) > 0,

a′i(wi +wn−1−i) = E−
⌈ n

2⌉−1

∑
j=i+1

a′j(w j +wn−1− j)

≤































































E−∑
⌈ n

2⌉−2
j=i+1 a′j(w j +wn−1− j)

−a′⌈ n
2⌉−2(w⌈ n

2⌉−1 +wn−⌈ n
2⌉

)

(i f w⌈ n
2⌉−1+wn−⌈ n

2⌉
> 0)

E−∑
⌈ n

2⌉−2
j=i+1 a′i(wi +wn−1−i)

−a′⌈ n
2⌉−2(w⌈ n

2⌉−1 +wn−⌈ n
2⌉

)

−(S⌈ n
2⌉−2−S⌈ n

2⌉−1)(w⌈ n
2⌉−1 +wn−⌈ n

2⌉
)

(i f w⌈ n
2⌉−1+wn−⌈ n

2⌉
< 0)

where S⌈ n
2⌉−2 and S⌈ n

2⌉−1 are the lengths of the(⌈n
2⌉−2)th and(⌈n

2⌉−1)th supports,

respectively. That is to say, if w⌈ n
2⌉−1 + wn−⌈ n

2⌉
> 0, in order to get the maximal

value of a′i(wi + wn−1−i), a′⌈ n
2⌉−1 is assigned the same value as that of a′

⌈ n
2⌉−2. This

leads to the top left slope being vertical. Similarly, if however w⌈ n
2⌉−1 + wn−⌈ n

2⌉
< 0,

a′⌈ n
2⌉−1 = a′⌈ n

2⌉−2 +S⌈ n
2⌉−2−S⌈ n

2⌉−1 and it thus results in the top right slope being ver-

tical. Repeating this procedure from the top down to the ith support leads that

a′i(wi +wn−1−i) ≤ E−a′i

⌈ n
2⌉−1

∑
j=i+1

(w j +wn−1− j)

− ∑
wk<0

i<k<⌈ n
2⌉

[(Sk−1−Sk)
⌈ n

2⌉−1

∑
m=k

(wm+wn−1−m)],

which can therefore be rearranged to (5.23). The proof for the case with∑
⌈ n

2⌉−1
j=i (w j +

wn−1− j) < 0 is omitted as it simply follows. Note that it is meaningless for ∑
⌈ n

2⌉−1
j=i (w j +

wn−1− j) = 0. With such a weight vector, the RV cannot represent the overall location

of a given fuzzy set. This is because the RV of a fuzzy set always keeps the same when

the fuzzy set is merely moved without changing the geometrical shape.

From the proof, the other extreme pointsa(i)∗
j ( j = {i +1, . . . ,⌈n

2⌉−1}) which are on
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the left side of the fuzzy set in theith sub-move can be calculated by:

a(i)∗
j =

{

a(i)∗
j−1 i f w j +wn−1− j > 0

a(i)∗
j−1+Sj−1−Sj i f w j +wn−1− j < 0

(5.24)

It can be proved that all the extreme points form an NVF fuzzy set A(i)∗ (as shown in

Fig. 5.8) which must have at least a vertical slope between any two consecutiveα-cuts

above theith support. This fuzzy set has the same RV asA(i−1). That is:

⌈ n
2⌉−1

∑
j=0

a(i)∗
j (w j +wn−1− j ) =

⌈ n
2⌉−1

∑
j=0

a(i−1)
j (w j +wn−1− j ) (5.25)

The proof is ignored here as it is obvious from the calculation of the extreme point

a(i)∗
i .

A*

a
(0)
0

a
(1)
1

a
(i−1)
i a

(i)*
i a

(i−1)
n−1−i

a
(i−1)
n−i

a
(0)
n−1

µ

Rep(A)

A

i

X
0

Figure 5.8: The extreme move positions in the ith sub-move

The move to the left direction from the viewpoint ofai is omitted as it mirrors the

right direction move.

From above, the first maximal move distance can be calculated. However, theith

sub-move not only needs to consider the possible above invalidity, but also needs to

pay attention to the possible below invalidity. Otherwise it may still lead to invalidity

as shown in Fig. 5.8. To avoid this, the second maximal move distance is calculated as

a(i−1)
n−i −a(i−1)

n−1−i . It is intuitive to pick the minimal of these two maximal movedistances
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as the maximal move distance which doesn’t lead to either above or below invalidity.

The move ratioMi , which is used to measure the degree of such a sub-move, is thus

calculated by:

Mi =















































l i−(a(i−1)
i −ai)

min{a(i)∗
i −a(i−1)

i ,a(i−1)
n−i −a(i−1)

n−1−i}

(i f l i ≥ (a(i−1)
i −ai))

l i−(a(i−1)
i −ai)

min{a(i−1)
i −a(i)∗

i ,a(i−1)
i −a(i−1)

i−1 }

(i f l i ≤ (a(i−1)
i −ai))

(5.26)

where the notationa(i−1)
i representsai ’s new position after the (i − 1)th sub-move.

Initially, a(−1)
i = ai . If Mi ∈ [0,1] when l i ≥ (a(i−1)

i −ai), or Mi ∈ [−1,0] when l i ≤

(a(i−1)
i −ai), the sub-move is carried out as follows: the characteristicpoints under the

ith support are not changed:

a(i)
j = a(i−1)

j , j = {0, . . . , i −1,n− i, . . . ,n−1}

while the other pointsai,ai+1, . . . ,an−1−i are being moved. Initially, wheni = 0,

all characteristic points are being moved of course. If moving to the right direc-

tion from the viewpoint ofa(i−1)
i , i.e., Mi ∈ [0,1], the moving distances ofa j ( j =

{i, i +1, . . . ,⌈n
2⌉−1}) which are on the left side of fuzzy set are calculated by multi-

plying M′
i with the distances between the extreme positionsa(i)∗

j and themselves. In

so doing,a(i−1)
j will move the same proportion of distances to their respective extreme

positions.a(i)
j can thus be computed by:

a(i)
j = a(i−1)

j +M
′
i(a

(i)∗
j −a(i−1)

j ), (5.27)

where

M
′
i = Mi

min{a(i)∗
i −a(i−1)

i ,a(i−1)
n−i −a(i−1)

n−1−i}

a(i)∗
i −a(i−1)

i

. (5.28)

M′
i is theapplied move ratiofor the ith sub-move. IfMi ∈ [0,1], M′

i ∈ [0,Mi]. The

adoption of applied move ratioM′
i avoids the possible below invalidity. Such a move

strategy leads to an NVF setA(i) = {a(i)
0 , . . . ,a(i)

n−1} which has the same representative

value asA and has the new pointa(i)
i on the desired position, i.e.,Rep(A(i)) = Rep(A)

anda(i)
i = ai + l i. All these properties can be proved as follows.
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proof 9 Considering the ith point during the ith sub-move (i= {0, . . . ,⌈n
2⌉−2}), sub-

stituting (5.26) and (5.28) to (5.27) leads to a(i)
i = ai + l i , which is the desired position

for ai to be moved to. As the ith support length is fixed, an−1−i is also moved to the

desired position via this sub-move. Initially, the0th sub-move moves a0 and an−1 to

the correct positions, and the first sub-move moves a1 and an−2 to the correct positions

while keeping a0 and an−1 unchanged. Following this by induction, the ith sub-move

moves a0, . . . ,ai,an−1−i , . . . ,an−1 to the correct positions.

The distances between a(i)
j+1 and a(i)j ( j = {i, i +1, . . . ,⌈n

2⌉−2}) are calculated as

follows according to (5.27):

a(i)
j+1−a(i)

j = (a(i−1)
j+1 −a(i−1)

j )(1−M
′
i)+M

′
i(a

(i)∗
j+1−a(i)∗

j ).

Initially, when i = 0, a(i−1)
j+1 − a(i−1)

j = a(−1)
j+1 − a(−1)

j = a j+1 − a j ≥ 0 and a(i)∗j+1 −

a(i)∗
j = a(0)∗

j+1−a(0)∗
j ≥ 0 ( j = {0,1, . . . ,⌈n

2⌉−2}) as A and A(0)∗ are valid. This leads

to a(0)
j+1 − a(0)

j ≥ 0, j = {0,1, . . . ,⌈n
2⌉ − 2}, which in turn leads to a(1)

j+1 − a(1)
j ≥ 0,

j = {1, . . . ,⌈n
2⌉ − 2}. Also, as this sub-move causes moves to the right direction,

a(1)
1 ≥ a(0)

0 = a(1)
0 . So a(1)

j+1−a(1)
j ≥ 0, j = {0, . . . ,⌈n

2⌉−2}. By induction, it follows

that

ai
j+1−ai

j ≥ 0, j = {0, . . . ,⌈
n
2
⌉−2 }.

The new positions of aj ( j = {n−⌈n
2⌉, . . . ,n−1− i}) which are on the right side of A

can be calculated similarly:

a(i)
j = a(i−1)

j +M
′
i(a

(i)∗
n−1− j −a(i−1)

n−1− j). (5.29)

Thus, the distances between a(i)
j+1 and a(i)j ( j = {n−⌈n

2⌉, . . . ,n−2− i}) are calculated

by:

a(i)
j+1−a(i)

j = a(i−1)
j+1 −a(i−1)

j

+M
′
i(a

(i)∗
n−2− j −a(i−1)

n−2− j −a(i)∗
n−1− j +a(i−1)

n−1− j).

From (5.24),

a(i)∗
n−1− j =















a(i)∗
n−2− j (i f wn−1− j +w j > 0)

a(i)∗
n−2− j +Sn−2− j −Sn−1− j

(i f wn−1− j +w j < 0)
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∴ a(i)∗
n−2− j −a(i)∗

n−1− j ≥ Sn−1− j −Sn−2− j

∴ a(i)
j+1−a(i)

j ≥ a(i−1)
j+1 −a(i−1)

j +M
′
i(a

(i−1)
j −a(i−1)

j+1 )

= (a(i−1)
j+1 −a(i−1)

j )(1−M
′
i) ≥ 0

Initially, (a(i−1)
j+1 −a(i−1)

j )(1−M′
i)= (a(−1)

j+1 −a(−1)
j )(1−M′

i)= (a j+1−a j)(1−M′
i)≥

0 ( j = {n−⌈n
2⌉, . . . ,n−2}). This leads to a(0)

j+1−a(0)
j ≥ 0 ( j = {n−⌈n

2⌉, . . . ,n−2}),

which in turn leads to a(1)
j+1 − a(1)

j ≥ 0 ( j = {n− ⌈n
2⌉, . . . ,n− 3}). Also, the adop-

tion of applied move ratio ensures a(1)
n−1 = a(0)

n−1 ≥ a(1)
n−2, so a(1)

j+1 − a(1)
j ≥ 0 ( j =

{n−⌈n
2⌉, . . . ,n−2}). Again, by induction,

a(i)
j+1−a(i)

j ≥ 0 j = {n−⌈
n
2
⌉, . . . ,n−2}.

Also, as a(i)n−⌈ n
2⌉
−a(i)

⌈ n
2⌉−1 = S⌈ n

2⌉−1 ≥ 0. Thus, it can be summarised that

a(i)
j+1−a(i)

j ≥ 0 j = {0, . . . ,n−2},

i.e., A(i) is an NVF set.

The representative value of A after the ith sub-move, Rep(A(i)), is the same as its

original Rep(A). This is because the following holds according to (5.27), (5.29) and

(5.25):

⌈ n
2⌉−1

∑
j=0

a(i)
j (w j +wn−1− j)

=
⌈ n

2⌉−1

∑
j=0

a(i−1)
j (w j +wn−1− j)

= . . .

=
⌈ n

2⌉−1

∑
j=0

a j(w j +wn−1− j )

The proofs of the properties including moving to the desiredposition, preservation

of RV and validity for moving to the left direction (i.e.,Mi ∈ [−1,0]) are omitted as

they mirror the derivations as given above.

In summary, if given move ratiosMi ∈ [−1,1], (i = {0, . . . ,⌈n
2⌉−2}), the (⌈n

2⌉−1)

sub-moves transform the given NVF setA = (a0, . . . ,an−1) to a new NVF setA′ =

(a′0, . . . ,a
′
n−1) with the same lengths of supports and the same RV.
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In the converse case, where two valid fuzzy setsA = (a0, . . . ,an−1) and A′ =

(a′0, . . . ,a
′
n−1) are given, which have the same representative value, the move ratios

Mi , i = {0,1, . . . ,⌈n
2⌉−2}, are computed by:

Mi =















































a′i−a(i−1)
i

min{a(i)∗
i −a(i−1)

i ,a(i−1)
n−i −a(i−1)

n−1−i}

(i f a′
i ≥ a(i−1)

i )

a′i−a(i−1)
i

min{a(i−1)
i −a(i)∗

i ,a(i−1)
i −a(i−1)

i−1 }

(i f a′
i ≤ a(i−1)

i )

(5.30)

wherea(i−1)
i is theai ’s new position after the(i−1)th sub-move. Initially, wheni = 0,

a(−1)
i = ai. This sub-move (bottom sub-move) will not lead to below invalidity as there

are no characteristic points underneath, whilst the other sub-moves need to consider

situations where invalidity arises both above and underneath. Initially, when i = 0,

a(i−1)
n−i −a(i−1)

n−1−i anda(i−1)
i −a(i−1)

i−1 are not defined. In order to keep integrity of (5.30),

both of them take on value 1 to present the bottom case.

Given thatA = (a0, . . . ,an−1) andA′ = (a′0, . . . ,a
′
n−1) are both valid, the ranges of

Mi (i.e.,Mi ∈ [0,1] whena′i ≥ a(i−1)
i or Mi ∈ [−1,0] whena′i ≤ a(i−1)

i ) are obvious and

hence no proof is needed.

Moreover, the present work is readily extendable to rules involving variables that

are represented by Gaussian and other bell-shaped membership functions. For in-

stance, consider the simplest case where two rulesA1 ⇒ B1, A2 ⇒ B2 and the ob-

servationA∗ all involve the use of Gaussian fuzzy sets of the form (Fig. 5.9):

p(x) = e
−(x−c)2

2σ2 , (5.31)

wherec and σ are the mean and standard deviation respectively. The construction

of the intermediate rule is slightly different from the polygonal fuzzy membership

function cases in the sense that the standard deviations areused to interpolate. Since

the Gaussian shape is symmetrical,c is chosen to be the representative value of such

a fuzzy set. In so doing, the antecedent valueA′ of the intermediate rule has the same

representative value as that of observationA∗. That means only scale transformation
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from A′ to A∗ as depicted in Fig. 5.9 is needed to carry out interpolation.Heuristics

can be employed to represent the scale rates in terms of the standard deviationσ. One

of the simplest definitions is to calculate the ratio of two fuzzy sets’σ values when

considering transformation from one to the other. The scalerates can therefore be

written as:

s=
σA∗

σA′
. (5.32)

The transformations involving other bell-shaped membership functions follows this

idea analogously.
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Figure 5.9: Gaussian scale transformation

5.2.4 Algorithm Outline

As indicated earlier, it is intuitive to maintain the similarity degree between the conse-

quent partsB′ = (b′0, . . . ,b
′
n−1) andB∗ = (b∗0, . . . ,b

∗
n−1) to be the same as that between

the antecedent partsA′ = (a′0, . . . ,a
′
n−1) andA∗ = (a∗0, . . . ,a

∗
n−1), in performing inter-

polative reasoning. The proposed scale and move transformations can be used to entail

this by the following algorithm:

1. Calculate scale ratessi (i = {0,1. . . ,⌊n
2⌋−1}) of the ith support fromA′ to A∗

by

si =
a∗n−1−i −a∗i
a′n−1−i −a′i

. (5.33)

2. Calculate scale rates0 of the bottom support (or just get from the first step) and

scale ratiosSi (i = {1. . . ,⌊n
2⌋−1}) of the ith support fromA′ to A∗ by (5.21)

and (5.22).
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3. Apply scale transformation toA′ with scale ratessi calculated in the first step to

obtainA′′.

4. Assign scale rates′0 of the bottom support ofB′ to the value ofs0 (i.e.,s′0 = s0),

with the scale ratiosS′
i , (i = {1. . . ,⌊n

2⌋−1}) of the ith support ofB′ calculated

as per (5.22) under the condition that they are equal toSi ( i = {1. . . ,⌊n
2⌋−1})

as calculated in step 2:

s′i =































si (i f i = 0)

s′i−1(si−si−1)(
b′n−i−b′i−1
b′n−i−1−b′i

−1)

si−1(
a′n−i−a′i−1
a′n−i−1−a′i

−1)
+s′i−1 (i f si ≥ si−1 ≥ 0)

s′i−1si
si−1

(i f si−1 ≥ si ≥ 0)

(5.34)

5. Apply scale transformation toB′ usings′i (i = {0,1. . . ,⌊n
2⌋−1}) as calculated in

step 4 to obtainB′′ = (b′′0, . . . ,b
′′
n−1).

6. Decompose the move transformation to(⌈n
2⌉−1) sub-moves. Fori = 0,1, . . . ,⌈n

2⌉−

2,

(a) Calculate theith sub-move ratioMi from A(i−1) to A∗ by (5.30), where

A(i−1) is the fuzzy set obtained after the(i −1)th sub-move with initializa-

tion A(−1) = A′′.

(b) Apply move transformation toA(i−1) usingMi to obtainA(i) = {a(i)
0 ,a(i)

1 , . . . ,a(i)
n }.

(c) Apply move transformation toB(i−1) usingMi to obtainB(i) = {b(i)
0 ,b(i)

1 , . . . ,b(i)
n }.

7. ReturnA(⌈ n
2⌉−2) = A∗ andB(⌈ n

2⌉−2), which is the required resultant fuzzy setB∗,

once thefor loop of step 6 terminates.

Clearly,B′ andB∗ will then retain the same similarity degree as that between the an-

tecedent partsA′ andA∗.

There are two specific cases worth noting when applying the scale transformation.

The first is that ifA∗ is a singleton whileA′ is a regular normal and valid fuzzy set, the

scale transformation fromA′ to A∗ is 0. This case can be easily handled by setting the

resultB∗ to a singleton whose value interpolates betweenRep(B1) andRep(B2) in the

same way asA∗ does betweenRep(A1) andRep(A2). The second case (which only
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exists if both antecedentsA1 andA2 are singletons) is that ifA∗ is a regular normal and

valid fuzzy set whileA′ is a singleton, the scale transformation fromA′ to A∗ will be

infinite. Since infinity cannot be used to generate the resulting fuzzy set, a modified

strategy is created for this. The ratio between the individual support length of fuzzy

setA∗ and the distance ofRep(A1) andRep(A2) is calculated in order to compute the

corresponding support length of fuzzy setB∗ by equalizing the corresponding ratio.

Note that the fuzzy set obtained by the scale transformationfrom a singleton is an

isosceles polygonal one.

5.3 Further Development of Transformation Based In-

terpolation

The proposed scale and move transformations help generate unique, valid and nor-

mal fuzzy results, making the interpolation inference possible for real life sparse rule

bases. However, a disadvantage of the previously proposed method is that the com-

putation complexity increases more quickly than the increasing of the point size (see

chapter 6 for details). In addition, thepiecewise linearityis preferred to generate piece-

wise linear results from the given piecewise linear rules and observations. Almost all

existing interpolation methods do not preserve piecewise linearity in general cases.

Only a few (including the proposed one) retain this propertyin triangular cases. In

this section, a further development is made to the previously proposed scale and move

transformations, not only to reduce the computation efforts but also to maintain piece-

wise linearity in arbitrary polygonal cases. Note that thisdevelopment does not affect

the definitions of RV and the construction of the intermediate rules. Attention is only

drawn to the modification of scale and move transformations.

5.3.1 Enhanced Scale Transformations

This enhanced version of scale transformation has the same process as the one pro-

posed in subsection 5.2.2. The only difference is the way of calculating scale rates.

For completeness, the description is partially repeated.
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Consider applying scale transformation to an arbitrary polygonal fuzzy member-

ship functionA= (a0, . . . ,an−1) (as shown in Fig. 5.10) to generateA′ = (a′0, . . . ,a
′
n−1)

such that they have the same RV, anda′n−1−i −a′i = si(an−1−i −ai), wheresi are scale

rates andi = {0, . . . ,⌊n
2⌋−1}. In order to achieve this,⌊n

2⌋ equationsa′n−1−i −a′i =

a1’

an−1’a0’

A’

an−1 an−1’a0 a0’

a1

a1’

a0

m

" A’

a1

an−1

1

0
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Figure 5.10: Enhanced scale and move transformations

si(an−1−i −ai), i = {0, . . . ,⌊n
2⌋−1}, are imposed to obtain the supports with desired

lengths, and(⌈n
2⌉−1) equations

a′i+1−a′i
a′n−1−i−a′n−2−i

= ai+1−ai
an−1−i−an−2−i

, i = {0, . . . ,⌈n
2⌉−2} are

imposed to equalise the ratios between the left(⌈n
2⌉−1) slopes’ lengths and the right

(⌈n
2⌉−1) slopes’ lengths ofA′ to those counterparts of the original fuzzy setA. The

equation∑n−1
i=0 wia′i = ∑n−1

i=0 wiai which ensures the same representative values before

and after the transformation is added to make up of⌊n
2⌋+(⌈n

2⌉−1)+1= n equations.

