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Abstract

Due to its high performance and comprehensibility, fuzzyeiing is becoming more
and more popular in dealing with nonlinear, uncertain andmex systems for tasks
such as signal processing, medical diagnosis and finaneedtment. However, there
are no principal routine methods to obtain the optimum fuzgg base which is not
only compact but also retains high prediction (or clasdificg performance. In order
to achieve this, two major problems need to be addressest, &rthe number of input
variables increases, the number of possible rules gronaexially (termedurse of
dimensionality. It inevitably deteriorates the transparency of the rutedei and can
lead to over-fitting, with the model obtaining high perfomaa on the training data but
failing to predict the unknown data successfully. Secoragsgmay occur in the rule
base if the problem is too compact (termsgghrse rule bage As a result, it cannot be
handled by conventional fuzzy inference such as Mamdani.

This Ph.D. work proposes a rule base simplification methatdsafamily of fuzzy
interpolation methods to solve the aforementioned two lerab. The proposed sim-
plification method reduces the rule base complexity R&rieving Data from Rules
(RDFR) It first retrieves a collection of new data from an originaler base. Then
the new data is used for re-training to build a more compdetmodel. This method
has four advantages: 1) It can simplify rule bases withourtgughe original training
data, but is capable of dealing with combinations of rule$ data. 2) It can integrate
with any rule induction or reduction schemes. 3) It impletsehe similarity merging
and inconsistency removal approaches. 4) It can make usdeofveights. Illustrative
examples have been given to demonstrate the potentialsofvtbrik.

The second part of the work concerns the development of adyfashitransfor-
mation based fuzzy interpolation methods (terriimethods These methods first
introduce the general concept of representative values)Rnd then use this to in-
terpolate fuzzy rules involving arbitrary polygonal fuzggts, by means of scale and
move transformations. This family consists of two sub-gatees: namely, therigi-
nal HS methods and thenhancedHS methods. The HS methods not only inherit the
common advantages of fuzzy interpolative reasoning — hglpduce rule base com-
plexity and allowing inferences to be performed within sien@nd sparse rule bases —



but also have two other advantages compared to the existrag fnterpolation meth-
ods. Firstly, they provide a degree of freedom to chooseouarRV definitions to
meet different application requirements. Secondly, theay lsandle the interpolation
of multiple rules, with each rule having multiple antecetdeariables associated with
arbitrary polygonal fuzzy membership functions. This nsakee interpolation infer-
ence a practical solution for real world applications. Thieaced HS methods are the
first proposed interpolation methods which preserve piweise-linearity, which may
provide a solution to solve the interpolation problem in eyd@gh Cartesian space in
the mathematics literature.

The RDFR-based simplification method has been applied toiatyaf applica-
tions including nursery prediction, the Saturday mornimglyem and credit appli-
cation. HS methods have been utilized in truck backer-uppatrol and computer
hardware prediction. The former demonstrates the simali6o potential of the HS
methods, while the latter shows their capability in dealiith sparse rule bases. The
RDFR-based simplification method and HS methods are fumitegrated into a novel
model simplification framework, which has been applied tacaed-up application
(computer activity prediction). In the experimental stegjithe proposed simplification
framework leads to very good fuzzy rule base reductionssvhétaining, or improv-
ing, performance.
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Chapter 1
Introduction

In 1965, Lotfi A. Zadeh of the University of California at Betky published “Fuzzy
Sets,” [Zad65, Zad73] which laid out the mathematics of yuget theory and, by
extension, fuzzy logic. Although, the technology was idtroed in the U.S., U.S. and
European scientists and researchers largely ignoredyeians, perhaps because of its
unconventional name. But fuzzy logic was readily acceptethpan, China and other
Asian countries.

Zadeh separateuhrd computingpased on boolean logic, binary systems, numeri-
cal analysis and crisp software frasonft computindpased on fuzzy logic, neural nets
and probabilistic reasoning. The former has the charatiesiof precision and cat-
egoricity and the latter, approximation and dispositiggalAlthough in hard com-
puting, imprecision and uncertainty are undesirable ptagse in soft computing the
tolerance for imprecision and uncertainty is exploited ¢hieve tractability, lower
cost, high Machine Intelligence Quotient (MIQ) and econarhgommunication.