All thesen equations are collectively written as:










































a′n−1−i −a′i = si(an−1−i −ai) = Si

(i = {0, . . . ,⌊n
2⌋−1})

a′i+1−a′i
a′n−1−i−a′n−2−i

= ai+1−ai
an−1−i−an−2−i

= Ri

(i = {0, . . . ,⌈n
2⌉−2})

∑n−1
i=0 wia′i = ∑n−1

i=0 wiai

(5.35)

whereSi is theith support length of the resultant fuzzy set andRi is the ratio between

the left ith slope length and the rightith slope length. Solving thesen equations simul-

taneously results in an unique and valid fuzzy setA′ given that the resultant set has a

descending order of the support lengths from the bottom to the top.

So far the enhanced scale transformation remains the same asthe original one.

The difference is in the way of calculating scale rates. Recall that the scale ratios
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S are introduced in the original scale transformations, to ensure the support lengths

decreased from the bottom support to the top support. Instead, left scale criterionSLi

andright scale criterionSRi are introduced for theith support,i = {0, . . . ,⌈n
2⌉−2}.

SLi =
a′i+1−a′i
ai+1−ai

, (5.36)

SRi =
a′n−1−i −a′n−2−i

an−1−i −an−2−i
. (5.37)

Obviously,SLi ≥ 0 andSRi ≥ 0 if both A andA′ are valid. Having introduced these,

the scale rate of theith support is computed:

si =
S′i
Si

=
a′n−1−i −a′i
an−1−i −ai

=
SLi(ai+1−ai)+a′n−2−i −a′i+1+SRi(an−1−i −an−2−i)

an−1−i −ai

=
SLi(ai+1−ai)+si+1(an−2−i −ai+1)+SRi(an−1−i −an−2−i)

an−1−i −ai
, (5.38)

whereS′i andSi are the lengths of theith support ofA′ andA respectively. AsS′i =

S′i+1+SLi(ai+1−ai)+SRi(an−1−i −an−2−i), if SLi ≥ 0 andSRi ≥ 0, thenSLi(ai+1−

ai) ≥ 0 andSRi(an−1−i −an−2−i) ≥ 0, henceS′i ≥ S′i+1 must hold. So the scale trans-

formation guarantees generation of an NVF fuzzy set.

Conversely, if two valid setsA= (a0, . . . ,an−1) andA′ = (a′0, . . . ,a
′
n−1) which have

the same RV are given, the left and right scale criterion of the ith support,SLi , SRi

(i = {0, . . . ,⌈n
2⌉−2}) can be calculated by (5.36) and (5.37) respectively. GiventhatA

andA′ are both valid,SLi ≥ 0 andSRi ≥ 0 must hold.

Special treatments are needed if: 1)A has a vertical left slope on theith support

level, the term of(ai+1− ai) in (5.36) is replaced by the vertical distance of theith

and(i + 1)th points to avoid division by zero; and 2)A has a vertical right slope on

the ith support level, the term of(an−1−i −an−2−i) in (5.37) is replaced by the vertical

distance of theith and(i +1)th points.

The above scale criteria are calculated from top to bottom (so are the scale rates).

If on the contrary, the calculation order is from bottom to top, then it would be possible

that the scaled fuzzy set becomes invalid, asA′′ illustrated in Fig. 5.10.
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5.3.2 Enhanced Move Transformations

The enhanced move transformation is no longer like the original proposed one. Instead,

it appears rather like the scale transformation, which is the reason that the computation

complexity is significantly reduced fromO(n2) to O(n) (n is the size of characteristic

points, see chapter 6 for details).

After performing the scale transformation, the lengths of supports of a fuzzy set

become equal to those of the desired fuzzy set. Now the move transformation is used

to move the supports to appropriate positions. Consider applying move transformation

to an arbitrary polygonal fuzzy membership functionA = (a0, . . . ,an−1) (as shown in

Fig. 5.10) to generateA′ = (a′0, . . . ,a
′
n−1) such that they have the same RV and the same

lengths of supports. In order to achieve this,⌊n
2⌋ equationsa′n−1−i −a′i = an−1−i −ai ,

i = {0, . . . ,⌊n
2⌋−1}, are imposed to ensure the same lengths of supports, and(⌈n

2⌉−1)

equations
a′i+1−a′i

a′n−1−i−a′n−2−i
/ ai+1−ai

an−1−i−an−2−i
= RCi , wherei = {0, . . . ,⌈n

2⌉−2} andRCi are

themove criterion, are imposed to set the ratios between theith left slope length and

the ith right slope length ofA′, to their counterparts of the original fuzzy setA. The

equation∑n−1
i=0 wia′i = ∑n−1

i=0 wiai which ensures the same representative values before

and after the transformation is added to make up of⌊n
2⌋+(⌈n

2⌉−1)+1= n equations.

All thesen equations are collectively written as:










































a′n−1−i −a′i = an−1−i −ai = Si

(i = {0, . . . ,⌊n
2⌋−1})

a′i+1−a′i
a′n−1−i−a′n−2−i

/ ai+1−ai
an−1−i−an−2−i

= RCi

(i = {0, . . . ,⌈n
2⌉−2})

∑n−1
i=0 wia′i = ∑n−1

i=0 wiai

(5.39)

whereSi is theith support length of the fuzzy set (either before or after moving) and

RCi is the move criterion forith support. IfRCi ≥ 0, solving thesen equations simul-

taneously results in a unique and valid fuzzy set.

Conversely, if two valid setsA = (a0, . . . ,an−1) andA′ = (a′0, . . . ,a
′
n−1) are given,

which have the same RV and the same lengths of supports, the move criterion of the

ith support,RCi (i = {0, . . . ,⌈n
2⌉−2}) can be calculated by (5.39). Given thatA and

A′ are both valid,RCi ≥ 0 must hold.
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Unlike the scale transformation, the move transformation does not have to follow

a fixed order for calculation. In particular, the calculation for all α-cut levels is carried

out simultaneously. However, there are special cases whichneed extra consideration

in calculating the move criterion: 1) IfA′ has a vertical right slope on theith support

level, the move criterion is set to−1 in the implementation. When any fuzzy sets are

moved using such a move criterion, they become fuzzy sets with vertical right slopes

on theith support level. 2) If the original fuzzy setA has a vertical left slope on theith

support level, the term(ai+1−ai) will be replaced by the vertical distance between the

ith and(i + 1)th points. 3) IfA has a vertical right slope on theith support level, the

term (an−i−1−an−i−2) will be replaced by the vertical distance between theith and

(i +1)th points. These are needed to avoid division by zero.

5.3.3 Algorithm Outline

Now the proposed scale and move transformations allow the similarity degree between

two fuzzy sets to be measured by thescale criterionandmove criterion, the desired

conclusionB∗ can be obtained as follows:

1. Calculate scale ratessi (i = {0,1. . . ,⌊n
2⌋−1}) of the ith support fromA′ to A∗

according tosi =
a∗n−1−i−a∗i
a′n−1−i−a′i

.

2. Apply scale transformation toA′ using scale ratessi (i = {0,1. . . ,⌊n
2⌋−1}) com-

puted above to obtainA′′, by simultaneously solvingn linear equations as shown

in (5.35).

3. Calculate left and right scale criterionSLi , SRi , i = {0. . . ,⌈n
2⌉−2}), of the ith

support fromA′ to A∗ according to (5.36) and (5.37).

4. Calculate scale ratess′i (i = {0,1. . . ,⌈n
2⌉ − 2}) of the ith support fromB′ to

B∗ according to (5.38). Note that ifB′ has two points of membership value

1, s′⌊ n
2⌋−1 = s⌊ n

2⌋−1.

5. Apply scale transformation toB′ usings′i (i = {0,1. . . ,⌊n
2⌋−1}) as calculated

in step 4 to obtainB′′ = (b′′0, . . . ,b
′′
n−1), by simultaneously solving then linear

equations as shown in (5.35).
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6. Calculate move criterionRCi , i = {0, . . . ,⌈n
2⌉−2}, on theith support level from

A′′ to A∗ according to (5.39).

7. Apply move transformation toB′′ using the move criterion as calculated in step 6

to obtainB∗, by simultaneously solving then linear equations as shown in (5.39).

Clearly,B′ andB∗ will retain the same similarity degree as that between the antecedent

partsA′ andA∗.

5.4 Multiple Antecedent Variables Interpolation

The one variable case described above concerns interpolation between two adjacent

rules with each involving one antecedent variable. This is readily extendable to rules

with multiple antecedent attributes. This section describes the multiple antecedent

variables interpolation using the originally proposed scale and move transformations.

The one using the enhanced transformations is ignored as it follows straightforwardly.

Of course, the attributes appearing in both rules must be thesame to make sense for

interpolation.

Without losing generality, suppose that two adjacent rulesRi andRj are represented

by

i f X1 is A1i and. . .and Xm is Ami then Y is Bi ,

i f X1 is A1 j and. . .and Xm is Am j then Y is Bj .

Thus, when a vector of observations (A∗
1, . . . , A∗

k, . . . , A∗
m) is given, by direct analogy

to one variable case, the valuesAki andAk j of Xk, k = 1,2, . . . ,m, are used to obtain a

new NVF setA′
k:

A′
k = (1−λk)Aki +λkAk j, (5.40)

where

λk =
d(Rep(Aki),Rep(A∗

k))

d(Rep(Aki),Rep(Ak j))
.

Clearly, the representative value ofA′
k remains the same as that of thekth observation

A∗
k.
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The resultingA′
k and the givenA∗

k are used to compute the integrated transformation

T(A′
k,A

∗
k) = {sk0,Sk1, . . . ,Sk(⌊ n

2⌋−1),Mk0, . . . ,Mk(⌈ n
2⌉−2)}

just like the one variable case. From this, the combined scale ratesc, scale ratiosSci,

(i = {1, . . . ,⌊n
2⌋−1}) and move ratiosMc j ( j = {0, . . . ,⌈n

2⌉−2}) over them condi-

tional attributes are respectively calculated as the arithmetic means ofsk0, Ski andMk j,

k = 1,2, . . . ,m:

sc0 =
1
m

m

∑
k=1

sk0, (5.41)

Sci =
1
m

m

∑
k=1

Ski, (5.42)

Mc j =
1
m

m

∑
k=1

Mk j. (5.43)

Note that, other than using the arithmetic mean, different mechanisms such as the geo-

metric mean may be employed for this purpose. These means help capture the intuition

that when no particular information regarding which variable has a more dominating

influence upon the conclusion, all the variables are treatedequally. If such information

is available, a weighted mean operator may be better to use.

Regarding the consequences, by analogy to expression (5.16), B′ can be computed

by

B′ = (1−λa)Bi +λaB j . (5.44)

Here, λa is deemed to be the average ofλk, k = 1,2, . . . ,m, to mirror the approach

taken previously:

λa =
1
m

m

∑
k=1

λk. (5.45)

As the integrated transformation

T = {sc0,Sc1,Sc2, . . . ,Sc(⌊ n
2⌋−1),Mc0,Mc1, . . . ,Mc(⌈ n

2⌉−2)}

reflects the similarity degree between the observation vector and the values of the given

rules, the fuzzy setB∗ of the conclusion can then be estimated by transformingB′ via

the application of the sameT.
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5.5 Case Studies

In this section, the example problems given in [HCL98, YMQ95] together with several

new problem cases are used to illustrate the originally proposed and enhanced interpo-

lation methods (denoted as OHS and EHS methods). The comparative studies to the

work of [KH93a, KH93c] (denoted as KH, as stated before) and [HCL98] (denoted as

HCL) are provided. All the results except example 7 discussed below concern the in-

terpolation between two adjacent rulesA1 ⇒ B1 andA2 ⇒ B2, while example 7 shows

a case of interpolation between rules involving two antecedent variables.

Example 1. This example demonstrates the use of the proposed method involving

only triangular fuzzy sets. The average RV is used in this example. All the conditions

are shown in Table 5.1 and Fig. 5.11, which also include the results of interpola-

tion. SupposeA∗ = (7,8,9). First, according to (5.14) and (5.16),A′(5.30,8.85,9.85)

Table 5.1: Results for example 1, with A∗ = (7,8,9)

Attribute Values Results

A1 = (0,5,6) Method B∗

A2 = (11,13,14) KH (6.36, 5.38, 7.38)

B1 = (0,2,4) HCL (6.36, 6.58, 7.38)

B2 = (10,11,13) OHS (5.83, 6.26, 7.38)

EHS (5.54, 5.97, 7.97)

andB′(4.81,6.33,8.33) are calculated by interpolation ofA1, A2 andB1, B2, respec-

tively, with λRep = 0.48, which is calculated from (5.12). Then, the calculations

are varied with respect to original and enhanced HS methods.For the former, the

scale rates = 0.44 and move ratem = 0.36 in the integrated transformation from

A′ andA∗ are calculated with regard to (4.17) and (4.23). Finally, the s andm are

used to transformB′ according to (4.14)-(4.16) and (4.18)-(4.20), resulting in conse-

quenceB∗(5.83,6.26,7.83). For the latter, the scale rates= 0.69 and move criterion

RC = 0.28 are calculated from (5.38) and (5.35), which are used to scale and moveB′

to result inB∗(5.54,5.97,7.97).
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Figure 5.11: Example 1
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Figure 5.12: Example 2

For this case, the KH method resulted in an invalid conclusion (not even a mem-

bership function) while the other three concluded with normal and valid fuzzy sets.

Example 2. The second case considers the infinity of the scale rate. Thegiven

observation is a triangular fuzzy set(5,6,8). Table 5.2 and Fig. 5.12 present the an-

tecedents and interpolated fuzzy sets. The OHS interpolation (5.71,6.28,8.16) is ob-

Table 5.2: Results for example 2, with A∗ = (5,6,8)

Attribute Values Results

A1 = (3,3,3) Method B∗

A2 = (12,12,12) KH (5.33, 6.33, 9.00)

B1 = (4,4,4) HCL (5.33, 6.55, 9.00)

B2 = (10,11,13) OHS (5.71, 6.28, 8.16)

EHS (5.74, 6.23, 8.18)

tained as follows: First the ratio between the support ofA∗ and the distance ofRep(A1)
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andRep(A2) is calculated. The support ofB∗ is then computed by retaining the same

ratio but based on the distance ofRep(B1) andRep(B2). Finally, the move transforma-

tion is applied as usual. With the same scale rate as in the EHSmethod, the enhanced

scale transformation results in the same scaled fuzzy set. However, the enhanced move

transformation leads to a different output of(5.74,6.23,8.18). The comparative results

show that the KH and HCL methods perform similarly (the supports of the resultant

fuzzy sets are identical since they are computed in the same way) while the OHS and

EHS methods also generate very reasonable outcomes.

Example 3. The third case considers a similar situation to example 1 but the obser-

vation is a singletonA∗ = (8,8,8). Table 5.3 and Fig. 5.13 present the results. In this

Table 5.3: Results for example 3, with A∗ = (8,8,8)

Attribute Values Results

A1 = (0,5,6) Method B∗

A2 = (11,13,14) KH (7.27, 5.38, 6.25)

B1 = (0,2,4) HCL [7.27,6.25]

B2 = (10,11,13) OHS (6.49, 6.49, 6.49)

EHS (6.49, 6.49, 6.49)

case, the KH method once again generates an invalid fuzzy setand the HCL method

even produces a non-triangular fuzzy set. However, the OHS and EHS result in the

same singleton conclusions, which are rather intuitive given the singleton-valued con-

dition.

Example 4. This example concerns a trapezoidal based fuzzy interpolation and

the compatible RV definition is used here. As there is no obvious indication for

HCL method to handle trapezoidal fuzzy sets, only KH method is used in compar-

ison. All the attributes and results with observationA∗ = (6,6,9,10) are shown in

Table 5.4 and Fig. 5.14. For the OHS method,A′ = (5.30,7.85,8.85.9.85) andB′ =

(4.81,6.33,7.33,8.33) are calculated by interpolation ofA1, A2 andB1, B2, respec-

tively, with λ = 0.48, which is calculated from (5.12). The interpolation via scale

and move transformations is then carried out according to the steps listed in section
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Figure 5.13: Example 3
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Figure 5.14: Example 4

Table 5.4: Results for example 4, with A∗ = (6,6,9,10)

Attribute Values Results

A1 = (0,4,5,6) Method B∗

A2 = (11,12,13,14) KH (5.45, 4.25, 7.5, 8.5)

B1 = (0,2,3,4) HCL -

B2 = (10,11,12,13) OHS (5.23, 5.23 ,7.61, 8.32)

EHS (4.83, 4.83, 7.83, 8.83)

5.2.4: 1) The bottom support scale rate (0.88) and top support scale rate (3.0) from

A′ to A∗ are calculated according to (5.33) respectively. 2) The topsupport scale ra-

tio (0.68) from A′ to A∗ is calculated according to (5.22). 3)A′ is scaled to generate

A′′ = (5.76,6.48,9.48,9.76) using the bottom and top scale rates calculated in step 1.

Note thatA′′ is a valid fuzzy set which has the same representative value and has the

same bottom and top support lengths asA∗. 4) According to (5.34), the bottom and top
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support scale rates (0.88 and 2.38) overB′ are computed. 5)B′ is scaled to generate

B′′ = (5.09,5.52,7.90,8.18) using the bottom and top scale rates calculated in step 4.

6) The move ratio is calculated fromA′′ to A∗ according to (5.26). Its value is 1.0 as

A∗ has a vertical left slope. This move ratio is used to moveB′′ to obtain the resultant

fuzzy setB∗ = (5.23,5.23,7.61,8.32). Similarly the enhanced HS method results in

B∗ = (4.83,4.83,7.83,8.83). In this case, the KH method once again generates an in-

valid fuzzy set (which does not satisfy the definition of a membership function). How-

ever, both the OHS and EHS methods result in valid conclusions, which still maintain

the property of the left vertical slopes.

Example 5. This example shows an interpolation of rules involving hexagonal

fuzzy sets. It also demonstrates the interpolation involving different shapes of fuzzy

sets. For simplicity, the average RV definition is adopted inthis example. Again, since

there is no obvious indication for the HCL method to be able tohandle such fuzzy

sets, only the KH method is used in comparison. All the attribute values and results

with respect to the observationA∗ = (6,6.5,7,9,10,10.5) are shown in Table 5.5 and

Fig. 5.15. Note that in this example, the two intermediate points a1 anda4 of each

fuzzy set involved have a membership value of 0.5.

Table 5.5: Results for example 5, with A∗ = (6,6.5,7,9,10,10.5)

Attribute Values Results

A1 = (0,1,3,4,5,5.5) Method B∗

A2 = (11,11.5,12,13,13.5,14) KH (5.73, 6.00,5.89,8.56, 9.59, 10.09)

B1 = (0,0.5,1,3,4,4.5) HCL -

B2 = (10.5,11,12,13,13.5,14) OHS (5.64, 5.98, 6.29, 8.63, 9.46, 9.93)

EHS (5.28, 5.62, 5.94, 8.86, 9.86, 10.36)

The original HS interpolation is chosen to illustrate the procedure of the calcula-

tion. A′ =(5.94,6.67,7.86,8.86,9.59,10.09)andB′ =(5.67,6.17,6.94,8.40,9.13,9.63)

are calculated by interpolation ofA1, A2 and B1, B2 (with λ = 0.54), respectively.

Then, the interpolation via scale and move transformationsis carried out according

to the steps listed in section 5.2.4: 1) The bottom support scale rate (1.08), middle
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support scale rate (1.20) and top support scale rate (2.0) from A′ to A∗ are calcu-

lated according to (5.33), respectively. 2) The middle and top support scale ratios

(0.25 and 0.35) from A′ to A∗ are calculated according to (5.22). 3)A′ is scaled to

generateA′′ = (5.79,6.39,7.32,9.32,9.89,10.29) using the bottom, middle and top

scale rates calculated in step 1). Note thatA′′ is a valid fuzzy set which has the

same representative value and the same three supports lengths asA∗. 4) According

to (5.34), the bottom, middle and top support scale rates (1.08, 1.18 and 1.60) over

B′ are computed. 5)B′ is scaled to generateB′′ = (5.50,5.91,6.50,8.83,9.39,9.80)

using the scale rates calculated in step 4). 6) Two sub-movesare required in perform-

ing the move transformation in this case: 6.1), The bottom sub-move ratio (0.29) is

calculated fromA′′ to A∗ according to (5.26). This sub-move ratio is used to move

A′′ to getA(0) = (6.00,6.42,7.08,9.08,9.92,10.50), and to moveB′′ to obtainB(0) =

(5.64,5.93,6.35,8.68,9.41,9.93). Note that after this sub-move,A′′ has the same bot-

tom support asA∗. 6.2) The second sub-move moves the middle and top supports

of A(0) to the desired places. In particular, the sub-move ratio (0.24) calculated from
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(5.26) is used to moveB(0) to the final resultB∗ = (5.64,5.98,6.29,8.63,9.46,9.93).

As a verification,A∗ is obtained by movingA(0) with the same sub-move ratio.

In this case, both the OHS and EHS methods still ensure unique, normal and valid

fuzzy sets, compared to the invalid result generated via theKH method.

Example 6. This case considers an interpolation with Gaussian membership func-

tions. As there are no explicit Gaussian based interpolation solutions for HCL and KH

methods, only the results of OHS (or EHS, as they result in thesame outputs) method

together with the attribute values and observationA∗ = p(x) = e
−(x−8)2

2∗12 are presented

in Table 5.6 and Fig. 5.16. The OHS (or EHS) method results in asensible Gaussian

conclusion in this case.

Table 5.6: Results for example 6, with A∗ = e
−(x−8)2

2∗12

Attribute Values Results

A1 = e
−(x−3)2

2∗22 Method B∗

A2 = e
−(x−11)2

2∗0.52 KH -

B1 = e
−(x−6)2

2∗12 HCL -

B2 = e
−(x−13)2

2∗1.52 OHS (or EHS) e
−(x−10.38)2

2∗1.242

Example 7. This example concerns an interpolation of multiple antecedent vari-

ables with trapezoidal membership functions. Specially, two rulesA11∧A21 ⇒ B1,

A12∧A22 ⇒ B2 and the observationsA∗
1 = (6,7,9,11), A∗

2 = (6,8,10,12) are given to

determine the resultB∗. For demonstration purposes, only the original HS method and

the compatible RV definition are employed in this example. Table 5.7 and Fig. 5.17

summarise the results. In this case, the parametersλ1 for the first variable is 0.54

andλ2 for the second is 0.44. The average 0.49 is used to calculate the intermediate

rule resultB′. The average of two bottom support scale rates (1.14 and 1.69) and the

average of two top support ratios (0.22 and 0.07) are computed, equalling 1.41 and

0.15 respectively, and used as the combined bottom support scale rate and top support

scale ratio. These together with the combined move rate, theaverage (0.35) of the two
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Table 5.7: Results for example 7, with A∗
1 = (6,7,9,11) and A∗

2 = (6,8,10,12)

Attribute Values Results

A11 = (0,4,5,6) Method B∗

A12 = (12,14,15,16) KH (5.45,5.94,7.13,8.31)

A21 = (11,12,13,14) HCL -

A22 = (1,2,3,4) OHS (4.37,5.55,7.48,9.33)

B1 = (0,2,3,4)

B2 = (10,11,12,13)
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Figure 5.17: Example 7

move rates (0.53 and 0.18), are employed to transferB′ to achieve the final resultB∗.

Both the KH method and HS method resulted in a valid set in thisexample. Interest-

ingly, the resultant fuzzy set of the OHS method reflects better shapes of the original

observations than that obtained by the KH method.
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5.6 Extensions

All fuzzy interpolation techniques in the literature assume that two closest adjacent

rules to the observation are available. In addition, most interpolation methods presume

that such rules must flank the observation for each attribute(but not necessarily in the

same order). In practice, however, there may be a different number of the closest rules

to a given observation, and the attribute values of these rules may lie on one side of

the observation. The adoption of these two assumptions inevitably limits the potential

applications of the existing work. In fact, this is the reason why the existing interpola-

tion methods are limited to toy examples and have not yet beenapplied to real world

prediction or classification problems. To resolve this problem, this section extends the

HS methods to allow interpolations that involve multiple rules, without making the

strong condition that antecedent attributes flank the observation. Furthermore, exploit-

ing the generality of this newly developed method, extrapolation can be performed

over multiple rules in a straightforward manner.

5.6.1 Interpolation with Multiple Rules

To allow fuzzy interpolation with more than two rules given arule base, the first step

is to choosen (n≥ 2) closest rules from the rule base. Then, selected rules areused to

construct the intermediate fuzzy rule. Once the intermediate rule is worked out, the rest

of the process remains the same as described in Sections 5.2 and 5.3. The following

shows these two important steps:

5.6.1.1 Choose the Closest n Rules

Without losing generality, suppose that a ruleRi and an observation are represented by

Rule Ri : i f X1 is A1i and. . .and Xm is Ami then Y is Bi , (5.46)

Observation: X1 is A∗
1 and. . .and Xm is A∗

m. (5.47)

According to the distance definition (5.11) between two fuzzy terms, the distancesdk,

k = 1, . . . ,m, between the pairs ofAki andA∗
k can be calculated as:

dk = d(Aki,A
∗
k) = d(Rep(Aki),Rep(A∗

k)). (5.48)
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As attributes may have different domains, the absolute distances may not be compatible

with each other. To make these comparable, each distance measure is normalised into

the range of 0 to 1:

d′
k =

d(Aki,A∗
k)

Maxk−Mink
=

d(Rep(Aki),Rep(A∗
k))

Maxk−Mink
, (5.49)

whereMaxk andMink are the maximal and minimal values of attributek given. The

distancedis between a rule and an observation can be calculated as the average of all

attributes’ distances. A particular distance definition, which is to be used in the later

implementation, can be written as follows:

dis=

√

d′
1

2+d′
2

2+ . . .+d′
m

2. (5.50)

If, however, the importance of attributes are not equal, weights may be used. Note

that if a conditional part of a rule is missing, the distance of this attribute is treated

as 0 to reflect that any data value is very close to thenull attribute value. This allows

for measuring the distance between a given observation and rules which may not have

fuzzy sets associated with certain attributes.

Once the distance definition of (5.50) is given, the distances between a given obser-

vation and all rules in the rule base can be calculated. Then rules which have minimal

distances are chosen as the closestn rules from the observation. It is worth noting that

then closest rules do not necessarily flank the observation. In the extreme case, all the

chosen rules may lie on one side, resulting in extrapolationrather than interpolation

(see section 5.6.2).

5.6.1.2 Construct the Intermediate Rule

This section proposes how to construct the intermediate rule aftern (n ≥ 2) closest

rules have been chosen. LetWki, i = 1, . . . ,n, k = 1, . . . ,m, denote the weight to which

thekth term of theith fuzzy rule contributes to constructing thekth intermediate fuzzy

termA′
k. Obviously, the longer the distance fromAki to A∗

k, the less valueWki should

take. In particular, the inversion of the distance is used:

Wki =
1

d(Aki,A∗
k)

, (5.51)
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whered(Aki,A∗
k) is defined in (5.48). Of course, alternative non-increasingfunctions

such asWki = exp−d(Aki,A∗
k) may be adopted to assign different weights.

For each attributek, the weightsWki, i = 1, . . . ,n are used to compute the interme-

diate fuzzy termA∗
k. Prior to that, they are normalised as follows:

W′
ki =

Wki

∑t=1,...,nWkt
, (5.52)

so that their sum equals to 1. The intermediate fuzzy termA′′
k, k = 1, . . . ,m, are com-

puted as:

A′′
k = ∑

i=1,...,n

W′
kiAki, (5.53)

which is the same as (5.14) when only two rules (n = 2) are considered for interpo-

lation. That is, the two-rule interpolation case is one special case of the generalised

multi-rule interpolation.

In the two-rule interpolation case, theA′′
k calculated via (5.53) has the same Rep

as the inputA∗
k. However, this is generally not true when more than two rulesare

involved (that is why symbolA′′
k, rather thanA′

k, is used here). Thus, it does not satisfy

the requirement of having the same Rep value, as imposed by the scale and move

transformations. In order to solve this problem, two possible ways, namely thezoom

andshift, are suggested to modifyA′′
k so that it becomes a new fuzzy intermediate term

A′
k which has the same Rep asA∗

k.

First, thezoomis suggested in whichA′′
k is zoomed byγk, k = 1, . . . ,m as follows:

A′
k = γkA

′′
k, (5.54)

whereγk is a constant defined as

γk =
Rep(A∗

k)

Rep(A′′
k)

. (5.55)

In so doing, the following holds:

Rep(A′
k) = Rep(A∗

k). (5.56)

Regarding the consequent, by analogy to (5.53), the intermediate fuzzy outputB′′ can

be computed by

B′′ = ∑
i=1,...,n

W′
aiBi , (5.57)
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whereW′
ai is the mean ofW′

ki:

W′
ai =

1
m

m

∑
k=1

W′
ki. (5.58)

B′′ is then zoomed toB′ as follows:

B′ = B′′γa, (5.59)

whereγa is the mean of the zoom parametersγk, k = 1, . . . ,m,

γa =
1
m

m

∑
k=1

γk. (5.60)

Alternatively,shift may be applied toA′′
k, k = 1, . . . ,mas follows:

A′
k = A′′

k +δk(Maxk−Mink), (5.61)

whereMaxk andMink are maximal and minimal values of attributek andδk is defined

as

δk =
Rep(A∗

k)−Rep(A′′
k)

Maxk−Mink
. (5.62)

In so doing, the following holds:

Rep(A′
k) = Rep(A∗

k). (5.63)

Similarly, the intermediate fuzzy outputB′′ can be computed by

B′′ = ∑
i=1,...,n

W′
aiBi , (5.64)

whereW′
ai is the mean ofW′

ki:

W′
ai =

1
m

m

∑
k=1

W′
ki. (5.65)

B′′ is then shifted toB′ as follows:

B′ = B′′+δa(Max−Min), (5.66)

whereMax andMin are maximal and minimal values of output variable andδa is the

mean of the shift parametersδk, k = 1, . . . ,m,

δa =
1
m

m

∑
k=1

δk. (5.67)
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Using either the zoom or shift method, the intermediate fuzzy rule

i f X1 is A′
1 and. . .and Xm is A′

m then Y is B′m

can be obtained from (5.54), (5.59) or (5.61), (5.66). The rest of the interpolation

reasoning is hence applied to this intermediate rule and theobserved fuzzy term vector,

in the same way as presented in sections 5.2 or 5.3. An examplefollows to explain how

this works.

Example 8. Three rulesAi ∧Bi ⇒ Ci, i = 1,2,3 and the observationsA∗, B∗ are

given in Table 5.8. For the first attributeA, the distances betweenAi , i = 1,2,3 and the

Table 5.8: Example 8

A1 = (0,1,3), B1 = (1,2,3), C1 = (0,2,3)

Attribute Values A2 = (8,9,10), B2 = (7,9,10), C2 = (9,10,11)

A3 = (11,13,14), B3 = (11,12,13), C3 = (12,13,14)

Observation A∗ = (3.5,5,7), B∗ = (5,6,7)

observation (A∗) are calculated as 4, 4, and 8 respectively (assuming the center of core

Rep is adopted). According to (5.51), the weights are calculated as 0.25, 0.25, and

0.13 respectively. They are normalised using (5.52) with the new weights being 0.4,

0.4 and 0.2. According to (5.53), a fuzzy termA′′ = (5.4,6.6,8.0) is obtained using the

normalised weights. AsA′′ does not have the same Rep as the inputA∗, either zoom or

shift method should be applied.

The zoom method is applied first. According to (5.55),γA = 0.76 is computed.

The fuzzy termA′′ is zoomed byγA to generate the required intermediate fuzzy set

A′ = (4.09,5,6.06). Similarly, B1, B2 andB3 have normalised weights 0.33, 0.44 and

0.22 in constructing the intermediate fuzzy setB′′ = (5.89,7.33,8.33). With γB =

0.82, it is zoomed toB′ = (4.82,6,6.82). The fuzzy setC′′ = (6.33,7.7,8.7) can be

computed using the average weights ofA andB for three rules (0.37, 0.42 and 0.21

respectively) according to (5.57). The intermediate output C′ = (4.99,6.07,6.86) can

then be computed using the average ofγA andγB, that is 0.79, with respect to (5.59).

This is shown in Fig. 5.18.
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Figure 5.18: Example 8

Alternatively, the shift method can be applied. According to (5.62),δA = −0.11

is computed. The fuzzy termA′′ andδA are used to generate the required interme-

diate fuzzy setA′ = (3.8,5,6.4). Similarly, B′′ = (5.89,7.33,8.33) is constructed

with the normalised weights ofB1, B2 and B3 (0.33, 0.44, and 0.22 respectively).

B′ = (4.56,6,7) is then computed based onB′′ andδB = −0.11. For the consequent,

fuzzy setC′′ = (6.33,7.7,8.7) can be computed using the average weights of attributes

A andB for three rules (0.37, 0.42 and 0.21 respectively) according to (5.64). The

intermediate outputC′ = (4.76,6.13,7.13) can then be computed using the average of

δA andδB, that is−0.11, with respect to (5.66). It is worth noting that zoom and shift

methods produce the same intermediate fuzzy ruleA′′∧B′′ ⇒C′′, but notA′∧B′ ⇒C′.

5.6.2 Extrapolation

The extrapolation is readily extendable. It is a special case of interpolation with mul-

tiple rules as described Section 5.6.1. In particular, whenall of the n closest rules

chosen (see 5.6.1.1) lie on one side of the given observation, the interpolation problem

becomes an extrapolation one. In fact, both choosing the closest rules and construct-
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ing the intermediate rule are carried out here in the same wayas performed in Section

5.6.1.

An example follows to explain the computation. Suppose onlythe second and third

rules in example 8 are considered, the interpolation becomes an extrapolation of two

rules.

Example 9. Two rulesAi ∧Bi ⇒Ci , i = 2,3 and the observationsA∗, B∗ are given

in Table 5.8 to carry out fuzzy extrapolation. Again, assumethe center of core Rep is

used. For the first attributeA, the normalised weights ofAi , i = 2,3 are computed to

be 0.67 and 0.33. According to (5.53), a fuzzy termA′′ = (9,10.33,11.33) is obtained.

As A′′ does not have the same Rep as the inputA∗, zoom or shift method has to be

used.

Consider the use of zoom method first. According to (5.55),γA = 0.48 is computed.

The fuzzy termA′′ is zoomed byγA to A′ = (4.36,5,5.48). Similarly, B2 andB3 have

normalised weights 0.67 and 0.33 in constructingB′′ = (8.33,10,11). With γB = 0.6,

B′′ is zoomed toB′ = (5,6,6.6). The fuzzy setC′′ = (10,11,12) can be computed using

the average weights ofA andB for two rules (0.67 and 0.33) according to (5.57). The

intermediate outputC′ = (5.42,5.96,6.50) can then be computed using the average of

γA andγB, that is 0.54, with respect to (5.59). This is shown in Fig. 5.19.

Alternatively, the shift method can be used. According to (5.62), δA = −0.38 is

obtained. Fuzzy termA′′ andδA are used to generate the required intermediate fuzzy

setA′ = (3.67,5,6). Similarly, B2 andB3 have normalised weights 0.67 and 0.33 in

constructing the intermediate fuzzy setB′′ = (8.33,10,11). With δB = −0.33, B′′ is

shifted toB′ = (4.33,6,7). The fuzzy setC′′ = (10,11,12) can be computed using the

average weights ofA andB for two rules (0.67 and 0.33) according to (5.64). The

intermediate outputC′ = (5,6,7) can then be computed using the average ofδA and

δB, that is−0.36, with respect to (5.66).

The rules which are used for extrapolation may be twisted. That is, their associated

fuzzy sets may not have the same order (as in Example 9) for each attribute. The

following shows this case.

Example 10. Two rulesA2∧B3 ⇒ C2 andA3 ∧B2 ⇒ C3, and the observations

A∗, B∗ are given in Table 5.8 for fuzzy extrapolation. For the first attribute A, A′′ =
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Figure 5.19: Example 9

(9,10.33,11.33) is obtained with the normalised weights ofAi , i = 2,3, being 0.67 and

0.33. Consider the zoom method is used. According to (5.55),γA = 0.48 is computed.

The fuzzy termA′′ is zoomed byγA to generateA′ = (4.36,5,5.48). Similarly, B2 and

B3 have normalised weights 0.33 and 0.67 in constructingB′′ = (8.33,10,11). With

γB = 0.6, B′′ is zoomed toB′ = (5,6,6.6). The fuzzy setC′′ = (10.5,11.5,12.5) can be

computed using the average weights ofA andB for two rules (0.5 and 0.5) according

to (5.57). The intermediate outputC′ = (5.69,6.23,6.78) can then be computed using

the average ofγA andγB, that is 0.54, with respect to (5.59). This is shown in Fig. 5.20.

Alternatively, the shift method can be applied. Fuzzy termA′′ is shifted (with

δA = −0.38) toA′ = (3.67,5,6). B2 andB3 have normalised weights 0.33 and 0.67 in

constructingB′′ = (8.33,10,11). With δB = −0.33, B′′ is shifted toB′ = (4.33,6,7).

Fuzzy setC′′ = (10.5,11.5,12.5) can be computed using the average weights of 0.5

and 0.5. The intermediate outputC′ = (5.5,6.5,7.5) can then be computed using the
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Figure 5.20: Example 10

average ofδA andδB, that is−0.36, with respect to (5.66).

It is worth noting that the values ofγ andδ should be close to 1 and 0, respectively,

with respect to (5.55) and (5.62). If they are far away to those values, they may cause

problems, which will be discussed in chapter 8.

5.7 Summary

This chapter has proposed a generalised, scale and move transformation-based, inter-

polative reasoning method (OHS method) which can handle interpolation of complex

polygonal, Gaussian and other bell-shaped fuzzy membership functions. The enhanced

HS method has also been proposed to preserve the piecewise linearity property in in-

terpolating any polygonal fuzzy sets. The case studies havebeen given showing how

the methods work in numerical examples. In addition, the extension to handle inter-

polation (and extrapolation) involving multiple variables and multiple rules has been
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addressed. This helps bridge the gap between theory and application as the existing

fuzzy interpolations have not been applied to real world prediction or classification

problems, which may often require reasoning with multiple rules and extrapolation.

The original HS method not only inherits the common advantages of fuzzy inter-

polative reasoning – allowing inferences to be performed with simple and sparse rule

bases, but also has two other advantages. Firstly it provides a degree of freedom to

choose various RV definitions for different application requirements. Secondly, it can

handle the interpolation of multiple rules, with each rule having multiple antecedent

variables associated with arbitrary polygonal fuzzy membership functions. In addition

to the advantages the OHS having, the enhanced HS method has extra two. Firstly, it

has less computation cost than OHS (see chapter 6). Secondly, it preserves the piece-

wise linearity property for any polygonal fuzzy functions (see chapter 6). It is worth

stressing that the piecewise linearity property is essential for ignoring artificial charac-

teristic points in performing fuzzy interpolations.



Chapter 6

Transformation Based Interpolation:

Evaluations

This chapter evaluates the interpolative reasoning methods proposed in chapter 5 from

different aspects including the dependency of the fuzziness of conclusion on observa-

tion, the preservation of the piecewise linearity and the computational complexity. The

comparisons to other existing approaches such as KH and the general method are pro-

vided. The results show that the original HS method preserves the piecewise linearity

in interpolations involving triangular fuzzy sets and hasO(n2) computation complexity

(n is the number of characteristic points for each fuzzy set). The results are more en-

couraging for the enhanced HS method, which not only preserves piecewise linearity

for interpolations involving arbitrary polygonal fuzzy sets, but also requires onlyO(n)

computation time.

6.1 Evaluation Criteria

In order to compare different interpolative reasoning methods, the evaluation criteria in

terms of the dependency of the fuzziness of conclusion on observation, the preservation

of the piecewise linearity and the computational complexity have been used.

The dependency of the fuzziness of conclusion on observation shows the degree

of uncertainty of the interpolative reasoning method. It iscomputed by the ratio of

129
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the fuzziness of the conclusion with respect to that of the observation. This evaluation

brings different views of fuzziness derivation for fuzzy interpolation methods. Gen-

erally speaking, the fuzzier the observation is, the fuzzier the conclusion should be.

Fuzzy dependency can not be simply used to justify some interpolation methods out-

performing others. Instead, it is used as a guide to choose suitable fuzzy interpolative

reasoning methods under certain circumstances.

Preservation of piecewise linearity is an essential property which reflects how good

the interpolative reasoning method handles the points between two consecutive char-

acteristic points. If the piecewise linearity is preserved, it is safe to merely consider the

characteristic points rather than the infinite pairs of points (generated from an infinite

number ofα-cut levels). Therefore, it is worth investigating what happens to the non-

characteristic points when interpolation is applied. Are they still on the line between

two interpolated characteristic points? Or if not, what is the deviation?

Fuzzy interpolation techniques are desired to give prompt responses when they

are implemented in time critical applications. Therefore,the complexity analysis

[CLRS90] in terms of time and space is an important issue for the interpolation meth-

ods. However, more attention is drawn to time complexity rather than space complex-

ity as the latter nearly vanishes when the technology for storage hardware has recently

made significant progress. Although the current processorshave been developed to a

high comparative speed, they are still not able to handle NP complexity problems. In

this chapter, the time complexity with respect ton (the number of characteristic points

for the fuzzy sets involved) is investigated for three existing interpolative reasoning

methods along with the proposed ones.

6.2 Evaluations

6.2.1 Dependency of the Fuzziness of Conclusion on Observat ion

The uncertainty of the interpolative reasoning method can be captured by the depen-

dency of the fuzziness of conclusion on observation. Using this criterion, the work

of [TB00, MBKK99] has compared the following methods: KH [KH93a, KH97],

modified KH [TB00], Vass-Kalinóv-Kóczy (VKK) [VKK92], Kóczy-Hirota-Gedeou
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(KHG) [KHG97] and the general fuzzy rule interpolation algorithm [BGK96, BGK95].