1.1 Soft Computing

The principal constituents of soft computing are fuzzy togitificial neural networks
and probabilistic reasoning, with the latter subsumingetbeletworks, genetic algo-
rithms etc. The principal contribution of fuzzy logic redatto its provision of a foun-
dation for approximate reasoning, while neural networlotiigorovides an effective
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methodology for learning from examples, and probabilistgsoning systems furnish
computationally effective techniques for representing anopagating probabilities
and beliefs in complex inference networks.

Since the last decade, the research on fuzzy sets and systsmdsawn more and
more attention. In fact, fuzzy modelling [Zad65, Men95] manone of the most fa-
mous ways in dealing with nonlinear, uncertain and compyestesns such as signal
processing and mechanical control [Sim00, RZK90, WM7904¢nIt has two im-
portant advantages: firstly, it imitates the human reagppnmocess using linguistic
terms, which enables its comprehensibility and transgareand secondly it is a uni-
versal modelling technique [WM92a, Buc93, Cas95, ZK04{ tizan approximate any
nonlinear complex system with specified arbitrary accuracy

Neural networks [Mit97] were developed as an attempt taseaimplified math-
ematical models of brain-like systems. The key advantatfeeis ability to learn from
examples instead of requiring an algorithmic developmeorhfthe designer. Com-
pared to fuzzy logic, neural networks usually produce higieeformance for classifi-
cation or prediction tasks, however, they lack the trarespar and comprehensibility
which fuzzy logic has. Neural networks can be implementeteaso-fuzzy networks
which combine the advantages of both fuzzy reasoning andhheetworks.

Belief networks (Bayes Nets, Bayesian Networks) [Pea88paiital tool in proba-
bilistic modelling and Bayesian methods. They are one @dépsobabilistic graphical
model. Genetic algorithms (GA) [Mit97] provide a techniqueeful for fining ap-
proximate solutions to optimization and search problemsnédc algorithms are a
particular class of evolutionary algorithms that use témpivs inspired by evolution-
ary biology such as inheritance, mutation, natural sedactand recombination (or
crossover).

1.2 Fuzzy Inference Systems

The first kind of fuzzy inference system (FIS) focused on théitg of fuzzy logic
to model natural language [MA75]. These FISs contain fuzegs built from expert
knowledge and they are called fuzzy expert systems or fuamyrallers. These FISs
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offer a high semantic level and a good generalization céipabUnfortunately, the
complexity of large systems may lead to an insufficient aacyrin the simulation
results. Expert knowledge only based FIS may show poor pegnce.

The other class of FIS is a data-driven fuzzy system. Theyfuales are ob-
tained from data rather than from the experts. Takagi-Sardeang (TSK) models
[TS85, SK88] were the first attempt at this class of FIS. Sithad piece of work,
many methods [YS95, CLLO1, WM92b, CZ97] have been desigoexitomatically
generate rules from databases. A extensive discussiomassicl fuzzy control and
algorithms can be found in [DHR93, Ped92].

However, two major problems need to be addressed in orddatamnoefficient and
effective fuzzy models. First, as the number of input vdaabncreases, the number
of possible rules grows exponentially (termealse of dimensionalijy It inevitably
deteriorates the transparency of the rule model and likeg$ to over-fitting, with
the model obtaining high performance on the training datafdiling to predict the
unknown data. Second, gaps may occur in the rule base ifebiedmpact (termed
sparse rule bage As a result, it cannot be handled by conventional fuzzgnefices
such as Mamdani.

1.3 Rule Base Simplification

The original motivation of rule base simplification, alsdled rule base optimization,
is to conquer the curse of dimensionality [Gui01, KJS02{h# induction methods are
applied to simple systems with a few variables and/or a squalhtity of data, there
IS no need for optimizing the rule base. The situation isedént for large systems
where many variables and/or tens of thousands of data apévét The number of
induced rules becomes enormous, resulting in a complexbage. Obviously, the
rule base will be easier to interpret if they are defined byntlost influential variables
and only consist of a small amount of rules. Feature seleetial rule base reduction
are thus two important issues of the rule generation proddssy are usually referred
to as structure optimization. Apart from that, many pararseesuch as membership
functions parameters and rule conclusions can also be etiinwhich is called pa-
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rameter optimization [JSM97]. Unfortunately, parametatiraization inevitably leads
to semantic loss if the fuzzy sets are predefined with pdaiqahysical meaning. This
thesis focuses on a structure optimization. In partictlesr,rule base reduction meth-
ods are carefully reviewed and a new one is proposed towaedsirnplification goal.