Due to the variety of the existing interpolative approaches, two simplest rulesA1⇒

B1 andA2 ⇒ B2 and an observationA∗ which involve only triangular fuzzy sets are

used here to provide a uniform platform for comparisons. To be compatible to the

comparison in [TB00, MBKK99], the three characteristic points are indexed with 1,

2 and 3. That isAi = (ai1,ai2,ai3), Bi = (bi1,bi2,bi3), i = 1,2, A∗ = (a∗1,a
∗
2,a

∗
3), and

B∗ = (b∗1,b
∗
2,b

∗
3). Instead of comparing the fuzziness of the whole conclusion(b∗3−b∗1)

to observation (a∗3−a∗1), the partial fuzziness of them are investigated. For this purpose,

the central point (or reference point, defined in the work of [BGK96, BGK95]) of a

fuzzy setA is adopted as follows.

cp(A) =
in f{supp(Aα)}+sup{supp(Aα)}

2
, (6.1)

whereα = height(A), i.e., the highest membership degree of a fuzzy setA. The fuzzi-

ness of the conclusionb∗c
3 = b∗3−b∗2 is estimated with respect to the observation fuzzi-

nessa∗c
3 = a∗3−a∗2. The following shows the dependency functions for the KH, modi-

fied KH, VKK, KHG and the general fuzzy interpolation methods. Interested readers

may refer to the work of [TB00, MBKK99] for further relevant discussions.

From section 2.4.1, the dependency of the right point of the conclusion on that of

the observation,f KH
f , can be expressed as

b∗c
3 = f KH

f (a∗c
3 ) = λKHa∗c

3 +δKH , (6.2)

where

λKH =
b23−b13

a23−a13
,

δKH = λKH(−ac
13)+bc

13.

For the modified KH method [TB00],

b∗c
3 = f MKH

f (a∗c
3 ) = λMKHa∗c

3 +δMKH , (6.3)

where

λMKH =
(b23−b13)− (b22−b12)

a23−a13
,

δMKH = λMKH(−ac
13)+bc

13.
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The fuzziness dependency of the VKK interpolative reasoning method [MSK99] is

computed by

b∗c
3 = fVKK

f (a∗c
3 )

=
1
2
[λVKK

1 (a∗c
3 )2+(2a∗2λVKK

1 +λVKK
2 +λVKK

3 )a∗c
3 −λVKK

1 (a∗3)
2

+(λVKK
3 −λVKK

2 )a∗3+λVKK
1 (a∗2)

2+(λVKK
2 +λVKK

3 )a∗2+λVKK
4 ]−δVKK, (6.4)

where

λVKK
1 =

b23−b21
a23−a21

− b13−b11
a13−a11

(a23+a21)− (a13+a11)

λVKK
2 =

b13−b11
a13−a11

(a23+a21)−
b23−b21
a23−a21

(a13+a11)

(a23+a21)− (a13+a11)

λVKK
3 =

(b21+b23)− (b11+b13)

(a21+a23)− (a11+a13)

λVKK
4 =

(a21+a23)(b11+b13)− (b21+b23)(a11+a13)

(a21+a23)− (a11+a13)

δVKK =
b22−a22

a22−a12
a∗2+

a22b12−a12b22

a22−a12

The KHG fuzzy rule interpolation method [KHG97] has

b∗c
3 = f KHG

f (a∗c
3 ) = (a∗c

3 )
b22−b21

a22−a21
. (6.5)

The fuzziness of the conclusion for the general fuzzy rule interpolation method

[BGK95] is computed as

b∗c
3 = f ge

f (a∗c
3 ) = f +(a∗3,a

i
3,b

i
3,0,xM,0,yM), (6.6)

where functionf + is the revision function defined in [KHG97] (as shown in Fig. 2.5).

ai
3 andbi

3 are the right points of the intermediate interpolated fuzzyset (see [BGK95]).

ai
3 =(1−λ2)a13+λ2a23, (6.7)

bi
3 =(1−λ2)b13+λ2b23, (6.8)

whereλ2 =
a∗2−a12
a22−a12

.

To facilitate the comparison to the proposed original HS method, the scale and

move transformations are applied to the antecedent and consequent of the intermediate
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rule. The results for moving to the left direction (froma1’s point of view) can be

computed as

b∗1 =
bi

1+bi
2 +bi

3

3
−

2(a∗3−a∗1)(b
i
3−bi

1)

3(ai
3−ai

1)
+

(a∗3−a∗2)(b
i
3−bi

2)

3(ai
3−ai

2)
, (6.9)

b∗2 =
bi

1+bi
2 +bi

3

3
+

(a∗3−a∗1)(b
i
3−bi

1)

3(ai
3−ai

1)
−

2(a∗3−a∗2)(b
i
3−bi

2)

3(ai
3−ai

2)
, (6.10)

b∗3 =
bi

1+bi
2 +bi

3

3
+

(a∗3−a∗1)(b
i
3−bi

1)

3(ai
3−ai

1)
+

(a∗3−a∗2)(b
i
3−bi

2)

3(ai
3−ai

2)
. (6.11)

Thus,

b∗c
3 = b∗3−b∗2 =

bi
3−bi

2

ai
3−ai

2
(a∗3−a∗2) = λOHS(a∗c

3 )+δOHS, (6.12)

whereλOHS =
bi

3−bi
2

ai
3−ai

2
andδOHS = 0. However, for moving to the right direction, the

results can be written as

b∗1 =
bi

1+bi
2+bi

3

3
−

(a∗3−a∗1)(b
i
3−bi

1)

3(ai
3−ai

1)
−

(a∗2−a∗1)(b
i
2−bi

1)

3(ai
2−ai

1)
, (6.13)

b∗2 =
bi

1+bi
2+bi

3

3
−

(a∗3−a∗1)(b
i
3−bi

1)

3(ai
3−ai

1)
+

2(a∗2−a∗1)(b
i
2−bi

1)

3(ai
2−ai

1),
(6.14)

b∗3 =
bi

1+bi
2+bi

3

3
+

2(a∗3−a∗1)(b
i
3−bi

1)

3(ai
3−ai

1)
−

(a∗2−a∗1)(b
i
2−bi

1)

3(ai
2−ai

1)
. (6.15)

Similarly,

b∗c
3 = b∗3−b∗2 =

(a∗3−a∗1)(b
i
3−bi

1)

ai
3−ai

1
−

(a∗2−a∗1)(b
i
2−bi

1)

ai
2−ai

1
= λOHS(a∗c

3 )+δOHS, (6.16)

whereλOHS=
bi

3−bi
1

ai
3−ai

1
andδOHS= λOHS(−ac

13)+bc
13.

If no move transformation is required, the results can be merely generated accord-

ing to (4.14) - (4.16) as follows.

b∗1 =
bi

1(1+2s)+bi
2(1−s)+bi

3(1−s)

3
, (6.17)

b∗2 =
bi

1(1−s)+bi
2(1+2s)+bi

3(1−s)

3
, (6.18)

b∗3 =
bi

1(1−s)+bi
2(1−s)+bi

3(1+2s)

3
. (6.19)
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Therefore,

b∗c
3 = b∗3−b∗2 = s(bi

3−bi
2) =

(a∗3−a∗1)(b
i
3−bi

2)

ai
3−ai

1
= λOHS(a∗c

3 )+δOHS, (6.20)

whereλOHS=
bi

3−bi
2

ai
3−ai

1
andδOHS= λOHS(−ac

13)+bc
13.

For the enhanced HS method, the scale criteriaSL andSR are calculated as

SL =
a∗2−a∗1
ai

2−ai
1
, (6.21)

SR =
a∗3−a∗2
ai

3−ai
2
. (6.22)

Thus, the scale rate ofBi is

sb =
SL(bi

2−bi
1)+SR(bi

3−bi
2)

bi
3−bi

1
. (6.23)

The enhanced scale and move transformations impose the following constraints:






a∗2−a∗1
a∗3−a∗2

ai
3−ai

2
ai

2−ai
1
=

b∗2−b∗1
b∗3−b∗2

bi
3−bi

2
bi

2−bi
1

b∗3−b∗1 = sb(bi
3−bi

1)

The above equations can be reformed to

b∗3−b∗2 =
D
E

(a∗3−a∗2)
2+(D+

C
E

)(a∗3−a∗2)+C, (6.24)

whereC =
a∗2−a∗1
ai

2−ai
1
(bi

2−bi
1), D =

bi
3−bi

2
ai

3−ai
2

andE =
(a∗2−a∗1)(a

i
3−ai

2)(b
i
2−bi

1)

(ai
2−ai

1)(b
i
3−bi

2)
.

The results are shown in Fig. 6.1 (see [TB00]). In this figure,two coordinate sys-

tems are simultaneously used to demonstrate the dependencyof fuzziness of the con-

clusion on the observation. One isX×Y that is the Cartesian product space of fuzzy

sets and the other is positioned atO(cp(A∗),cp(B∗)), orO(a∗2,b
∗
2). the solid lines show

the fuzziness of conclusion with respect to the fuzziness ofobservation. In fact, the

calculation ofcp(B∗) is independent of all the fuzzy interpolation methods concerned

except for the proposed OHS (original HS) and EHS (enhanced HS) methods. The

origin O of the inner coordinate system moves on the straight linePRfrom P(a12,b12)

to R(a22,b22) due to the fact that the observationA∗ lies betweenA1 andA2.

The straight lineKH (K(a13,b13) andH(a23,b23)) represents the function of (6.2)

for KH method. It indicates that if the fuzziness of observation is less than a threshold
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Figure 6.1: The dependency of the fuzziness of conclusion on that of observation

s> 0, which can be determined by the work of [KHM00], then subnormal conclusion

is obtained using the KH method.

For the modified KH method, the functionf MKH
f can be determined by point

M(a13,cp(B∗)+(b13−b12)) andL(a23,cp(B∗)+(b23−b22)) as these two points must

be passed.ML has a slope of(b23−b13)−(b22−b12)
a23−a13

and involves fixed distances between

M, L and axisX′.

The KHG method (function (6.5)) is represented by a straightline OD with slope

(b22− b21)/(a22− a21). Note that it cannot be interpreted whena22− a21 = 0 and

b22−b21 > 0, but otherwise the conclusion is always a normal and valid fuzzy set.

The general fuzzy interpolation method (function (6.6)) yields two straight lines

OB andBG, whereB(ai
3,b

i
3) is determined byPO

PR
= KB

KH
, andG(xM,yM) involves the

maximal values of the domains ofX andY. The general interpolation always obtains
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NVF fuzzy sets asOBGnever crosses the axisX′.

Now consider the original HS method. LineST connects the pointsS(Rep(A1),

Rep(B1)) andT(Rep(A2),Rep(B2)). Thus, pointO′(Rep(A∗),Rep(B∗)) on this line

has propertyRep(A∗)−Rep(A1)
Rep(A2)−Rep(A1)

=
Rep(B∗)−Rep(B1)
Rep(B2)−Rep(B1)

= λ, whereλ = PO
PR

. Initially, suppose

A∗′ = (a∗
′

1 ,a∗
′

2 ,a∗
′

3 ) (used to replace the observation for the HS methods to distinguish it

from the previously used observationA∗) is a singleton input,a∗
′

2 = ai′
2 = a∗

′

3 ,b∗
′

2 = bi′
2 =

b∗
′

3 . In the case when moving to the left (froma∗
′

2 ’s point of view), the function ofb∗c
3

with respect toa∗c
3 can be represented by lineHS1 which passesO′ andB, with slope

θ1 =
bi

3−bi
2

ai
3−ai

2
. When moving to the right, the fuzziness dependency can be represented by

line HS2 which passesB with slopeθ2 =
bi

3−bi
1

ai
3−ai

1
. Similarly when no move is required,

it can be represented by lineHS3 which passesB with slopeθ3 =
bi

3−bi
2

ai
3−ai

1
.

Three points are worth mentioning for Figure 6.1.

1. It is different from the previously shown approaches thatthe pointO′ is actually

not fixed. In particular, whena∗
′

2 = ai′
2 = a∗

′

3 , b∗
′

2 = bi′
2 = b∗

′

3 holds. Ifa∗
′

3 increases,

b∗
′

2 will change as well. So theY′′ axis indicates only the difference ofb∗3−b∗2
(rather than the real values ofb∗2 andb∗3).

2. If the centre point value is chosen to be defined as RV,O′ becomes the same as

O, thus lineHS1 partially coincides withOBG. In other words, when moving to

the left, thea∗3 (less thanai
3) generated fromHS1 is the same as that from the

general interpolative reasoning method.

3. θ3 ≤ θ2 andθ3 ≤ θ1 always hold.

Finally, the enhanced HS interpolation method is shown by lineO′BE according to

function (6.24). It is a second degree polynomial function which passes pointsO′ and

B. It may be either valid or concave.

6.2.2 Preservation of Piecewise Linearity

Preservation of piecewise linearity is an essential property which reflects how good an

interpolative reasoning method handles the points betweentwo consecutive character-

istic points. If the piecewise linearity is preserved, it issafe to merely consider the
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characteristic points rather than the infinite pairs of points (generated from an infinite

number ofα-cut levels). The preservation of piecewise linearity has been investigated

in the work of [KHM00, TB00]. In both cases, they slightly deviate from the calculated

linear fuzzy rule interpolations with some error bounds provided. This subsection first

shows that the original HS method preserves the piecewise linearity only in interpo-

lations involving triangular fuzzy sets, and then proves that the enhanced HS method

preserves this property in interpolations involving arbitrary polygonal fuzzy sets.

6.2.2.1 Original HS Method

Consider a triangular-based fuzzy interpolation as shown in Fig. 6.2. Given rulesA1 ⇒

B1, A2 ⇒ B2 and an observationA∗, the task is to determineB∗. The difference here

is that all fuzzy setsA1, A2, A∗, B1 andB2 have five characteristic points rather than

three. That is, each fuzzy set has two additional artificial characteristic points.

A’ A*
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0 a’

1a’
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2 a’

2 a20 a21 a22
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0
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Figure 6.2: Interpolation involving triangular sets but with 5 characteristic points

The first step for OHS interpolation is to construct the intermediate ruleA′ ⇒ B′.
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It can be shown in the following that bothA′ andB′ are two triangular fuzzy sets, with

each having 5 characteristic points.

proof 10 As















a10α = (1−α)a10+αa11

a20α = (1−α)a20+αa21

a′0α = (1−α)a′0+αa′1

(6.25)

and

{

a′0 = (1−λ)a10+λa20

a′1 = (1−λ)a11+λa21
(6.26)

Therefore

a′0α =(1−α)[(1−λ)a10+λa20]+α[(1−λ)a11+λa21] (6.27)

=(1−λ)[(1−α)a10+αa11]+λ[(1−α)a20+αa21] (6.28)

=(1−λ)a10α +λa20α. (6.29)

The point a′0α which is the interacted point of linea′0a′1 and theα-cut level is also the

interpolated point between a10α and a20α, it is thereby an artificial characteristic point

in A′. Similarly, a′2α is an artificial characteristic point. So A′ is a triangular set with

5 characteristic points. This proof also applies to B′.

Now the scale transformation will scaleA′ to As (as shown in Fig. 6.3) which has

the same support lengths as those ofA∗. As A′ andA∗ are both triangular sets, the scale

rates for the supports of the bottom and theα-cut level remain the same, say,s. As can

be computed fromA′ using the five equations imposed to the scale transformation:






































Rep(As) = Rep(A′)
as

2−as
0

a′2−a′0
= s

as
2α−as

0α
a′2α−a′0α

= s
as

1−as
0α

as
2α−as

1
=

a′1−a′0α
a′2α−a′1

as
0α−as

0
as

2−as
2α

=
a′0α−a′0
a′2−a′2α

(6.30)
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Figure 6.3: Preservation of piecewise linearity in triangular cases for original scale

transformation

The scaled fuzzy set is therefore the same as that generated using only three charac-

teristic points. That is, the scaled fuzzy set is a triangular fuzzy set but with 5 charac-

teristic points. Similarly, a triangular fuzzy setBs with 5 characteristic points can be

obtained.

The preservation of piecewise linearity in move transformation is shown in Fig. 6.4.

It might appear that in this case two sub-moves should be applied – the first moves

as
0 to a∗0, and the second movesas′

0α to a∗0α, whereas′
0α is the position foras

0α after

the first move. However, that is not the case. In fact, only onemove is required to

transformAs (with 5 characteristic points) toA∗ (also with 5 characteristic points).

This move simultaneously movesas
0, as

0α andas
1 to the desired positions (a∗0, a∗0α and

a∗1) respectively, according to the move transformation.

In summary, the original HS preserves piecewise linearity in performing scale and

move transformations, resulting in the preservation of that property in fuzzy interpola-

tion. Unfortunately, this property cannot be preserved when the original HS method is

applied to fuzzy interpolations involving fuzzy membership functions other than trian-

gular sets. This is due to the way of calculating scale rates in scale transformation. For

example, consider the scale transformation of trapezoidalfuzzy membership functions

with each having two artificial characteristic points (see Fig. 6.5). The task is to calcu-

late the scale rates forB′ based on the transformation fromA′ to As. Let a′0α, a′3α, as
0α
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Figure 6.5: No preservation of piecewise linearity in trapezoidal cases for original scale

transformation

andas
3α be artificial characteristic points, then

a′3α −a′0α = α(a′2−a′1)+(1−α)(a′3−a′2), (6.31)

as
3α −as

0α = α(as
2−as

1)+(1−α)(as
3−as

2). (6.32)

Let the scale rates for the bottom, middle and top supports ofA′ be denoted ass0, sα
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ands1 respectively. Then,

sα =
as

3α −as
0α

a′3α −a′0α
(6.33)

=
α(as

2−as
1)+(1−α)(as

3−as
2)

α(a′2−a′1)+(1−α)(a′3−a′2)
(6.34)

=
αs1(a′2−a′1)+(1−α)s0(a′3−a′0)

α(a′2−a′1)+(1−α)(a′3−a′0)
. (6.35)

It can be reformed as
s1−sα
sα −s0

=
(1−α)(a′3−a′0)

α(a′2−a′1)
. (6.36)

Consider the simple case of calculating scale rates, i.e., whens0 > sα, thens0 > sα > s1

holds according to Fig. 6.5. Let the scale rates for the bottom, middle and top supports

of B′ be denoted ass′0, s′α ands′1 respectively, according to the way of calculating the

scale rates (see (5.34)),s′0 = s0 > s′α = sα > s′1 = s1. Given thatb′0α andb′3α are artificial

characteristic points, according to (6.36), the followingmust hold so thatbs
0α andbs

3α

will be artificial:
s′1−s′α
s′α −s′0

=
(1−α)(b′3−b′0)

α(b′2−b′1)
. (6.37)

However, this is not true unless in the special situation where
a′3−a′0
a′2−a′1

=
b′3−b′0
b′2−b′1

. Thus the

piecewise linearity cannot be always preserved in the trapezoidal cases.

6.2.2.2 Enhanced HS Method

The enhanced HS method preserves the piecewise linearity ininterpolations involving

arbitrary polygonal fuzzy membership functions. This subsection proves this in both

scale and move transformations.

Fig. 6.6 illustrates the scale transformation in a trapezoidal case with six character-

istic points for each fuzzy set. Suppose thatas
0α, as

3α, a′0α, a′3α, b′0α andb′3α are artificial

characteristic points. IfBs is transformed fromB′ using the same similarity calculated

from A′ to As, the question is whetherbs
0α andbs

3α remain artificial. According to the

enhanced scale method,

as
1−as

0α
a′1−a′0α

=
bs

1−bs
0α

b′1−b′0α
, (6.38)

as
0α −as

0

a′0α −a′0
=

bs
0α −bs

0

b′0α −b′0
. (6.39)
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Figure 6.6: Preservation of piecewise linearity in enhanced scale transformation

Also, asa′0α andas
0α are two artificial characteristic points, then

as
1−as

0α
a′1−a′0α

=
as

0α −as
0

a′0α −a′0
. (6.40)

From (6.38), (6.39) and (6.40),

bs
1−bs

0α
b′1−b′0α

=
bs

0α −bs
0

b′0α −b′0
. (6.41)

From (6.41) and the fact thatb′0α is an artificial characteristic point, it can be concluded

thatbs
0α must be artificial. That is,Bs is piecewise linear in the left slope. Similarly,

Bs is piecewise linear in the right slope. Thus the proposed method preserves the

piecewise linearity in the scale transformations.

The proof is based on the trapezoidal cases and it in fact shows that the piecewise

linearity is retained between twoα-cut levels. For the scale transformation case in-

volving arbitrary polygonal fuzzy membership functions, the proof applies between

any two consecutiveα-cut levels, resulting in the preservation of piecewise linearity in

this case.

Now consider the move transformation which is shown in Fig. 6.7. GivenAs and

A∗ which have the same RV and the same lengthes of top, middle andbottom supports

respectively, the task is to moveBs to obtainB∗ using the same similarity betweenAs

andA∗. According to the enhanced move transformation,
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a∗1−a∗0α
a∗3α −a∗2

as
3α −as

2

as
1−as

0α
=

b∗1−b∗0α
b∗3α −b∗2

bs
3α −bs

2

bs
1−bs

0α
, (6.42)

a∗0α −a∗0
a∗3−a∗3α

as
3−as

3α
as

0α −as
0

=
b∗0α −b∗0
b∗3−b∗3α

bs
3−bs

3α
bs

0α −bs
0
. (6.43)

Assume thatas
0α, a∗0α, as

3α anda∗3α are arbitrary characteristic points, then

a∗1−a∗0α
a∗3α −a∗2

as
3α −as

2

as
1−as

0α
=

a∗0α −a∗0
a∗3−a∗3α

as
3−as

3α
as

0α −as
0
. (6.44)

From (6.42), (6.43) and (6.44),

b∗1−b∗0α
b∗3α −b∗2

bs
3α −bs

2

bs
1−bs

0α
=

b∗0α −b∗0
b∗3−b∗3α

bs
3−bs

3α
bs

0α −bs
0
. (6.45)

Given thatbs
0α andbs

3α are artificial characteristic points, it follows that

bs
3α −bs

2

bs
1−bs

0α
=

bs
3−bs

3α
bs

0α −bs
0
. (6.46)

From (6.45) and (6.46),
b∗1−b∗0α
b∗3α −b∗2

=
b∗0α −b∗0
b∗3−b∗3α

. (6.47)

As bs
2−bs

1 = b∗2−b∗1, bs
3α−bs

0α = b∗3α−b∗0α andbs
3−bs

0 = b∗3−b∗0, it can be concluded

thatb∗0α andb∗3α are artificial.

Again, although the proof is based on the trapezoidal cases,it applies between any

two consecutiveα-cut levels in arbitrary polygonal fuzzy memberships, resulting in the
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preservation of piecewise linearity in the move transformation involving those fuzzy

membership functions.

It can be proven that the construction of the intermediate fuzzy rule preserves piece-

wise linearity. Now the scale and move transformations has proven to preserve piece-

wise linearity, property 1 as shown below can be achieved by the enhanced HS method:

Property 1 The interpolation of non-characteristic points which lie between two char-

acteristic points generates non-characteristic points which still lie between the two

interpolated characteristic points.

Property 1 points out that only characteristic points affect the interpolated results using

the EHS method. Non-characteristic points can be safely ignored as they are still non-

characteristic in the reasoning results.

If the representative value of a fuzzy set keeps the same whenmore artificial char-

acteristic points are considered in the EHS interpolation,then the following property

holds:

Property 2 The interpolation of the same fuzzy sets but with additionalartificial char-

acteristic points leads to the same result if the representative values of these fuzzy sets

(with or without additional artificial characteristic points) are the same.

The work of [YK98, YK00] represents each fuzzy set withn characteristic points

as a point in ann-dimensional Cartesian space, thus a fuzzy interpolation problem be-

comes a high dimensional interpolation problem. Since the EHS interpolation method

is capable of handling fuzzy interpolation involving infinite points (finite characteristic

points plus infinite non-characteristic points), it may provide a solution to the interpo-

lation problem within a very high dimensional Cartesian space.

6.2.2.3 Illustrative examples for the maintenance of piece wise linearity

In this section, the use of the average RV, compatible RV, weighted average RV and

centre-of-core RV to conduct fuzzy interpolations is demonstrated and the results be-

tween the original HS and enhanced HS methods are compared. For simplicity, both

examples discussed below concern the interpolation between two adjacent rulesA1 ⇒
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B1 andA2 ⇒ B2. In order to verify the piecewise linearity property, additional “char-

acteristic” points are added in the examples.

Table 6.1 shows values of the rule attributes and observations. Table 6.2 and Table

6.3 show the interpolated results using different RV definitions for the OHS method

and EHS respectively. These results are also illustrated inFig. 6.8 and Fig. 6.9. As can

be seen, the original HS method satisfies property 1 only in triangular cases while the

enhanced HS satisfies that in all cases. In particular, the latter further holds property 2

when the compatible and centre core representative values are used. As a comparison,

the results of the KH method is also given in Fig. 6.8. It satisfies neither property 1 nor

property 2.

Table 6.1: Attribute and observation values

Triangular Triangular (5 points) Hexagonal Hexagonal (8 points)

A1 (0,5,6) (0,2.5,5,5.5,6) (0,1,3, (0,0.5,1,2,3,

4,5,5.5) 4,4.5,5,5.25,5.5)

A2 (11,13,14) (11,12,13,13.5,14) (11,11.5,12, (11,11.25,11.5,11.75,12,

13,13.5,14) 13,13.25,13.5,13.75,14)

A∗ (7,8,9) (7,7.5,8,8.5,9) (6,6.5,7, (6,6.25,6.5,6.75,7,

9,10,10.5) 9,9.5,10,10.25,10.5)

B1 (0,2,4) (0,1,2,3,4) (0,0.5,1, (0,0.25,0.5,0.75,1,

3,4,4.5) 3,3.5,4,4.25,4.5)

B2 (10,11,13) (10,10.5,11,12,13) (10.5,11,12, (10.5,10.75,11,11.5,12,

13,13.5,14) 13,13.25,13.5,13.75,14)

6.2.3 Computational Complexity

In this section, the time complexity with respect ton (the number of characteristic

points for fuzzy sets involved) is estimated for interpolative reasoning methods, in-

cluding the KH, the general interpolation, the modified KH, the original HS and the

enhanced HS. To have a uniform platform for comparison, two simplest rulesA1 ⇒ B1

andA2 ⇒ B2 and an observationA∗ are used here.

The KH interpolative reasoning method can be written in pseudo code as shown
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Table 6.2: Results of original HS method by using different RVs

Triangular Triangular (5 points) Hexagonal Hexagonal (8 points)

Average (5.84,6.26, (5.76,5.97,6.18, (5.64,5.98,6.29, (5.64,5.82,5.98,6.14,6.28,

7.38) 6.74,7.3) 8.63,9.46,9.93) 8.64,9.05,9.47,9.71,9.94)

Compatible (5.84,6.26, (5.84,6.05,6.26, (5.67,6.01,6.33, (5.66,5.84,6.01,6.16,6.31

7.38) 6.82,7.38) 8.66,9.50,9.97) 8.67,9.08,9.50,9.74,9.97)

Weighted (5.63,6.06, (5.63,5.85,6.06, (5.61,5.95,6.26, (5.62,5.80,5.96,6.11,6.26,

Average 7.16) 6.61,7.16) 8.59,9.42,9.89) 8.62,9.02,9.44,9.68,9.91)

Centre (4.96,5.38, (4.96,5.17,5.38, (5.47,5.79,6.08 (5.46,5.64,5.81,5.95,6.07,

of Core 6.44) 5.91,6.44) 8.42,9.23,9.70) 8.43,8.83,9.25,9.47,9.70)

Table 6.3: Results of enhanced HS method by using different RVs

Triangular Triangular (5 points) Hexagonal Hexagonal (8 points)

Average (5.54,5.97, (5.49,5.70,5.92, (5.28,5.62,5.94, (5.28,5.45,5.62,5.79,5.95,

7.97) 6.92,7.92) 8.86,9.86,10.36) 8.87,9.37,9.87,10.12,10.37)

Compatible (5.54,5.97, (5.54,5.76,5.97, (5.30,5.65,5.97, (5.30,5.47,5.65,5.81,5.97

7.97) 6.97,7.97) 8.88,9.88,10.38) 8.88,9.38,9.88,10.13,10.38)

Weighted (5.41,5.83, (5.41,5.62,5.83, (5.25,5.59,5.91, (5.26,5.43,5.60,5.72,5.92,

Average 7.83) 6.83,7.83) 8.85,9.85,10.35) 8.85, ,9.35,9.85,10.10,10.35)

Centre (4.96,5.38, (4.96,5.17,5.38, (5.12,5.45,5.75 (5.12,5.28,5.45,5.60,5.75,

of Core 7.38) 6.38,7.38) 8.75,9.75,10.25) 8.75,9.25,9.75,10.00,10.25)

in Algorithm 1, whereλ[i] (see [KH93a, KH93c]) measures the important impact of

Algorithm 1 KH interpolation
Input: Polygonal fuzzy setA∗ with n characteristic points

Output: Polygonal fuzzy setB∗ with n characteristic points

1: for i = 0 ton−1 do

2: calculateλ[i] from theith points ofA1, A2 andA∗

3: calculate theith point ofB∗

4: end for
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Figure 6.8: Examples of piecewise linearity for KH and original HS method

the ith characteristic point ofA2 (versus that ofA1) upon theith point of A∗. The

computation time in line 2 has a unit time ofO(1) as it simply consists of several basic

calculations (no loop is involved). Similarly, line 3 costsanother unit time ofO(1).

The total computation time for line 2 and line 3 thus isO(1). Since line 2 and line 3

are executed once for every loop from 0 to (n−1), the total computation time for this

algorithm isO(n).

The general interpolation [BGK96, BGK95] method is described in Algorithm 2.
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Figure 6.9: Examples of piecewise linearity for enhanced HS method

Line 1 costsO(n) computation time as it has a loop running through all the charac-

teristic points. As line 3 costsO(1), the loop of line 2 costsO(n) time. In total,

O(n)+O(n) = O(n) is the time complexity for this method.

Now consider the modified KH method [TB00] as shown in Algorithm 3. Line 1

costsO(n) computation time as it actually has a loop running through all the charac-

teristic points. Line 3 costs the otherO(n) as it simply reverses the operation in line

1. According to the KH interpolative reasoning method, line2 takesO(n) time. So the
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Algorithm 2 General interpolation
Input: Polygonal fuzzy setA∗ with n characteristic points

Output: Polygonal fuzzy setB∗ with n characteristic points

1: Compute intermediate fuzzy setsA′ andB′

2: for i = 0 ton−1 do

3: calculate theith point ofB∗ according to those ofA∗, A′ andB′

4: end for

Algorithm 3 Modified KH interpolation
Input: Polygonal fuzzy setA∗ with n characteristic points

Output: Polygonal fuzzy setB∗ with n characteristic points

1: Convert the coordinate system to a different one

2: KH interpolation

3: Convert the coordinate system back to the original one

total time complexity isO(n)+O(n)+O(n) = O(n).

The proposed original HS interpolative reasoning method isshown in Algorithm 4,

wherecalM andmoveare two procedures which are called by the OHS interpolation

Algorithm 4 Original HS interpolation
Input: Polygonal fuzzy setA∗ with n characteristic points

Output: Polygonal fuzzy setB∗ with n characteristic points

1: Compute intermediate fuzzy setsA′ andB′

2: Compute scale rates fromA′ to A∗

3: ScaleA′ with scale rates calculated by step 2 to generate setAs

4: Compute scale rates applied toB′

5: ScaleB′ with scale rates calculated by step 4 to generate setBs

6: Am = As; Bm = Bs;

7: for i = 0 to⌈n
2⌉−2 do

8: MoveRatio[i] = calM(Am,A∗, i)

9: Am = move(Am, i,moveRatio[i])

10: Bm = move(Bm, i,moveRatio[i])

11: end for
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algorithm. They are written in Algorithm 5 and Algorithm 6 respectively, wherea(i)
j

Algorithm 5 CalM(A,B, i): calculate move ratio of theith support level fromA to B
Input: Two polygonal fuzzy setsA andB (with each havingn characteristic points)

and support leveli

Output: Move ratio of support leveli of A

1: sum1 = 0, sum2 = 0

2: for j = i to ⌈n
2⌉−1 do

3: sum1 = sum1+a(i−1)
j (w j +wn−1− j )

4: sum2 = sum2+(w j +wn−1− j )

5: end for

6: extX= min{sum1
sum2 −a(i−1)

i ,a(i−1)
n−i −a(i−1)

n−1−i}

7: Compute move ratio according toextX

Algorithm 6 Move(A, i,MoveRatio): move theith support ofA with the specified

MoveRatio
Input: Polygonal fuzzy setA with n characteristic points, support leveli and the spec-

ified move ratioMoveRatio

Output: Moved fuzzy setAm

1: sum1 = 0, sum2 = 0

2: for j = i to ⌈n
2⌉−1 do

3: sum1 = sum1+a(i−1)
j (w j +wn−1− j )

4: sum2 = sum2+(w j +wn−1− j )

5: end for

6: extX= min{sum1
sum2 −a(i−1)

i ,a(i−1)
n−i −a(i−1)

n−1−i}

7: for j = i to ⌈n
2⌉−1 do

8: CalculateextXs[ j] according to (5.24)

9: end for

10: for j = i to ⌈n
2⌉−1 do

11: newXs[ j] = curr[ j]+(extXs[ j]−curr[ j])MoveRatio

12: end for

is the jth point of A after moving theith support level,wi is the weight for pointai ,
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andextX, extXs[], newXs[] andcurr[] are the extreme moving point, extreme moving

points, new points and current points respectively (see chapter 5).

In CalM algorithm, thefor loop in line 2 – 5 costsO(n) computation time and

lines 1, 6 and 7 each takeO(1). Therefore it costsO(n) in terms of time complexity

in total. However, this calculation is based on the assumption that all the weights

are non-negative. If, however, that is not the case, the calculation of extX should

be modified according to (5.23), resulting in a higher time complexity. Nevertheless,

negative weights do not make sense in real world applications.

In theMovealgorithm, lines 2 – 5 lead to afor loop which costsO(n) computation

time, and similarly, the part of lines 7 – 9, and that of lines 10 – 12 each takeO(n)

time whilst line 1 and 6 each cost a unit time ofO(1). The whole algorithm thus needs

3O(n)+2O(1) = O(n) time complexity.

Now consider the time complexity of the main algorithm – theOriginal HS inter-

polationwhich invokes theCalM andMovealgorithms. Lines 1 to 5 each takeO(n)

computation time as each of them needs linear time with respect to the characteristic

point number (n). Line 6 only requires a unit time ofO(1). However, lines 7 to 11

form a for loop with each step in thefor loop (line 8, 9 or 10) taking time complex-

ity O(n), thus the whole loop costsO(n) ∗O(n) = O(n2) computation time. Based

on this estimation, the original HS interpolation method needs more computation time

than the KH, modified-KH or general interpolation methods. However,O(n2) is still

acceptable given thatn is not significantly large in most cases.

One of the most widely used representative value definitions– the centre of core is

implicitly used in the KH, modified-KH and general interpolation methods, although

the concept of representative value is not defined explicitly in those methods. In imple-

menting the centre of core RV definition, lines 1 – 5 of the algorithm CalM are omitted

as the extreme position is fixed toa⌈ n
2⌉−1, which is the top left point’s position. The

CalM algorithm therefore needsO(1) computation time. Due to the same reason lines

1 – 9 of algorithmMoveonly takeO(1) time. However, lines 10 – 12 still costO(n)

computation time, resulting in the eventualO(n2) time complexity for theOriginal HS

interpolationalgorithm. Nevertheless, the interpolation with the adoption of the core

of centre RV definition significantly reduces the computation load.
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The enhanced HS interpolative reasoning method is shown in Algorithm 7. Lines 1

Algorithm 7 Enhanced HS interpolation
Input: Polygonal fuzzy setA∗ with n characteristic points

Output: Polygonal fuzzy setB∗ with n characteristic points

1: Compute intermediate fuzzy setsA′ andB′

2: Compute scale rates fromA′ to A∗

3: ScaleA′ with scale rates calculated by step 2 to generate setAs

4: Compute scale rates applied toB′

5: ScaleB′ with scale rates calculated by step 4 to generate setBs

6: Am = As, Bm = Bs

7: Compute move criteria applied toBm

8: MoveBm with move criteria as calculated in step 7 to generateB∗

to 5, 7 and 8 each takeO(n) computation time, while line 6 only costsO(1) time. The

whole method thus costsO(n) computation time, which is less than theO(n2) time

required by the original HS method.

The above estimations show that all the interpolation methods except the original

HS have the time complexity ofO(n), while the original HS requiresO(n2). However,

the latter is acceptable given that the number of characteristic points of involved fuzzy

sets is normally not significantly large.

6.3 Summary

This chapter has evaluated the original and enhanced HS interpolative reasoning meth-

ods as proposed in chapter 5. The comparisons to other existing approaches such as

the KH and the general method have been provided with respectto the dependency of

the fuzziness of conclusion on observation, the preservation of the piecewise linearity

and the computational complexity.

Section 6.2.1 has shown the fuzziness derivation of different interpolative reason-

ing methods. This evaluation cannot be simply used to justify the performance of an

interpolative reasoning method, but it can be used as a guideto choose suitable fuzzy
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interpolation methods for particular applications. Section 6.2.2 has shown that the

original HS method preserves the piecewise linearity property in interpolations involv-

ing triangular fuzzy sets, whilst the enhanced HS method preserves this property in

interpolations involving arbitrary polygonal fuzzy sets.It is worth noting that the EHS

method is the first proposed method having this property. Section 6.2.3 has shown

that all the interpolation methods except the original interpolation have computation

complexity ofO(n), whilst the OHS hasO(n2). However, this is not a problem as the

current processors have been fast enough to handle such complexity.



Chapter 7

Transformation Based Interpolation:

Realistic Applications

Fuzzy interpolation methods not only help reduce rule basesvia removing fuzzy rules

which can be approximated by their neighboring rules, but also support reasoning in

sparse fuzzy rule bases. This chapter focuses on the original HS fuzzy interpolation

method and demonstrates its usages over realistic applications (the usages of the en-

hanced HS method is omitted as it follows straightforwardly). It first introduces the

fuzzy interpolation based inference and then illustrates two realistic applications. In

particular, the truck backer-upper problem shows how the proposed OHS interpolation

method helps reduce the redundant fuzzy rules, and the computer hardware problem

shows how it serves as a fuzzy inference for sparse rule bases. The comparison to the

most popularly used inference, Mamdani inference, is presented over these applica-

tions.

7.1 Interpolation Based Fuzzy Inferences

Fuzzy inference is used to predict or classify an observation based on a given fuzzy

rule base. Traditional fuzzy inferences such as Mamdani [MA75], TSK [TS85, SK88]

are designed for reasoning on dense rule bases. That is, at least one fuzzy rule can be

chosen to fire for any given observation. If however, this is not the case, traditional

154
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fuzzy inferences cannot generate sensible results. In order to resolve this problem,

interpolation based fuzzy inferences have been adopted.

Fuzzy interpolation inferences work by using the fuzzy interpolation methods such

as the ones proposed in chapter 5. In addition to the capability of handling non-dense

(sparse) rule bases, they have a flexibility on choosing different number of fuzzy rules

to apply fuzzy interpolations. Fuzzy interpolation based inferences can be used to-

gether with traditional fuzzy inferences by setting afiring threshold. This threshold

decides on which inference scheme will be chosen to use. For instance, a possible im-

plementation as shown in Fig. 7.1 may be: the inference is carried out by the Mamdani

method if the maximal firing strength of an observation is greater than the predeter-

mined firing threshold, otherwise, the decision is handed over to a fuzzy interpolation

based inference. This is quite flexible as the proportion of unknown data fired by the

interpolation based inference

> threshold <= threshold

maximal firing strength

Mamdani inference

Figure 7.1: An implementation of fuzzy interpolation based inference

interpolation can be decided by the threshold. In the extreme cases, if the firing thresh-

old is set to 0, no firing is made via fuzzy interpolations (if the rule base is dense). On

the contrary, if the threshold is set to 1, all data will be fired via fuzzy interpolations.

7.2 Truck Backer-Upper Problem

To demonstrate the usage of interpolation methods, the truck backer-upper problem has

been considered in this section. Truck backer-upper problem [NW90, KK92, WM92b,
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RR01] is considered a well-known benchmark in nonlinear control system and thus

raises interest for many researchers. The first attempt is made by using neural network

approaches [NW90]. The shortcoming is that neural network needs too much com-

putation load. Then the fuzzy controller has been formulated with the basis of expert

knowledge or identified from control data. Although the computation effort is signifi-

cantly saved, the controller design risks by the curse of dimensionality and suffers the

loss of comprehensibility from over-sized rule bases.

The truck backer-upper problem is illustrated in Fig. 7.2. The small cab is the

truck which can be determined by three state variablesx ∈ [0,100], y ∈ [0,200] and

φ ∈ [−90,270]. x and y are the coordinate values for horizontal and vertical axes

0

40

80

120

φ

160

200

0           10         20          30         40          50         60         70          80         90        100

Figure 7.2: Truck backer-upper system

respectively, andφ is the azimuth angle between the horizontal axis and the truck’s

onward direction. The truck begins from certain initial position (x0,y0,φ0) and should

reverse to the desired end point (50,200) with desired azimuth angle 90. To control the

truck, the steering angleθ∈ [−30,30] should be provided after every small move made

by the truck. The control problem can thus be formulated asθ = f (x,y,φ). Typically, it

is assumed that enough clearance between the truck and the loading dock exist so that

the truck y-position coordinatey can be ignored, simplifying the controller function to

θ = f (x,φ).

The demonstration of the interpolation is based on the FISMAT [Lot00] which
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originally has nine fuzzy rules as shown in Fig. 7.3. Each of the row is interpreted as
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Figure 7.3: Membership functions for 9 rules

a fuzzy rule:

IF x is A AND φ is B THEN θ isC,

whereA, B andC are the linguistic labels of the system variables. As three linguistic

labels are assigned forx andφ respectively, it leads to 3×3= 9 fuzzy rules in total for

this controller. Controlled by these nine fuzzy rules, the truck backing trajectories for
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Figure 7.4: Trajectories for 9 fuzzy rules

four initial points are shown in Fig. 7.4. All these four trajectories roughly converge

to destination point(50,200). The reaching position states including x andφ for four

trajectories are shown in the second row of Table 7.1.