On the other hand, attention is drawn to conquer the spatsebase problem.
When given observations have no overlap with the antecauémivalues, classical
fuzzy inference methods have no rule to fire, but interpatateasoning methods
[KH934a] can still obtain certain conclusions. It thus faeiles fuzzy inferences when
only limited knowledge is available. In addition, with inp@lation, fuzzy rules which
may be approximated from their neighboring rules can betedhitom the rule base
[KH97]. This leads to the reduction of fuzzy models compiexi

1.4 Existing Simplification Approaches

The existing simplification approaches can be classifiemlagategories using different
criteria. In terms of the timing, they consist of three catégs: the methods taking
place before, within, and after the rule induction procdsaditionally, simplification
methods are used after the induction process to refine théaske to be more compact.
However, due to the existence of noisy variables, or whezdrtining schemes can-
not handle a large quantity of variables, preprocessingp@ftiata base must be done
before the data is fed into the training schemes. This isllystelled feature selection
or feature transformation. Between the “after” and “befatage simplification meth-
ods, there are some “within” stage simplifications [Qui8Hieh are integrated into
the training schemes. They are, in fact, part of the traiscigemes. Once the training
schemes are finished, the “reduced” rule bases are obtaiiti@ouvother processing.
Despite the compact of the “within” stage simplification haads, they work depend-
ing on particular training schemes, thus cannot be reusttieba various training
schemes. Therefore, “before” and “after” stage simplif@mamethods are more desir-
able due to the generalization. This thesis focuses on fier™atage simplifications.
It studies the existing simplification methods and prop@sesvel one.

Alternatively, in terms of the methodology, the existing4y rule base simplifi-
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cation approaches are classified into five categories: Itufebased reduction, sim-
plifying via preprocessing the original training data. 2#n#arity merging and incon-

sistency removal based reduction, merging similar rulesediminating redundancy.
3) Orthogonal transformation based reduction, which idetithe Orthogonal Least
Square (OLS) method and Singular Value Decomposition (S¥PInterpolative rea-

soning based reduction, which has the closest relevanatofthe work carried out

in this project. 5) Hierarchical reasoning, which is basadle modification of rule

base structure.

The main concern to choose a simplification method is thegpvaton of the se-
mantic meaning. Otherwise, it is not worth using fuzzy modglat all. Unfortunately,
some simplification methods, such as the similarity merging most of the transfor-
mation based methods, destroy the predefined fuzzy lingtesims and hence result in
loss of comprehensibility. The other concern to choose pgarsimplification method
Is to avoid generating sparse rule bases. In fact it is hibgkdyy that this will happen.
Imagine that a fuzzy rule is eliminated in the reduction pss; the data fired by this
rule may no longer be fired by any other existing rules in tlteiced rule base. Such
sparse rule bases can be handled by fuzzy interpolativenss

1.5 The Proposed Simplification Framework

This thesis proposes a rule base simplification method aachdyf of fuzzy interpola-
tion methods to address the two concerns mentioned abawtlyHn order to achieve
a compact rule base under the conditions that no significadnance is sacrificed
and no semantic meaning is destroyed, this thesis propasegehrule base simpli-
fication method via the technique wdtrieving data from rule¢RDFR). In particular,
RDFR is carried out over the original rule sets to obtain néwifiing data”. The
new “training data” are then used for re-training to gereethe final rule sets. Due to
the flexibility of choosing the second rule induction algimms, this in fact provides a
general framed work to simplify the original given rule base

Secondly, in order to cope with the case that the simplifiéellbases are sparse, a
family of transformation based fuzzy interpolation methbas been proposed. These
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methods first introduce the general concept of represeatasilues (RVs), and then
uses them to interpolate fuzzy rules involving arbitrarfygonal fuzzy sets, by means
of scale and move transformations. Compared to other egi$tizzy interpolation
methods, this family offers a degree of freedom to providargety of unique, normal
and valid results.