Table 7.1: Reaching positions states

Initial states (20,20,90) (80,30,120) (60,40,-90) (10,30,220)

9 rules without interpolation (53.35, 89.69) (53.45, 90.52) (53.37, 90.35) (53.37, 90.58)

6 rules without interpolation (53.44, 89.51) (53.40, 90.45) (53.43, 90.84) (53.48, 90.84)

6 rules with interpolation (49.68, 84.65) (49.49, 84.83) (49.84, 97.97) (49.71, 97.98)

Such an expert fuzzy controller may potentially suffers from the curse of dimen-

sionality. That is, as the input variables and the fuzzy linguistic labels associated with

each variable increase, the number of rules increases exponentially. This is because

the domain partition which is associated with every variable’s particular label has to

be covered by at least one fuzzy rule, resulting in nine rulesin this case. Based on

the given nine fuzzy rules (Fig. 7.3), it is intuitive to find that they are symmetrical in
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some sense. For example, rule 4 and rule 6 are symmetrical if they are mirrored by rule

5: both rules 4 and 6 have the sameφ, and they are symmetrical for attributex andθ
from rule 5’s point of view. This indicates that rule 5 can be interpolated by rule 4 and

6. Thus it may be removed from this fuzzy controller. Similarly, rules 2 and 8 may be

removed as they can be interpolated by rules 1 and 3, and rules7 and 9 respectively. In

so doing, a much more compact fuzzy controller which only consists of 6 fuzzy rules

is obtained. The trajectories and reaching positions of thetruck controlled by the 6

fuzzy rules are shown in Fig. 7.5 and the third row of Table 7.1, which still roughly

converge to the destination point.

Figure 7.5: Trajectories for 6 fuzzy rules

This simplification potentially brings rule firing problem.As the rule base becomes

more and more sparse (due to the removal of rules 2, 5 and 8), itis possible that no

fuzzy rules fire for a given observation (truck state here), although this doesn’t happen

in this experiment. If, however, the firing strength threshold is set to be 0.7 (that is, any

rule fires if only the firing strength is greater than 0.7), then no rule fires the observation

with x being around 50 andφ being around 90. This leads to the sudden breaks of the

trajectories as shown in Fig. 7.6.
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Figure 7.6: Sudden breaks of trajectories for 6 fuzzy rules with firing threshold 0.7

Fuzzy interpolation technique can be deployed to resolve this problem. A possible

solution is to pre-determine a threshold to decide which inference (Mamdani or fuzzy

interpolation based) should be applied. It indicates that,for a given observation under

certain firing strength, the rule base should be treated as sparse. Therefore, the inter-

polation based inference becomes a natural choice. In this experiment, the threshold is

set to be 0.72 after several trials. With the implementation of interpolation using two

closest rules, Fig. 7.7 and fourth row of Table 7.1 show that four trajectories better

converge to the destination, although with slightly more azimuth error.

This experiment shows that the interpolation method can help simplify a given

rule base and support the inferences in a sparse rule base. First, it removes the fuzzy

rules which can be approximated (interpolated) by their neighboring rules, resulting

in a more compact rule model. This alleviates the curse of dimensionality by keeping

important rules only, rather than using all possible rules.Of course, how to decide

important fuzzy rules is still an open question, since in scaled-up applications it is not

as easy as the selection of key rules in this small application; Second, as an alternative

for traditional fuzzy inferences (such as Mamdani and Sugeno), it helps generate the
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Figure 7.7: Trajectories for 6 fuzzy rules with interpolation

results even no fuzzy rules fire with certain firing strength.

7.3 Computer-Hardware

This section applies the RDFR simplification method (as proposed in chapter 3) and

the original HS interpolation method to the computer hardware dataset [HBM98]. This

experiment shows that RDFR can result in more compact rule bases and the OHS-based

fuzzy inference can outperform Mamdani inference.

Computer hardware dataset concerns with the relative performance of computer

processing power on the basis of a number of relevant attributes. This dataset has 209

data, each of which has 7 numerical attributes (including one numerical class). In this

experiment, the dataset is divided into a training set and a test set in the following

manner. For each data instance, assign a random valuer ∈ [0.1] to it. If r < 0.5, then

such data instance is put into the training set; otherwise, to the test set. In so doing, 96

data are chosen for training and 113 for test.

For computational simplicity, trapezoidal fuzzy sets are adopted here. An optional
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factor in this experiment is the way of determining the fuzzypartitions for each nu-

meric attribute. In order to provide an identical platform to compare the performances

of using rule bases before and after applying the RDFR-basedrule reduction, two

methods of fuzzy partitions are used. The first evenly divides the universe of each

attribute into partitions with a predetermined number, resulting in a fixed number of

evenly distributed fuzzy partitions. The second uses the expectation maximization

(EM) algorithm [WF99] to determine the number of clusters for each numeric attribute,

and then uses the cluster information to determine the positions of the fuzzy partitions.

7.3.1 Experiment based on evenly divided fuzzy partitions

Due to its popularity in machine learning literature, fuzzyID3 [Jan98] is applied to

the training data of computer hardware dataset to obtain theoriginal fuzzy rule set. As

the dataset’s output class is numeric, therelative squared erroris used to evaluate the

success of numeric prediction.

Definition 14 Let the predicted values on the test data be p1, p2, . . . , pn and the actual

values be a1,a2, . . . ,an, the relative squared error is defined as

RSE=
(p1−a1)

2+ . . .+(pn−an)
2

(ā−a1)2+ . . .+(ā−an)2 , (7.1)

whereā= 1
n ∑i ai . In fact, relative squared error is made relative to what it would have

been if a simple predictor had been used. And the simple predictor in question is just

the average of the actual values from the training data. Thusrelative squared error

takes the total squared error and normalises it by dividing by the total squared error

of the average predictor.

Fig. 7.8 shows the relative squared error of the test data with respect to the size of

the evenly distributed fuzzy partitions and the number of leaf nodes (used as a criterion

to terminate fuzzy ID3 training). As can be seen, the good performance is obtained

when the number of fuzzy partitions are in the range of[4,11].

For comparison between the use of rule bases obtained beforeand after the RDFR

method, a local optimal case (in terms of the relative squared error) with the number

of fuzzy partitions being 7 and the number of leaf nodes being2 is chosen as the base
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Figure 7.8: Relative squared error of fuzzy ID3 training based on evenly divided fuzzy

partitions

comparison point. In this case, 25 fuzzy rules are obtained.Unfortunately, among the

whole 113 test data there are 6 data which cannot be fired by anyof these 25 rules,

resulting in no outputs in these cases. In order to measure the error of the unfired

data, each of them is assigned to the average actual output ofthe whole data (which is

105.62). In so doing, the relative squared error is calculated as 23.53% for this case.

7.3.1.1 OHS interpolation based inference vs. Mamdani

The previous error estimation is based on the use of the Mamdani fuzzy inference,

which is not capable of handling the data falling in the gap ofthe fuzzy rule base (this

is why 6 data were not fired). Now the proposed OHS fuzzy interpolation method is

applied to the same rule base and test data. Note that during the interpolation, the

zoom method is used to construct intermediate rules throughout all the experiments

undertaken in this chapter. In contrast to the Mamdani inference, every data is being

fired at this time. Fig. 7.9 and Table 7.2 show the relative squared error with respect to

the number of interpolated rules and the firing threshold (see section 7.1). The number
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in brackets is the amount of data which are fired by the interpolation inference (rather

than Mamdani inference).
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Figure 7.9: Relative squared error of the OHS interpolation inference based on evenly

divided fuzzy partitions

Table 7.2: Relative squared error (%) of the OHS interpolation based inference

Threshold 0(6) 0.1(6) 0.2(6) 0.3(6) 0.4(6) 0.5(6) 0.6(14) 0.7(17) 0.8(51) 0.9(53) 1.0(113)

2 23.05 23.05 23.05 23.05 23.05 23.05 23.89 24.08 22.64 22.59 16.91

3 23.27 23.27 23.27 23.27 23.27 23.27 22.06 20.80 19.26 19.18 16.73

4 23.31 23.31 23.31 23.31 23.31 23.31 22.22 20.94 19.45 19.38 15.91

5 23.58 23.58 23.58 23.58 23.58 23.58 22.60 21.30 19.92 19.84 17.60

6 23.73 23.73 23.73 23.73 23.73 23.73 23.18 21.91 20.56 20.48 27.46

7 23.69 23.69 23.69 23.69 23.69 23.69 23.25 21.94 20.60 20.52 29.52

8 23.81 23.81 23.81 23.81 23.81 23.81 23.53 22.26 20.94 20.85 30.85

Generally speaking, the OHS fuzzy interpolation inferenceproduces significantly

less relative squared error than Mamdani inference. In particular, if the threshold is 1.0

(that means all 113 test data are fired through the OHS interpolation inference) and the

number of participated rules in performing interpolation is in {2,3,4} (the normally
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used cases), the average error is 16.52%, much less than 23.53%. This significant

change in performance is due to the fact that the OHS interpolation inference can

produce sensible firing results even when the data fall in thegaps which are not covered

by the original rule set.

This experiment is based on the assumption that before the test data are fed into the

inference mechanisms, they are fuzzified to trapezoidal fuzzy sets by assigning the top

support length to be 20 and the bottom support length to be 40 (of course, the centres of

the trapezoidals are the same as the original crisp values).The reason for fuzzification

is that the test data may not be precise in practice – there aresubjective factors such

as measurements, readings during the data collections. Fuzzification of the test data

may better represent the collected data. Fig. 7.10 shows that different fuzzifications

of the test data cause different relative squared errors when the OHS interpolation

inference (firing threshold set to 1) is applied. As can be seen, the difference is not

significant when the normal size ([2,5]) of interpolated rules are used. For simplicity,

the following experiments will be undertaken based on the fuzzification of [20,40].

Note that fuzzification[0,0] is a specific case in which no fuzzification is required for

the input test data. The performance is worse in that case.

7.3.1.2 RDFR rule base simplification

To further reduce the fuzzy rule bases, the RDFR simplification as proposed in chapter

3 is applied in the experiments. As exhaustive RDFR producestoo many data (76 to

be retrieved), random RDFR is used to generate less data, say200, in this experiment.

The PART algorithm [FW98, WF99] is applied to the retrieved data, resulting in 13

ordered rules (i.e. a decision list of 13 fuzzy rules). The performance is estimated

through the use of three different fuzzy inference methods,namely, the ordered firing,

Mamdani, and OHS interpolation based inference. As the newly generated rule base

has a default rule which only consists of a class value and is used to fire a certain test

datum if no other rules can fire, its existence may not be suitable for Mamdani and

OHS interpolation based inference. To tackle this problem,the default fuzzy rule is

simply removed due to 1) the default rule is not as important as other rules in the sense

that the default rule usually covers less data than other rules do, and 2) the removal of
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Figure 7.10: Relative squared error of different fuzzifications

this rule will not cause the loss of class entries as the classdomain is in fact numerical.

Ordered firing The ordered firing works with a predetermined threshold. In partic-

ular, each rule (in the ordered list) attempts to fire the given observation data

in turn, it stops when the firing strength of itself is greaterthan the threshold.

The inference result is thus fully decided by this fuzzy rule. Table 7.3 and Fig.

7.11) show that the average of the errors following this approach is 24.63% and

the best performance is 23.50% (when threshold = 0.7), which are quite good

results in terms of the gain over rule base simplification (from 25 rules down to

13).

Table 7.3: Relative squared error of the ordered firing

Threshold 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Error (%) 24.23 24.23 24.23 24.48 24.48 24.48 24.48 23.50 25.93 26.28

Mamdani inference The test of using the 12 rules (after the removal of the default
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Figure 7.11: Relative squared error of the ordered firing

rule) leads to a relative squared error of 30.32%. Among the whole 113 test

data, 6 are not fired. Obviously, this result is not good.

OHS interpolation based inferenceThe errors of the OHS interpolation based infer-

ence with respect to the threshold and number of interpolated rules are given

in Table 7.4 and Fig. 7.12. The threshold decides what portion of the test data

are fired by the OHS interpolation based inference (rather than by Mamdani).

The values of 0.7 and 1.0 are tested in this experience, resulting in 8 and 113

data fired by OHS, respectively. Consider the normally used cases (participated

interpolated rules in[3,5]) and all test data fired via OHS interpolation based

inference (threshold = 1.0), the errors are similar to that produced by Mamdani

over the original rule base. The best performance here is only 11.84% (with

threshold being 1.0 and the number of participated interpolated rules being 10).

Alternatively, the JRip algorithm [WF99] is applied to the retrieved data, result-

ing in 9 ordered rules. The performance is again examined through the use of three

different inference methods.
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Table 7.4: Relative squared error (%) of the OHS interpolation based inference

Rule No 2 3 4 5 6 7 8 9 10 11 12

0.7 25.61 25.46 27.31 26.76 26.12 25.86 25.19 25.33 25.51 25.72 25.80

1.0 41.41 23.28 24.65 21.65 16.28 16.75 14.37 11.89 11.84 12.07 26.05
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Figure 7.12: Relative squared error of the OHS interpolation based inference

Ordered firing Table 7.5 and Fig. 7.13 show that the ordered firing obtains anaverage

error of 21.51% and the best performance of 20.11% (when threshold = 0.7),

which is a much better result compared to the original one (25rules with error

23.53%).

Table 7.5: Relative squared error of the ordered firing

Threshold 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Error(%) 21.57 21.57 21.57 21.57 21.57 21.57 21.57 20.11 21.99 21.99
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Figure 7.13: Relative squared error of the ordered firing

Mamdani inference The test of the 8 rules (after removal of the default fuzzy rule)

leads to a relative squared error of 25.07%. The performance is quite good but

it is strange that among the whole 113 test data, 95 are not fired. This is likely

due to the reason that most of the unfired data are close to the average result

(105.62). They do not contribute much error to the relative squared error of the

whole test data.

OHS interpolation based inferenceThe errors of the OHS interpolation based infer-

ence with respect to the threshold and number of interpolated rules are given in

Table 7.6 and Fig. 7.14. The thresholds of 0.7 and 1.0 are tested in this ex-

perience, resulting in 98 and 113 data fired by OHS interpolation respectively.

Consider the normally used cases (interpolated rules = [2,5]) and all test data

fired via interpolation (threshold = 1.0), the average erroris 23.84%, which is

not bad compared to the original rule base. The best performance here is 12.89%

(threshold = 0.7 and with 6 interpolated rules).
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Table 7.6: Relative squared error (%) of the OHS interpolation based inference

Rule No 2 3 4 5 6 7 8

0.7 15.16 14.71 14.35 13.24 12.89 13.07 12.97

1.0 24.79 24.12 23.17 23.26 22.41 21.11 21.12
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Figure 7.14: Relative squared error of the OHS interpolation based inference

7.3.2 Experiment based on assigned fuzzy partitions

This experiment uses the assigned fuzzy partitions rather than the evenly divided fuzzy

partitions. In particular, the Expectation Maximization (EM) algorithm [WF99] is

used to determine the number and locations of clusters for each attribute. Using such

information, the seven attributes are assigned the fuzzy partitions of 3, 5, 3, 4, 2, 3

and 9 respectively. Note that the partitions of each attribute do not have the same

shape, although all of them are trapezoidal fuzzy sets. Again, the fuzzy ID3 algorithm

is applied to the training data. The results with respect to the number of leaf nodes

are shown in Fig. 7.15. As can be seen, the best performance isobtained when the

number of leaf nodes is 15, which is chosen as the base comparison point for future
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Figure 7.15: Relative squared error of Fuzzy ID3 training based on assigned fuzzy

partitions

rule base simplifications. In this case, 33 fuzzy rules with arelative squared error of

73.02% are obtained. Unfortunately, 9 data are not covered by any rules. That is, it

is a sparse rule base. This result is much worse than 23.53% which is produced by

the experiment based on evenly divided fuzzy partitions. The main reason for this is

that the fuzzy partitions for the conditional variables arereduced from 7 to an average

of 3.33, which may not be sufficient enough to model the underlyingstructure. The

following experiments show how the combination of RDFR based simplification and

the OHS interpolation based inference help produce better results.

7.3.2.1 OHS interpolation based inference vs. Mamdani

With the same rule base and test data, the OHS fuzzy interpolation method outperforms

Mamdani inference. Fig. 7.16 and Table 7.7 show the relativesquared error of the OHS

interpolation based inference with respect to the number ofinterpolated rules and the

firing threshold. Note that the number in the brackets is the amount of data which are

fired by the OHS interpolation inference. All the listed relative squared errors are less
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Figure 7.16: Relative squared error of the OHS interpolation inference based on as-

signed fuzzy partitions

Table 7.7: Relative squared error of the interpolation inference

Threshold 0(6) 0.1(6) 0.2(6) 0.3(6) 0.4(6) 0.5(6) 0.6(14) 0.7(17) 0.8(51) 0.9(53) 1.0(113)

2 57.29 57.29 59.29 57.30 57.34 57.42 57.69 49.22 49.42 49.31 49.90

3 55.91 55.91 55.92 55.94 55.98 56.02 56.53 49.48 49.69 49.53 50.38

4 49.46 49.46 49.51 49.52 49.54 49.55 50.05 46.12 46.29 46.15 45.27

5 53.64 53.64 53.65 53.66 53.67 53.69 54.18 53.46 53.62 53.45 54.17

than the one (73.02%) based on Mamdani inference. In particular, if the threshold =

1.0 (that means all the 113 test data are fired via the OHS interpolation inference) and

the number of interpolated rules is in{2,3,4} (the normally used cases), the average

error is 48.52%, which is much less than 73.02%.

7.3.2.2 RDFR rule base simplification

Similar to the experiment based on the evenly divided fuzzy partitions, random RDFR

is used to retrieve 200 data from the original 33 rules. The PART algorithm is applied
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to the retrieved data, resulting in 19 ordered rules (a decision list of 19 fuzzy rules).

The performance is examined as follows.

Ordered firing Table 7.8 and Fig. 7.17 show that the errors of ordered firing are less

than the original 73.02% if the firing threshold falls within[0,0.5]. These results

are acceptable given that the rule number has been significantly reduced from 33

to 19.

Table 7.8: Relative squared error of the ordered firing

Threshold 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Error (%) 72.21 69.97 70.88 70.18 70.53 70.94 74.64 77.80 81.94 93.89
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Figure 7.17: Relative squared error of the ordered firing

Mamdani inference The test of the 18 (after the removal of the default one) leadsto

a relative squared error of 75.32%, leaving 1 datum unfired.

OHS interpolation based inferenceThe errors of the OHS interpolation based infer-

ence with respect to the threshold and number of participated rules in interpola-
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tion are given in Table 7.9 and Fig. 7.18. Again, the thresholds of 0.7 and 1.0

are tested here, resulting in 8 and 113 data fired by the OHS interpolation based

inference respectively. Consider the normally used cases (the number of inter-

polated rules is in [2,5]) and all test data fired via interpolation (threshold = 1.0),

an average error of 48.95% is obtained, which is much better than the error rate

produced by the original rule base. The best performance here is 45.64% (when

threshold = 1.0 and the number of interpolated rules is 4). Admittedly, such an

error rate is itself quite high, but this does not affect the present comparative

study as only the relative results are of actual interest.

Table 7.9: Relative squared error (%) of the OHS interpolation based inference

Rule No 2 3 4 5 6 7 8 9 10 11 12

0.7 50.96 48.46 45.50 46.38 54.52 61.98 63.07 61.24 55.15 54.41 57.02

1.0 54.41 49.18 45.64 46.56 58.12 66.04 65.01 61.99 52.26 57.65 56.76
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Figure 7.18: Relative squared error of the OHS interpolation based inference
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Alternatively, if the JRip algorithm is applied to the retrieved data, 11 ordered rules

are obtained. The performance estimations are shown as follows.

Ordered firing The ordered firing results (see Table 7.10 and Fig. 7.19) showthat

the best performance is 78.06% (when threshold = 0.5), which is worse than the

original error rate of 73.02%. This is not considered as a successful simplifica-

tion.

Table 7.10: Relative squared error of the ordered firing

Threshold 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Error(%) 78.48 79.25 79.24 79.10 78.09 78.06 79.95 98.57 98.58 98.56
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Figure 7.19: Relative squared error of the ordered firing

Mamdani inference The test of the 10 rules (after the removal of the default one)

leads to a relative squared error of 74.59%, with 25 data unfired by any rules. It is

a good simplification from 33 rules to 10 without significant loss of performance.

However, the problem is that some data cannot be handled.
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OHS Interpolation based inference The errors of the OHS interpolation based infer-

ence with respect to the threshold and number of interpolated rules are given in

Table 7.11 and Fig. 7.20. The thresholds of 0.7 and 1.0 are once again tested,

resulting in 86 and 113 data fired by the OHS interpolation based inference re-

spectively. Consider the normally used cases (the number ofinterpolated rules

is in [2,5]) and all test data fired via interpolation (threshold = 1.0),an average

error of 39.16% is obtained, which is much better compared to the error rate

produced by original rule base. The best performance here is36.74% (when

threshold = 1.0 and the number of interpolated rules is 9).