1.6 Thesis Structure

The rest of this thesis is structured as follows (with ang¢ation of the publications
produced as a result of this research):

e Chapter 2:.Background An overview of the existing simplification approaches,
including feature based simplification, similarity memgjimconsistency removal,
orthogonal based reduction, interpolative reasoning,ra@crchical reasoning
are given. In particular, more detailed description is git@ the interpolation
methods which have the closest relation to this project.

e Chapter 3:RDFR Based Simplification Method@his chapter proposes a novel
simplification method by means ddtrieving data from rules (RDFRjrocedure.
It first retrieves a set of new data from an original rule badgen the new data
are re-trained to build a more compact rule model while naammig a satisfac-
tory performance. lllustrative examples are provided tmdestrate the success
of this work. The contents of this chapter can be found in [5{§0

e Chapter 4:Transformation Based Interpolation: Specific ExamplBsis chap-
ter provides specific example studies of the proposed iokatige reasoning
methods. In particular, theepresentative valuesre introduced and defined for
the most widely used fuzzy terms (triangular, trapezoidal hexagonal). This
follows by the illustration of the interpolations via scaed move transforma-
tions. The contents of this chapter have been published®9§1HSO04b].

e Chapter 5Transformation Based Interpolation: General Approadthis chap-
ter extends the work presented in chapter 4 so that the peddasily of in-
terpolation methods can be applied to arbitrarily complelygonal fuzzy sets
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with flexible RV definitions. A family of enhanced interpadta methods has
been further developed which not only reduces the comutatiforts but also
preserves piecewise linearity (see chapter 6). The ink&tipa and extrapolation
involving multiple antecedent variables and multiple suteave been extended.
Partial contents of this chapter have been published in §dSBIS04a, HSO06,
HSO05c].

e Chapter 6Transformation Based Interpolation: Evaluatiofihis chapter com-
pares the interpolative reasoning methods proposed int€hao other existing
approaches such as the first proposed fuzzy interpolatiomod¢KH) [KH934a]
and the general method, in terms of the dependency of thenfse=z of the con-
clusion on the observation, the preservation of the piesewnearity and the
computational complexity.

e Chapter 7:Transformation Based Interpolation: Realistic Applicats This
chapter presents the interpolation based fuzzy rule bdseeice and demon-
strates its usages on both simplifying fuzzy rule bases aaitithting fuzzy in-
ferences. Partial contents of this chapter can be found $0g4].

e Chapter 8:Scaled-up ApplicationsThis chapter demonstrates the combination
of the RDFR-based rule base simplification and the propageddolation based
inference in a real world database (computer activity).diteghe large quantity
of variables and data, the proposed framework leads to veog geductions.
The results between various interpolation methods aretiyhly compared.

e Chapter 9:Conclusion The thesis is concluded in this chapter, and details of
future work to be carried out in this area are presented.



Chapter 2
Background

It becomes difficult for conventional classifiers to handlassive databases. There-
fore, fuzzy rule base simplification methods are desirableesolve this problem.
These methods usually consist of two categories: paranaetkrstructure simplifi-
cation methods. The former refer to the optimization of thembership functions
(either the conditional or conclusion one). Although they widely used to fine tune
the fuzzy sets [JSM97], they are not included in this thesithay inevitably destroy
the semantic meaning. The latter consist of feature seleeind rule base reduction
(which is the concern of this thesis). This chapter revieines existing fuzzy sim-
plification techniques including feature-based redugtiorrging and removal-based
reduction, orthogonal transformation based methods;gotative reasoning methods
and hierarchical fuzzy reasoning. The comparisons betwégrent simplification
techniques are also summarised.

2.1 Feature Based Reduction

As machine learning tools become more and more importarglfpdxtract and man-
age knowledge, they must meet many challenges such as mgmaéissive amounts
of data. The situation becomes worse if each datum has matyrés (or variables).
One way to resolve this is to choose a set of informative featbefore feeding data
to machine learning tools. This technique is called feahased reduction, which



Chapter 2. Background 9

has two sub-categories: feature transformation and featlection [LM98]. Feature
transformation constructs additional features from theergiones or extracts a set of
new features to replace the old ones. The former does notsivalplify the dataset
while the latter does so by generating low dimensional d@tas approach changes
the physical meaning of features, and hence may be criticgzelosing semantics.
Feature selection on the other hand overcomes this sharigdig selecting a subset
of the most influential features.

Feature based reduction is no doubt an important compomémtzy model sim-
plification. However, it is not the focus of this PhD work whiattempts to simplify
fuzzy rule models after the rule induction process. Neweits, in order to provide a
complete overview of fuzzy model simplification, a brief &xpation of feature based
reductions are presented in following subsections.

2.1.1 Feature Transformation

Feature transformation reduces the dimensionality of Hia do that the analysis be-
comes less difficult. A typical method of feature transfatiorais Sammon’s nonlin-
ear projection [Sam69]. It maps high dimensional data todowensional ones while
keeping the underlying data structure. In particular, &gl vectors in arL-space
R (which is Euclidean space of dimensionalifyare denoted a%,i =1,...,N. The
goal is to construcN vectorsY;, i = 1,...,N which correspond t¢;, but ind-space
RY (d = 2 or 3). Let the distance between the vectgrand X in R be denoted as
dﬁ = dist[X;, X], and likewise, the distance between the correspondingrsgtand
Yjin RY asdjj = dist]Y;,Y;]. The projection begins with randomly initializétlvectors
in RY. A steepest descent procedure is then utilized to searcfanimum of error

defined as
1 Ndf—dyf?

N Zl<j[dr]] i<] drj
Extensions to Sammon’s method can be found in [MJ92, MJ9B)GZE PE9S8].
There are many other methods such as Principal Componeratiysis [Jol86] and

E

(2.1)

Multidimensional Scaling [Tor52] which act the same as Samsimethod — deter-
mine the Euclidean structure of a dataset’s internal klatiips in a low dimension.
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These methods effectively reduce the complexity of theniingi data with little or no
information loss, but suffer from the loss of the models’ pilogl meaning.

2.1.2 Feature Selection

Feature selection is defined as the problem of finding a mimset ofM features from
N original onesil < N). This is essential since in real life there are irrelevamtasy
features which do not significantly contribute to the syst@mnsidered. Elimination
of these features will speed up the learning procedure olveshe problem that many
learning applications cannot work very well with a huge daae. In addition, it may
lead to more general models. The generality here standedbthie outcoming model
may obtain less performance in the training stage, but lpadher performance when
tested with unknown data. Because of these merits, feadleet®n has long been the
focus of research in pattern recognition and statistics. efaited review of feature
selection techniques devised for classification tasks @afobnd in [DL97, BL97,
KS96].

The basic idea of feature selection is to search an optimaf sseful features us-
ing some criteria (or evaluations). As it is not practicatéory out exhaustive searches
for most datasets, heuristic is often used to guide the psase the evaluation func-
tions test if the selected features are sufficient to reptefee underlying models.
Feature selection algorithms may be classified into twogoates based on their eval-
uation procedure. If an algorithm performs independentlgry learning algorithm
(i.e. it is a completely separate preprocessor), then itfikeat approach. RELIEF
[KR92] and FOCUS [AD91] etc. fall in this category. In effeatrelevant attributes
are filtered out before induction. Filters tend to be apbliedo most domains as they
are not tied to any particular induction algorithm.

If the evaluation procedure is tied to the task (e.g. clasdifin) of the learning
algorithm, the feature selection algorithm employs theppea approach. For instance,
the LVF [LS96b], LVW [LS964a], the neural network-based wpap feature selector
[SL97] and the rough and fuzzy sets based feature sele@0dp] Jen04] belong to
this family. These methods search through the feature sgpaee using the estimated
accuracy from the induction algorithms as measures of ssbility. Although
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wrappers may produce better results, they are expensiwumtand can break down
with a very large number of features.

For illustration, the information gain based feature sbec[Qui86] is briefly ex-
plained. Given a classification problem with training exéenwllectionS which has
c target classes, to measure the purity of this colleceotropyis defined as follows:

c
Entropy(S) = Z—P,Iogzp,, (2.2)
i=

whereR is the proportion oSwhich belongs to class

A statistical propertynformation gainis used to represent how well a given feature
separates training examples into target classes. It isdgbeceed reduction in entropy
caused by partitioning the examples according to this featmformationGain(S, A)
can be defined as

Gain(S A) = Entropy(S) — Z S x Entropy(S,), (2.3)

veValuegA) |S|

Where:

ValugA) is the set of all possible values of featuxe

S is the subset o0& for which featureA has valuey,

|S)| is the number of examples ),

|| is the number of examples B

This measurement can be used to determine which featuregdsbe retained, by
keeping those whose information gains are greater than def@enined threshold
value.