Table 7.11: Relative squared error (%) of the OHS interpolation based inference

Rule No 2 3 4 5 6 7 8 9 10

0.7 41.50 39.97 37.31 41.11 44.74 46.51 46.67 52.04 53.55

1.0 42.01 37.71 36.79 40.11 43.25 45.38 45.60 36.74 38.15
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Figure 7.20: Relative squared error of the OHS interpolation based inference
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7.4 Summary

This chapter demonstrates the effectiveness of the OHS interpolative reasoning method

in two realistic applications. The truck backer-upper problem has shown how the OHS

interpolation method help reduce the fuzzy rule bases, and the computer hardware

problem has shown how the OHS method serves as an effective fuzzy inference to deal

with sparse rule bases. The results in comparison with Mamdani inference have been

provided, which highlight the outstanding merit of the present work. In addition, this

chapter demonstrates the effectiveness of the RDFR-based rule base simplifications,

which produce very good reductions with the use of the OHS method.



Chapter 8

Scaled-up Applications

Unlike some computation based models such as neural networks, rule base models pro-

vide a comprehensive and transparent way for system modelling. However, there are

no principal routine methods to obtain the optimum fuzzy rule base which is not only

compact but also retains high prediction performance. To this end, two major issues

need to be addressed. First, the curse of dimensionality [Gui01, KJS02] deteriorates

the model if only the structure-complete rules are adopted.Although some research

efforts [RZK91, Wan98, ZK04, GP01] have been attempted in designing fuzzy sys-

tems with special structures so that the number of rules or parameters employed grows

slower than exponentially as the dimension increases, unfortunately, these methods

cannot reduce but transfer the complexity. In addition, therelationship between fuzzy

rules and the linguistic knowledge in the special structured fuzzy system may no longer

be preserved. The scale-up applications described in this chapter avoid this problem

by using non structure-complete rules. Attribute selection techniques have also been

integrated to simplify the fuzzy rule bases.

The second issue appears following the usage of non structure-complete rules –

sparse rule bases (rather than dense ones) may be encountered. The traditional fuzzy

inferences such as Mamdani [MA75] cannot handle such sparserule bases. Interpo-

lation methods have to be used under this circumstance. The comparison between the

proposed OHS, EHS interpolation methods and other existinginterpolation methods

are investigated.

178
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8.1 Task Domain

The computer activity database [RNe96] is a collection of measures over a computer

system’s activity. The data were collected from a Sun Sparc station 20/712 with 128

Mbytes of memory running in a multi-user university department. Users would typi-

cally be doing a large variety of tasks ranging from accessing the internet, editing files

or running cpu-bound programs. The data were collected continuously on two separate

occasions. On both occasions, system activity was gatheredonce every 5 seconds. The

final dataset is taken from both occasions with equal numbersof observations coming

from each collection epoch in random order. This dataset includes 8192 cases, with

each involving 22 continuous attributes as shown below. Thetask is to predictusr,

portion of time that cpus run in user mode from all attributes1-21.

1. lread - Reads (transfers per second) between system memory and user memory

2. lwrite - Writes (transfers per second) between system memory and user memory

3. scall - Number of system calls of all types per second

4. sread - Number of system read calls per second

5. swrite - Number of system write calls per second

6. fork - Number of system fork calls per second

7. exec - Number of system exec calls per second

8. rchar - Number of characters transferred per second by system read calls

9. wchar - Number of characters transferred per second by system write calls

10. pgout - Number of page out requests per second

11. ppgout - Number of pages, paged out per second

12. pgfree - Number of pages per second placed on the free list

13. pgscan - Number of pages checked if they can be freed per second
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14. atch - Number of page attaches (satisfying a page fault byreclaiming a page in

memory) per second

15. pgin - Number of page-in requests per second

16. ppgin - Number of pages paged in per second

17. pflt - Number of page faults caused by protection errors (copy-on-writes)

18. vflt - Number of page faults caused by address translation

19. runqsz - Process run queue size

20. freemem - Number of memory pages available to user processes

21. freeswap - Number of disk blocks available for page swapping

22. usr - Portion of time (%) that cpus run in user mode

8.2 Experimental Results

The data are divided into two folds so that the training data have approximately 2/3

of the whole data (5462) and test data take the rest (2730). Consider there may exist

redundant or less relevant information in the original 22 attributes, a process of at-

tribute selection is carried out to choose the most informative ones. For simplicity, the

correlation-based feature subset selection [Hal99, WF99]is used for this, resulting in

11 (read, small, sread, swrite, exec, rchar, pflt, vflt, runqsz, freeswap, and usr) selected

attributes.

8.2.1 Initial Fuzzy Rule Base

The well-known fuzzy ID3 training scheme [Jan98] is adoptedhere to create fuzzy

rules. For simplicity, triangular fuzzy sets are used and they are assumed to be evenly

distributed over each attribute domain. Fuzzy ID3 with different configurations (in

terms of the number of fuzzy sets and the minimal leaf nodes) are carried out and the

relative squared errors (relative to the simple average predictor) are shown in Fig. 8.1.



Chapter 8. Scaled-up Applications 181

This reveals a trend in the given dataset that the more fuzzy sets used in the training,
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Figure 8.1: Relative squared error

the better performance the resulting rules have. However, the number of rules may

become very large at the same time. For instance, with the number of the leaf nodes

(as a criterion to terminate the fuzzy ID3 training) being 0,the resulting rule base size

increases from 55 to 477 if the number of fuzzy sets increasesfrom 3 to 7. In order

to provide a fair platform to compare the interpolation based inference with the well

known Mamdani inference [MA75], both the rule base size and the prediction error

have to be considered. For this, an optimal resultant rule base, which has 47 rules and

an error rate of 13.29%, is chosen (where the number of fuzzy sets is 6 and the number

of minimal leaf nodes is 480). Note that in this rule base, 4 among the 2730 test data

are not fired by any of the 47 rules using Mamdani inference. That is, the obtained rule

base is in fact a sparse rule base.

8.2.2 Interpolation Based Fuzzy Inferences vs. Mamdani

The previous performance evaluation is based on the Mamdaniinference. Now the

interpolation based inference is tested over this rule baseand test data. To provide
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a fair platform for comparison, all methods used here (the general [BGK96], QMY

[QMY96], the proposed OHS and EHS methods) are intermediaterule based fuzzy

interpolations (see section 2.4). That is, all of them make use of the intermediate rule

in performing interpolations. Other methods such as KH [KH93a, KH93c], modified

KH [TB00] are not considered as there is no indication for them to implement then

(n > 1) nearest rules interpolations.

It is possible that some attribute values of the intermediate rule exceed the limit

of the domain space of that attribute. This is because duringthe construction of the

intermediate rule, extrapolation may be involved and it maylead to the intermediate

fuzzy terms becoming out of ranges. It is also possible that the fuzzified data objects

exceed the domain space. Therefore, special treatments aredesirable for interpolations:

For general interpolation, if either the fuzzified data object or the fuzzy term of the

intermediate rule exceeds the input space on a particular attribute, such an attribute is

ignored in performing the interpolation as this method cannot handle it. Similarly, for

QMY and EHS methods, if the intermediate rule has a vertical slope (on either side)

for a certain attribute, such an attribute is ignored as these two methods cannot handle

this case. However, there is no constraint over the proposedOHS method, thus no

attributes would be dropped in performing interpolation with OHS.

The interpolations are based on the assumption that the testdata are fuzzified to

isosceles triangular fuzzy sets by assigning support lengths with proper portions of

the support lengths of the fuzzy terms used in constructing fuzzy rules (of course,

the centres of the fuzzified observations are the same as the original crisp values).

For example, fuzzification of(0,1/8) assigns1
8 of the support length of the fuzzy

terms (used in the rule base) to that of the input data object.The reason of applying

fuzzification is that the test data may not be precise in practice due to factors such as

measurement and readings errors. Fuzzification of the test data may better represent

the collected data. Of course, fuzzification(0,0) means no fuzzification is performed.

The results of different interpolation methods with respect to various fuzzifications

of the test data objects are shown in Table 8.1 and Table 8.2 for shift and zoom interme-

diate rule constructions (see section??) respectively. Note that all errors are calculated

as the average of the errors in interpolating two or three nearest rules. The results
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Table 8.1: Relative squared error of the interpolation inferences with shift method

Fuzzification (0, 0) (0, 1/8) (0, 1/4)

General 8.45% 60.01% 56.53%

QMY 8.05% 7.62% 7.60%

Original HS (centre of core) 8.05% 7.58% 7.20%

Original HS (average) 6.92% 6.92% 6.92%

Original HS (average weighted) 6.22% 6.25% 6.28%

Enhanced HS (centre of core) 8.05% 7.81% 7.80%

Enhanced HS (average) 6.92% 6.92% 6.92%

Enhanced HS (average weighted)6.22% 9.53% 18.86%

Table 8.2: Relative squared error of the interpolation inferences with zoom method

Fuzzification (0, 0) (0, 1/8) (0, 1/4)

General 7.41×106% 7.31×106% 7.24×106%

QMY 7.44×106% 7.39×106% 7.33×106%

Original HS (centre of core) 7.44×106% 7.42×106% 7.39×106%

Original HS (average) 242.21% 242.21% 242.21%

Original HS (average weighted) 209.93% 314.00% 608.14%

Enhanced HS (centre of core) 7.44×106% 7.39×106% 7.33×106%

Enhanced HS (average) 325.59% 325.59% 325.59%

Enhanced HS (average weighted) 290.25% 295.17% 303.54%

clearly show that all shift construction based interpolation inferences (except for some

cases when using the general interpolation method) outperform Mamdani inference.

The reason of the poor performance for the general method is that it drops too many

attributes (if either fuzzy terms of the intermediate rulesor the fuzzification of input

data objects exceed the input domain), resulting in massiveinformation loss. On the

contrary, as the original HS method does not need to drop any attributes, it results in

very good and stable performance. QMY and the enhanced HS method are between



Chapter 8. Scaled-up Applications 184

these two and generate better performance than that produced by Mamdani. However,

as the strategy of dropping attributes is not part of the general interpolation method, it

is assumed so just for the comparison of interpolations involving multiple fuzzy rules.

There may exist other possible approaches, in which the general does not necessarily

drop attributes, thus hopefully resulting in a better performance.

The best performance is 6.22% where the original (or enhanced) HS interpolation

is used and no fuzzification is made for the input data objects. This error is even less

than half of the error rate of 13.29% (produced by Mamdani inference). In addition

to the high performance, the interpolation methods inferences are capable of firing all

data including those were not fired by the Mamdani inference.It is worth noting that

the fuzzification of the test data with different support lengths does not significantly

affect the prediction error of the original HS method. This ensures the stability of this

method. In particular, if the average RV is used, the resultsare exactly the same across

different support lengths. This is because the value of the average RV over a fuzzy set

is exactly the same as the fuzzified crisp value created from the defuzzification method

used (centre of gravity) over the same fuzzy set.

8.2.3 Shift vs. Zoom

However, the zoom intermediate rule construction method results in poor results. This

is because during some rule firing, theγ value may be very small or large, which is far

away from the desired stable value (1). This will make the output fuzzy term of the

intermediate rule to become very unstable, leading to an enormous error in interpola-

tions. Fortunately, this problem does not occur in the shiftconstructing method, which

makes the shift method a more reliable choice. An example is presented to explain

this. Suppose a data object

1.0, 2165, 205, 101, 1.2, 43107, 19.4, 161.8, 3, 1131931, 88

is considered to be fired by the 47 rules in the initial fuzzy rule base, two nearest fuzzy

rulesr1 andr2 are selected and they are listed as follow:

r1 : null,null,null,null,null,null,null,FTerm1,null,FTerm3,FTerm4,

r2 : null,FTerm1,null,null,null,FTerm0,null,FTerm1,null,FTerm2,FTerm4
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whereFTermi(i = {0, . . . ,5}) is theith fuzzy term assigned for a particular attribute.

Attention is drawn to attribute 6, on which the given data value is 43107, and the

fuzzy term of ruler2 is FTerm0(278.0,278.0,505552.2) (rule r1 has null value on this

attribute). In order to move this fuzzy term to a new positionso that it has the RV

value 43107, the calculatedγ would be 155.06>> 1 (assume the centre of core RV is

used), resulting in the averageγ of all input attributes to be 39.37. This further causes

the output fuzzy term of the intermediate rule to become(2338.74,3118.32,3897.90).

This is obviously wrong as the output domain space actually is [0,99]. If, however, the

shift is used, theδ calculated on attribute 6 is 0.017, which is close to the stable value 0.

It thus leads to a reasonable output term of the intermediaterule (59.40,79.20,99.00).

In order to provide a unique platform for the following experiments, several as-

sumptions are made. Firstly, as the general and QMY methods implicitly make use of

the centre of core RV value, the original HS and the enhanced HS methods use this RV

definition as well. Secondly, the shift method (rather than the zoom one) is chosen in

the following experiments due to its stability and effectiveness. Thirdly, the fuzzifica-

tion of the test data is set to(0, 1
4). That is, for each attribute, the fuzzification process

assigns1
4 of the support length of the fuzzy terms (used in the rule base) to that of the

corresponding input test data.

Now the RDFR based rule base reduction and interpolation based inferences are

applied in the following two subsections, namely the reduction based on 11 attributes

and that based on reduced 4 attributes. The difference is that the latter is integrated

with the feature selection technique to further reduce the number of attributes from 11

to 4.

8.2.4 RDFR Based Rule Base Reduction over 11 Attributes

Since exhaustive RDFR causes too many data (611 in this case), random RDFR is used.

In order to sufficiently represent the model, 2000 data are chosen to be retrieved from

RDFR. To better demonstrate the performance of the RDFR rulebase reduction and

interpolation based fuzzy inference, five experiments based on five different random

2000 data are carried out. In each experiment, PART [FW98, WF99], JRip [WF99]

and ID3 [Qui86] are integrated with the RDFR reduction respectively.
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8.2.4.1 PART-based RDFR Rule Base Reduction

The PART algorithm is applied to the five sets of 2000 random data. The number

of rules generated in the five experiments are shown in Table 8.3. The performance

Table 8.3: The number of rules in PART based RDFR reduction with 11 attributes

# 1 2 3 4 5

Number 31 25 30 28 30

of the new rule bases is examined through three different inference methods, namely,

the ordered firing, Mamdani, and the interpolation based inference. As the newly

generated rule base has a default rule which only consists ofa class value and is used

to fire the test data if no other rules can fire, its existence may not be suitable for

Mamdani and interpolation based inference. As with before,the default fuzzy rule is

simply removed due to the observation that 1) the default rule is not as important as

other rules in the sense that it usually covers less data thanother rules does, and 2)

removal of this rule will not cause the loss of class entries as the class domain is in fact

numerical.

Ordered firing The ordered firing works with a predetermined threshold. In particu-

lar, each rule (in the ordered list) attempts to fire the givenobservation data in

turn, it stops when the firing strength of itself is greater than the threshold. Fig.

8.2 shows that the errors of the ordered firing (with respect to different thresh-

olds) are not stable, although in a small range of thresholds([0.4,0.5]) the perfor-

mance seems good (with the error rates being in the range of[10.64%,12.47%]).

Mamdani inference After the removal of the default rule, the relative squared error of

the Mamdani inference is shown in Table 8.4. As can be seen, the performance

is bad for every experiment.

Interpolation based inferencesThe average errors of the interpolation based infer-

ences, namely the general, the QMY, the original HS, and the enhanced HS are
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Figure 8.2: Relative squared error of the ordered firing in PART based RDFR reduction

with 11 attributes

Table 8.4: Relative squared error of the Mamdani inference in PART based RDFR re-

duction with 11 attributes

# 1 2 3 4 5

Error 54.37% 60.84% 61.67% 35.98% 56.20%

shown in Table 8.5. As can be seen, all interpolation methodsperform differently

in the third experiment. This may be because the randomly retrieved dataset in

such experiment does not properly represent the underlyingdata structure, or

the PART algorithm cannot learn a proper structure from sucha dataset. For all

five experiments, although the original HS interpolation based fuzzy inference

outperforms or is roughly equal to (only in the third experiment) others, the low-

est relative squared error achieved is too high (26.42%, by the original HS in

the fourth experiment). It can be concluded that none of themis a successful

reduction compared to the original rule base (with an error rate of 13.29%).



Chapter 8. Scaled-up Applications 188

Table 8.5: Relative squared error of the interpolation based inferences in PART based

RDFR reduction with 11 attributes

# 1 2 3 4 5

General 80.68% 62.60% 115.37% 44.60% 62.37%

QMY 69.50% 55.67% 109.35% 73.43% 34.03%

Original HS 47.61% 34.59% 109.90% 26.42% 29.62%

Linear HS 69.68% 55.91% 109.40% 73.54% 34.10%

It can be summarised that the PART based RDFR rule base reductions do not

achieve a satisfiable fuzzy model in this case. In fact, RDFR base reductions pro-

vide aframeworkfor rule base simplification. The implementation of such framework

has many choices. It includes which data retrieving technique is used and how many

data are retrieved, which training scheme is chosen to re-train the retrieved dataset,

and which fuzzy inference is adopted etc. It is not surprise that the reductions do not

always achieve good simplified models.

8.2.4.2 JRip based RDFR Rule Base Reduction

This subsection applies the JRip-based RDFR rule base reduction to five sets of 2000

random data, resulting five new rule bases. The size of such rule bases are shown in

Table 8.6. As can be seen, the rule number is significantly simplified from the original

47 to an average of 15. Note that experiments 3 and 4 result in the same number of

rules. In fact, these two rule bases are so similar that they lead to nearly identical

error rates in the following ordered firing. As with the PART-based RDFR rule base

Table 8.6: The number of rules in JRip based RDFR reduction with 11 attributes

# 1 2 3 4 5

Number 14 16 15 15 14

reduction, the performance is examined through the ordering firing, Mamdani, and
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interpolation based inferences.

Ordered firing The ordered firing results (see Fig. 8.3) show that all the fiveex-

periments except the second produce very consistent and stable error rates. In

particular, the fifth experiment produces the best result of8.87% when the firing

threshold is set to 0.4. A maximal error of 13.23% is obtained if the threshold is

set in the range[0,0.5], which can thus be treated as a safe range to test unseen

data. In summary, the combination of the JRip-based RDFR reduction and the

ordered firing inference offers a very good simplification – it not only simplifies

the rule number from 47 to an average of 15, but also increasesthe prediction

accuracy when a proper fire threshold is given.
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Figure 8.3: Relative squared error of the ordered firing in JRip based RDFR reduction

with 11 attributes

Mamdani inference After the removal of the default rule, the relative squared error of

the Mamdani inference is shown in Table 8.7. As can be seen, the performance

is worse than the original (13.29%) for every experiment.

Interpolation based inferencesThe average errors of the general, QMY, original HS,
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Table 8.7: Relative squared error of the Mamdani inference in JRip based RDFR reduc-

tion with 11 attributes

# 1 2 3 4 5

Error 27.78% 24.02% 33.21% 33.83% 33.80%

and enhanced HS methods are shown in Table 8.8. The minimal relative squared

error achieved for four interpolation methods is 34.47% (by general interpolation

in the first experiment). Although fuzzy inferences based onthe general method

and the original HS produce less error than the average predictor (by always

assigning the average of the output of the training data to bethe prediction),

neither of them is suitable to perform fuzzy inference. The reason that QMY

and the enhanced HS method perform so poorly will be explained in section 8.3.

Table 8.8: Relative squared error of the interpolation based inferences in JRip based

RDFR reduction with 11 attributes

# 1 2 3 4 5

General 34.47% 36.89% 45.52% 39.89% 38.50%

QMY 5.56×104% 96.16% 4.03×104% 4.00×104% 4.32×104%

Original HS 50.99% 41.33% 55.25% 53.51% 52.95%

Linear HS 5.56×104% 97.58% 4.04×104% 3.99×104% 4.32×104%

It can be summarised that the JRip based RDFR rule base reductions do not lead

to stable and good results if the Mamdani or interpolation based inference is adopted.

However, they do provide promising results when the orderedfiring inference is em-

ployed.
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8.2.4.3 ID3-based RDFR Rule Base Reduction

It is interesting to investigate the results of feeding the retrieved five sets of 2000 data

again into the ID3 training scheme. Is the new rule base produced by applying both

fuzzy ID3 and crisp ID3 better than the original one (merely produced by fuzzy ID3)?

Table 8.9 shows the average number of rules and average errorrates of the five ex-

periments with respect to different number of leaf nodes (Tobj, used as a criterion

to terminate the training). In fact, the range of{50,100,150,200} of T obj has been

fully tested. As the former two settings (50 and 100) may generate more rules than

the original of 47 (which is against the purpose of rule base simplification), only the

settings of 150 and 200 are used for the results comparison.

Among the five experiments, the best results are achieved by using the original HS

based fuzzy inference (as shown in Table 8.10), which has 37 rules with an error rate

of 7.25% (T obj = 150), or has 34 rules with an error rate of 9.69%(T obj = 200).

Table 8.9: Average results of the ID3 based RDFR reduction with 11 attributes

T obj Rule No Mamdani general QMY original HS enhanced HS

150 36.8 14.39% 40.53% 3.72×103% 10.90% 3.61×103%

200 29.2 18.03% 62.45% 7.20×105% 17.37% 4.29×105%

Table 8.10: Best results of the ID3 based RDFR reduction with 11 attributes

T obj Rule No Mamdani general QMY original HS enhanced HS

150 37 13.19% 51.82% 8.93% 7.25% 9.14%

200 34 17.67% 53.92% 11.40% 9.69% 11.63%

8.2.5 RDFR Based Rule Base Reduction with 4 Attributes

Feature selection is widely used to filter out the irrelevantor less important attributes.

It can thus help achieve more efficient and compact rule models. This subsection
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illustrates the integration of feature selection into the RDFR based rule base reduc-

tion. The basic idea is to apply feature selection techniques to the newly retrieved

data, reducing the number of attributes for further re-training. Again, the method of

correlation-based feature subset selection [Hal99, WF99]is adopted, leading to only

four attributes (scall, vflt, freeswap, usr) remained. The original randomly generated

five 2000 data are trimmed so that values of those four attributes are remained for each

datum. Once again, five experiments are carried out and the performance is discussed.

In each experiment, the PART, JRip and ID3 are integrated into the RDFR rule base

simplification.

8.2.5.1 PART-based RDFR Rule Base Reduction

The PART-based RDFR rule base reduction is applied to the fivesets of 2000 randomly

retrieved data to generate five new rule bases. The rule numbers of such rule bases are

shown in Table 8.11. As with before, the performance evaluation is made through the

Table 8.11: The number of rules in PART based RDFR reduction with 4 attributes

# 1 2 3 4 5

Number 24 19 24 25 20

ordered firing, Mamdani, and interpolation based inferences. Again, the default rule is

removed when the latter two inference mechanisms are used.

Ordered firing The ordered firing results (see Fig. 8.4) show that the errorsare not

stable, although in a small range of thresholds ([0.4,0.5]) the performance seems

good (the error rates are in the range of[14.32%,16.87%]). The best perfor-

mance is 14.32%, which is achieved by four out the five experiments (with firing

threshold set to 0.5).

Mamdani inference After the removal of the default rule, the relative squared error of

the Mamdani inference is shown in Table 8.12. As can be seen, the performance

is poor in every experiment.
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Figure 8.4: Relative squared error of the ordered fire in PART based RDFR reduction

with 4 attributes

Table 8.12: Relative squared error of the Mamdani inference in PART based RDFR

reduction with 4 attributes

# 1 2 3 4 5

Error 57.26% 56.24% 55.47% 44.81% 50.07%

Interpolation based inferencesThe average errors of the four interpolation based in-

ferences are shown in Table 8.13. As can be seen, although theoriginal HS inter-

polation outperforms the others, the minimal relative squared error achieved for

four interpolation methods is too large (26.88%, by original HS in the fifth ex-

periment). It can be concluded that none of them is a good reduction compared

to the original rule model (with an error rate of 13.29%).

It can be summarised that the use of PART-based RDFR reductions does not lead

to a satisfiable fuzzy model.
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Table 8.13: Relative squared error of the interpolation based inferences in PART based

RDFR reduction with 4 attributes

# 1 2 3 4 5

General 81.93% 55.21% 66.68% 48.83% 57.71%

QMY 69.16% 52.83% 55.51% 49.63% 54.02%

Original HS 47.78% 32.85% 34.26% 28.18% 26.88%

Linear HS 69.30% 53.18% 55.72% 49.87% 54.13%

8.2.5.2 JRip-based RDFR Rule Base Reduction

This subsection applies the JRip-based RDFR rule base reduction to five sets of 2000

randomly retrieved data. Five new rule bases are generated and the sizes of such five

rule bases are shown in Table 8.14. As can be seen, the rule number is significantly

simplified from the original 47 to an average of 10.4. Note that all experiments except

the second result in exactly the same rule base. Once again, the performance of the

Table 8.14: The number of rules in JRip based RDFR reduction with 4 attributes

# 1 2 3 4 5

Number 10 26 10 10 10

simplified rule bases are compared through different fuzzy inferences including the

ordered firing, Mamdani, and interpolation based inferences.

Ordered firing The ordered firing results (see Fig. 8.5) show that all the fiveexperi-

ments except the second produce consistent and stable errorrates. However, the

second experiment produces the best result (9.38%) when the fire threshold is

set to 0.2. The maximal error of 14.32% is obtained if the threshold is in the

range of[0,0.5]. This gives a very good reduction in terms of rule size (from 47

to an average of 10.2), with little performance compromised.

Mamdani inference After the removal of the default rule, the relative squared error
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Figure 8.5: Relative squared error of the ordered firing in JRip based RDFR reduction

with 4 attributes

of the Mamdani inference is shown in Table 8.15. Although theperformance is

not so bad, the problem is that this inference cannot handle alarge amount of

data (330) among the 2730 test data.

Table 8.15: Relative squared error of the Mamdani inference in JRip based RDFR re-

duction with 4 attributes

# 1, 3, 4 and 5 2

Uncovered data 330 330

Error 20.80% 18.60%

Interpolation based inferencesThe average errors of the general, QMY, original HS,

and enhance HS methods are shown in Table 8.16. The minimal relative squared

error achieved for four interpolation methods is 38.38% (by the general inter-

polation based fuzzy inference). Although the general and original HS based
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inferences produce less error rate than the inference of average predictor, none

of them is satisfiable. The reason that the QMY and enhanced HSmethods per-

form so poorly will be explained in section 8.3.

Table 8.16: Relative squared error of the interpolation based inferences in JRip based

RDFR reduction with 4 attributes

# 1,3,4 and 5 2

General 38.38% 40.12%

QMY 3.64×106% 49.79%

Original HS 49.36% 39.27%

Linear HS 3.64×106% 51.00%

It can be summarised that the JRip-based RDFR rule base reduction does not lead

to a practical solution by using Mamdani, nor does it producestable and good results

by using the interpolation based fuzzy inferences. However, it does provide promising

results with the usage of the ordered firing inference.

8.2.5.3 ID3-based RDFR Rule Base Reduction

As with before, the range{50,100,150,200} of the leaf nodes has been tested. Since

only the use of 50 generates more rules than the original number (47), the leaf nodes

settings of 100, 150 and 200 are thus employed for the resultscomparison. Table 8.17

shows the average number of rules and average error rates forthe five experiments with

respect to the number of leaf nodes (Tobj). From this table, it is clear that the original

HS based fuzzy inference outperforms the Mamdani inference, which outperforms the

general interpolation based inference. However, the QMY and enhanced HS based

inferences again perform very poorly.

Among the five experiments, the best results are achieved with the use of the orig-

inal HS interpolation based fuzzy inference. Such results (see Table 8.18) include an

error rate of 8.85% if T obj is set 100 or 150 (with 24 rules), or an error rate of 11.25%

if T obj is set 200 (with 21 rules). All these results are more encouraging compared
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to those produced in section 8.2.4. The main reason is that the experiments in this

subsection make use of feature selection techniques.

Table 8.17: Average results of the ID3 based RDFR reduction with 4 attributes

T obj Rule No Mamdani general QMY Original HS Enhanced HS

100 34.8 16.53% 43.19% 3.72×103% 8.70% 3.72×103%

150 28.4 17.66% 43.36% 3.72×103% 9.32% 3.72×103%

200 21.8 21.07% 65.64% 4.35×105% 15.48% 4.35×105%

Table 8.18: Best results of the ID3 based RDFR reduction with 4 attributes

T obj Rule No Mamdani general QMY Original HS Enhanced HS

100 or 150 24 16.72% 56.50% 11.03% 8.85% 11.14%

200 21 21.21% 58.61% 13.47% 11.25% 13.58%

8.3 Discussions

Although there are considerable fuzzy interpolation methods existing in the literature,

no work has so far been done to apply the fuzzy interpolation methods to real world

applications. This chapter has applied fuzzy interpolation based inferences to solve

real life problems.

The work carried out in this chapter is based on the shift method to construct the

intermediate rules. It has been shown that this method workswell with the original HS

fuzzy interpolation, but not good with other fuzzy interpolation approaches. There may

exist other techniques to create the intermediate rules, through which the performance

of other interpolation methods may become better.

As mentioned before, the QMY and enhanced HS interpolation methods cannot

handle the certain cases where the intermediate fuzzy termshave vertical slopes. What
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happens if the intermediate fuzzy terms have slopes which are nearly vertical? In these

cases, the rates (for QMY) or the scale criteria (for enhanced HS) become very large,

leading to massive error in computing interpolations. An example is given to explain

this. Consider the experiments with 4 attributes, if a test datum is given as follows:

3783,717.6,30,0,

representing the values of attributes scall, vflt, freeswarp and usr (the class attribute)

respectively. After fuzzification of the antecedent part ofthe test datum, the following

vector of fuzzy terms is obtained:

(3525,3783,4041), (689.2,717.6,746.0), (−0.5×105,30,0.5×105),

where each element represents a triangular fuzzy set. Givensuch an observation, the

intermediate fuzzy rule constructed by the shift method is

null, (444.6,717.6,990.6), (16,30,4.5×105).

Fig. 8.6 shows the data object and the intermediate fuzzy rule. As the intermediate

rule has a null value on the first attribute, this attribute isignored in performing the

interpolation.

The third attribute causes trouble for both QMY and enhancedHS interpolations.

As can be seen, the intermediate rule has a nearly vertical slope on the third attribute. In

this case, the QMY method results in the left ratio being 3337.97, which is far greater

than the stable value of 1 (which normal ratios should be close to). The interpolation

contribution of this attribute leads to the final result(−1.90×104,33.51,35.57), which

is fuzzified to the crisp output of−6.18× 103. Obviously, this output is far away

from the actual output (0). Similarly, the enhanced HS method results in the left scale

criterion being 3337.97 >> 1 (the stable value that normal scale criteria should be

close to). It further leads to the output(−1.86×104,33.51,35.57) in fuzzy form and

−6.18×103 in crisp form.

For the general interpolation, as the fuzzy term of the observation on this attribute

exceeds the range of the domain space ([2,2243184]), this attribute is simply ignored

while computing the interpolation, which leads to a crisp output of 33.81. Ignoring
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Figure 8.6: An example showing why various interpolation methods perform differently

attribute three makes the interpolation to be still valid (avoiding the difficulty in inter-

polation using QMY and enhanced HS interpolations). However, it inevitably leads to

certain loss of information, resulting in less accurate conclusions. Yet the original HS

interpolation handles this case as usual without any loss ofinformation. The result is

33.44, which although is not so close to the actual output (0), isfar more accurate than

those obtained by using other interpolation methods.

8.4 Summary

As a novel approach, RDFR based rule base simplification provides a flexible and

effective framework to simplify rule bases (crisp or fuzzy). Three training schemes

including PART, JRip and ID3 have been integrated into this framework to solve real
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world problems.

This chapter has shown not only the success of the RDFR rule base reduction, but

also the potential of interpolation based fuzzy inferences. Their major advantage is

that they are capable of handling sparse rule bases. The comparison between different

interpolation based fuzzy inferences have shown that the original HS interpolation

outperforms the others (although the enhanced HS has the advantage of preserving

piecewise linearity, unfortunately, it cannot obtain as good performance as the original

one). The main reason is that the original HS method is robustenough to handle the

vertical slope cases as described in section 8.3.

In all experimental studies there has been no attempt to optimise fuzzification. It

can be expected that the results obtained with optimizationwould be even better than

those already observed. In addressing real world applications, this optimization should

be done via domain heuristics or by exploring fuzzy clustering algorithms in order to

further improve the performance of the systems.



Chapter 9

Conclusion

This chapter concludes the thesis. Firstly, a summary of theresearch presented in this

thesis is given. Secondly, possible future work is outlined, including several further

developments for the RDFR rule base simplification method aswell as those for the

family of HS interpolative reasoning methods.

9.1 Thesis Summary

This section summarises the main work which includes a novelrule base simplifica-

tion method and a family of fuzzy interpolation methods. Thecombination of these

two approaches results in very good reductions of fuzzy rulebases as described in

chapter 8.

9.1.1 RDFR Rule Base Simplification Method

Rule model simplification techniques are desired to alleviate thecurse of dimensional-

ity and to maintain models’ effectiveness and transparency. This thesis has proposed

a novel simplification method by means of a procedure calledretrieving data from

rules (RDFR). It first retrieves a set of new data from an original rule base. Then it

retrains the new data using certain rule induction schemes to build a more compact

rule model, while maintaining a satisfactory performance.This proposed method has

four advantages. 1) It can reduce rule bases without using the original training data,

201
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and it is capable of handing the case in which both a rule base and some training data

are given. 2) It builds a flexible framework in which any rule induction or reduction

methods can be integrated. 3) It implements the approaches of similarity merging

[CCT96, KB95, SBKL98] and inconsistency removal [XL02]. 4)It makes use of rule

weights (if applicable). Illustrative examples and realistic applications have been pro-

vided to demonstrate the success of this work.

9.1.2 HS Fuzzy Interpolations

This thesis has proposed a generalised, scale and move transformation-based, inter-

polative reasoning method (original HS method) which can handle interpolation of

complex polygonal, Gaussian and other bell-shaped fuzzy membership functions. The

method works by first constructing a new intermediate rule via manipulating two adja-

cent rules (and the given observations of course), and then converting the intermediate

inference result into the final derived conclusion, using the scale and move transforma-

tions. This has been further developed into the enhanced HS method. It can preserve

the piecewise linearity property for any polygonal fuzzy membership functions. The

extension to interpolation (and extrapolation) involvingmultiple variables and multiple

rules is accommodated in detail.

The original HS method not only inherits the common advantages of fuzzy inter-

polative reasoning – allowing inferences to be performed with simple and sparse rule

bases, but also has another two advantages: 1) It provides a degree of freedom to

choose various RV definitions for different application requirements. 2) It can handle

the interpolation of multiple rules, with each rule having multiple antecedent variables

associated with arbitrary polygonal fuzzy membership functions. In addition to all the

advantages the OHS has, the enhanced HS method has less computation cost than OHS

(see chapter 6), and preserves the piecewise linearity property for any polygonal fuzzy

functions (see chapter 6). It is worth stressing that the piecewise linearity property is

essential to ignore artificial characteristic points in performing the interpolations. Un-

fortunately, the enhanced HS method does not perform as wellas the original HS one

in practice as it cannot properly handle the vertical slope cases (see section 8.3). This

is set as the main future work to be resolved.
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The original and enhanced HS methods lead to a big family of interpolative rea-

soning methods. This is because of 1) the flexibility in choosing different RVs in

implementation, 2) the order swap of scale and move transformations, and 3) the alter-

native choices for the order of computing the scale rates (ormove rates). For example,

in the original HS method, the scale rates are calculated from the bottom to the top of

the fuzzy sets, the alternative solution may calculate in the reverse way: from the top

to the bottom.

9.1.3 Complex Model Simplification

As a novel approach, RDFR rule base simplification provides aframework to effec-

tively and efficiently simplify the rule bases (either crispor fuzzy). This method has

been applied to the computer activity dataset [RNe96] whichincludes 8192 cases, with

each having 22 continuous attributes. The scaled-up application (chapter 8) has shown

not only the success of the RDFR based rule reduction, but also the potential of the

interpolation based fuzzy inferences. The major advantageof the interpolation based

inferences is that they are capable of handling sparse rule bases. The comparison has

shown that the original HS interpolation outperforms Mamdani, general, QMY and the

enhanced HS interpolation approaches.

In all experimental studies there has been no attempt to optimise the fuzzifications

employed. It can be expected that the results obtained with optimization would be even

better than those already observed. In solving a real world problem, this optimization

should be done via heuristics or exploring clustering algorithms in order to further

improve the performance of the systems.

9.2 Future Work

This section presents important further work to improve theRDFR rule base simplifi-

cation method and the family of the HS fuzzy interpolation mechanisms.
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9.2.1 RDFR Rule Base Simplification Method

Different retrieving methods are needed to carefully investigate with respect to differ-

ent weighted rules. The number of retrieved data should reflect the importance of the

given rule in terms of its weight. Thus the principle should be: the greater weight a

fuzzy rule has, the more data are retrieved from this rule.

Also, this method only applies tonon-structure-completerules. The retrieving

techniques to coping withstructure-completerules require further research. That is,

numeric data rather than the fuzzy linguistic terms based data will be retrieved. New

fuzzification partitions should be employed. This may risk destroying the semantic

meaning of the original predefined fuzzy sets, but it may opena new door to form

more reasonable fuzzy partitions, thereby leading to a moreefficient way of modelling

the given problems.

9.2.2 HS Fuzzy Interpolations

Although the family of the HS interpolation methods have been significantly devel-

oped, there is still room to improve the present work. In particular, the piecewise lin-

earity is worth further analyzing from the mathematical perspective. Since fuzzy sets

can be represented as points in high dimensional Cartesian spaces [YK00], a fuzzy

interpolation can be represented as the mapping from one point in a high dimensional

space to one point in another (with the two spaces having the same dimensionality

which is equal to the number of the characteristic points of the considered fuzzy sets).

Due to the preservation of the piecewise linearity, the enhanced HS method may be

used in the mathematics literature to solve high dimension spaces interpolation (or

mapping) problems.

In addition, more development is desirable for the enhancedHS method. Although

it perfectly preserves the piecewise linearity property, it cannot produce as good per-

formance as that given by the original HS method in the scaled-up applications. This

is due to its less robustness in handling the interpolation cases which involve vertical

slopes in considered fuzzy sets. Further effort to improve its robustness seems neces-

sary.
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fuzzy rule interpolation: specialized for crisp, triangular, and trape-

zoidal rules. InPro. Eur. Conf. Fuzzy and Intelligent Techniques, pages

99 – 103, 1995.

[BGK96] P. Baranyi, T. D. Gedeon, and L. T. Kóczy. A general interpolation
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[BKG04] P. Baranyi, L. T. Kóczy, and T. D. Gedeon. A generalized concept

for fuzzy rule interpolation. IEEE Transactions on Fuzzy Systems,

12(6):820 – 837, 2004.

[BL97] A. L. Blum and P. Langley. Selection of relevant features and examples

in machine learning.Artificial Intelligence, 97(1), 1997.

[BM00] B. Bouchon-Meunier. Analogy and fuzzy interpolation in fuzzy setting.

In Proc. Int. Conf. Fuzzy Sets Theory and Its Applications, page 7, 2000.

[BMDM +99] B. Bouchon-Meunier, J. Delechamp, C. Marsala, N. Mellouli, M. Rifqi,

and L. Zerrouki. Analogy and fuzzy interpolation in the caseof sparse

rules. InProc. Joint Conf. Eurofuse-Soft and Intelligent Computing,

pages 132 – 136, 1999.

[BMDM +01] B. Bouchon-Meunier, D. Dubois, C. Marsala, H. Prade, andL. Ughetto.

A comparative view of interpolation methods between sparsefuzzy

rules. InProc. International Fuzzy Systems Association Congr., pages

2499–2504, 2001.

[BMK +98] P. Baranyi, S. Mizik, L. T. Kóczy, T. D. Gedeon, and I. Nagy. Fuzzy
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modifiedα-cut, vkk and the general fuzzy interpolation for the widely

popular cases of triangular sets. InPro. EFDAN, pages 165 – 172, 1999.

[MDS90] M. Mukaidono, L. Ding, and Z. Shen. Approximate reasoning based

on revision principle. InProc. North American Fuzzy Information Pro-

cessing Society, volume 1, pages 94 – 97, 1990.

[Men95] J. M. Mendel. Fuzzy logic systems for engineering: atutorial. InPro-

ceedings of the IEEE, volume 83, pages 345 – 377, 1995.



Bibliography 215

[Mit97] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[Miz01] S. Mizik. Fuzzy rule interpolation techniques in comparison.MFT Pe-

riodika 2001-04, Hungarian Society of IFSA, Hungary, 2001. Available

athttp://www.mft.hu.

[MJ92] J. Mao and A. K. Jain. Artificial neural networks for nonlinear projec-

tion of multivariate data. InProc. IEEE Int. Joint Conf. Neural Net-

works, volume 3, pages 59–69, 1992.

[MJ95] J. Mao and A. K. Jain. Artificial neural networks for feature extrac-

tion and multivariate data projection.IEEE Trans. on Neural Networks,

6(2):296–317, 1995.

[MM96] G. C. Mouzouris and J. M. Mendel. Designing fuzzy logic systems for

uncertain environments using a singular-value-qr decomposition meth-

ods. IEEE Int. Conf. Fuzzy Systems, 1, 1996.
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[TkM97] D. Tikk, L. T. kóczy, and B. Moser. Stability of interpolative fuzzy kh-

controllers, multi-dimensional case. InProc. Symp. System Modelling,

Fault Diagnosis and Fuzzy Logic Control, volume 8, 1997.

[Tor52] W. S. Torgerson. Multidimensional scaling: I. theory and method.Psy-

chometrika, 17, 1952.

[TS85] T. Takagi and M. Sugeno. Fuzzy identification of systems and its appli-

cations to modelling and control.IEEE Transactions on Systems, Man

and Cybernetics, 15(1):116–132, 1985.

[TZ88] I. B. Turksen and Z. Zhong. An approximate analogicalreasoning ap-

proach based on similarity measures.IEEE Transaction on Systems,

Man, and Cybernetics, 18(6):1049 – 1056, 1988.

[UOHT94] M. Umano, H. Okamoto, I. Hatono, and H. Tamura. Fuzzy decision

trees by fuzzy id3 algorithm and its application to diagnosis systems. In

IEEE World Congress on Computational Intelligence, volume 3, pages

2113 – 2118, 1994.



Bibliography 219

[VKK92] G. Vass, L. Kalmar, and L. T. Kóczy. Extension of thefuzzy rule inter-
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