2.2 Merging and Removal Based Reduction

In fuzzy rule-based models there may exist similar, incstesit and inactive rules.
Similar rules have almost the same meaning so they can beigedinto one. In-
consistent rules are contrary to each other in reasonindnende destroy the logical
consistency of the models. Inactive rules contributeglitti the models since they are
not frequently used. All these rules inevitably result imaoessary complexity and
therefore make models harder to understand. To tackle preddems respectively,
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compatible cluster merging algorithms [KF92, KB95, BVOR\BS8] have been pro-
posed for the cluster based rule induction issues. Shdrggame idea but not explic-
itly limited to clustering algorithms, similarity mergingethods have been reported
[CCT96, SBKL98, Jin99]. These methods eliminate the reduany by combining
similar rules into one. Also, methods for consistent chegKiXL02] and inactive
evaluation [Jin99] have been proposed. Consistent chgatimplifies rule bases by
removing conflicting rules, while inactive checking remsvales having lower firing
strengths than a predetermined threshold.

2.2.1 Similarity Based Merge

The compatible cluster merging algorithm [KB95] is basedtework of Krishnapu-
ram and Freg [KF92]. It first defines clusier = 1,...,m, as eigenvaluesy, ..., Ajn

and eigenvectorg, ..., ®n, Which stand for the axis lengths and axis directions re-
spectively. Then every pair of clusters, say clustaend clusterj, are examined by the
following criteria:

|@n - @jn| > k1, kg close to 1 (2.4)

llci —¢j|| < ko, ko close to O (2.5)

Equation (2.4) states that the parallel hyper-plane dlssteould be merged. Equation
(2.5) states that the cluster centres should be sufficietde for merging. According
to these two criteria, two matric&l[cl;j] andC2[c2;j| whose elements indicate the
degree of similarity between théh and jth clusters measured are obtained. By con-
sidering the combination of these two criteria, the geoimetiean has been used as a
decision operator:
Wj = +/Clijc2ij. (2.6)

At this point a similarity matriXShas been achieved. This matrix has a predetermined
problem-dependent valueas a threshold. That is to say, any two clusters with a
similarity more thary should be merged.

Sharing the same idea, Chao, Chen and Teng [CCT96] utilzeyfgimilarity-
based merging. They first derive simple triangular apprexeequations from Gaussian-
shaped fuzzy sets. Then the measurement between two tidarigezy sets is pro-
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posed, and similar linguistic terms are merged into ones Trdirectly results in de-
creasing of the number of rules. In particular, they use ¢ilewing fuzzy similarity
measure on two fuzzy sets:

ALNA

wheren andu denote the intersection and union of fuzzy getandA;, respectively.

According to the definition, < E(A1,A2) < 1. To make computation simple, a tri-
angular function is employed to approximate a GaussiantimcThus the similarity
measure of two Gaussian fuzzy sets can be directly appliediog the approximation
equations. Note that in the event of complicated fuzzy shiabés measurement may

be computed as

Y La[Ma(x)) AHe(X))]
)= GV )] @9

wherej = 1,...,mare the intervals discretized in the variable domain.

Similarity measure on rules follows similarity measure @mditions and conse-
qguences. In conditions, the smallest similarity betweemrable-pair is chosen as
the similarity of condition€Ep, while in consequences, the similariy is discretized
to either 1 or O to indicate whether the conclusion is almlestdame or not. If both
Ec = 1 andEp > y hold (y is a reference value set by users), i.e., the two fuzzy rules
have almost the same consequences and the degree of syngtathe conditions is
high enough, these two rules are combined into one.

The work reported in [SBKL98] follows the same similarity rgeg procedure ex-
cept that different fuzzy modelling techniques (GustafE@ssel and fuzzyg-means
algorithms) are used. In addition, a similarity measurerapezoid functions is used
instead of triangular ones as described in [CCT96]. Aftetra fuzzy sets and fuzzy
rules are merged, to improve the accuracy of the simplifiedeh@ fine-tuning pro-
cedure for parameters that define fuzzy sets is executed tisengradient-descent
algorithm.

The similarity measure can be divided into two main grouf{B98]: one is set-
theoretic based and the other is geometric based. Sektielased measurements are
the most suitable for capturing similarity among overlaygduzzy sets. The geometric
based measurements represent fuzzy sets as points in a gpetce and the similarity
between the sets is regarded as an inverse of their distarices imetric space. Based
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on the set-theoretic operations of intersection and urtf@similarity between fuzzy

sets is defined as Eqn. (2.7). The work of [CCT96, SBKL98] mnpént set-theoretic
based similarity measurements. As an example of geometsiedosimilarity merging

methods, Jin [Jin99] makes use of the distance conceptrritiie the set operations.
Assuming a Gaussian fuzzy function is given as follows:

_(X—aﬁ)
Ax)=e = (2.9)
then the similarity of fuzzy subsefg andA; is
1
ALA) = —————n— 2.10
whered (A, A2) is the distance between two fuzzy subsetandAy:
d(AAz) = /(81— a2)?+ (b1 — bz)2 (2.12)

Another distinction to the previous methods [CCT96, SBK]L8&hat, in Jin’s work,
the similarity measure makes use of the training data. Itiquaar, [Jin99] refines a
given rule model by means of the gradient learning algoritbring the iteration an
extra penalty terny, which stands for the similarity of the fuzzy sets for alliadtes, is
added to the conventional error function to drive learnifigerefore, the modification
of the parameters depends not only on the system error lubalfiow the similar
fuzzy subsets converge to the same one. The paramel@ys a very important role in
the refining stage. Wis too large then the similar fuzzy subsets will be mergedlqui
but the system performance may become seriously worse. écothtrary, ify is too
small, then the system performance will be good but the amfilzzy subsets may
remain indistinguishable and the interpretability of thedy model becomes poor.

2.2.2 Inconsistency Based Removal

Inconsistent rules have similar conditions but differembgequences. It is essential
for learning mechanisms to identify possible conflicts iterbases and to obtain
good logical coherence. For this purpose, Xiong and LitzQX]_have introduced
a numerical assessment named “consistency index”, whilgts lestablish the consis-
tency/inconsistency of rule bases. This index is integrat® the fitness function of a
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GA to search for a set of optimal rule conditions through twiteda: 1) the encoded
fuzzy model has good accuracy; and 2) the rule base haglittie inconsistency.

2.3 Orthogonal Transformation Based Methods

Orthogonal transformation based methods simplify ruleebasa matrix computation
[GL83]. The first work in this field was proposed some ten yeays and research
along this line has become considerably active. These rdsthibher work on dir-
ing strength matriYCCG91, WM92a, WL95, NMM96, MM96, YW96] and employ
some measure index to estimate the importance of rules, dt @ thefuzzy rule
consequences matriXam97, YBY99] and construct new fuzzy rule bases in terms of
newly constructed fuzzy sets. Briefly, thieng strength matribased methods [YW97,
YW99] include an orthogonal least squares (OLS) method [CGVM92a, WL95],
an eigenvalue decomposition (ED) method [NMM96], a singuddue decomposition
with column pivoting (SVD-QR) method [MM96], and a pure simgr value decom-
position (SVD) method [YW96]. Theule consequences matribased methods have
been recently attempted by Yam and his colleagues [Yam9¥,98R In order to give
a flavour of these methods, this chapter outlines two typieathods from the above
two categories: the orthogonal least square method anditheonsequences matrix
based SVD method.

2.3.1 Orthogonal Least Square Method

The OLS algorithm is a one-pass regression procedure [CC@G% able to generate
a robust fuzzy model which is not sensitive to noisy inputeei; Cowan and Grant
[CCG91] have first provided an OLS method for the solutionaafial basis function
(RBF) networks.

The OLS algorithm can be used to select RBF centres so thquatkeand parsi-
monious RBF networks can be obtained. In this algorithm, BR Retwork is treated
as a special case of the linear regression model:

dt) = ﬁ Bi(1)8 +£(t) (2.12)
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whered(t) is the desired outpuf); are weight parameters, and tpgt) is known as
the regressor which is a certain fixed functiorxf):

pi(t) = x(t), (2.13)
the error signat(t) is assumed to be uncorrelated with the regressdts. The prob-
lem of how to choose a suitable set of RBF centres from thesdatan be regarded as
how to choose a subset of significant regressors (basisrggftom a given candidate
set.

The geometric interpretation of the LS method is best reehy arranging (2.12)
fort =1 to N in the following matrix form:

d=PO+E, (2.14)

where
d=[d(1),...,d(N)]", (2.15)
P=1[p1,....pul, pi = [pi(D),-. ,QWNT1< i <M, (2.16)
0=[01,...,6m]", (2.17)
E=1[e(1),...,e(N)]". (2.18)

The regressor vectorg form a set of basis vectors and the LS solutfosatisfies the
condition thatd be the projection ofl onto the space spanned by these basis vectors
Pi.

The OLS method involves the transformation of the st @rfito a set of orthogonal
basis vectors, and thus makes it possible to calculate ti@diial contribution to the
desired output of each basis vector. The regression nattan be decomposed into

P=WA (2.19)

whereA is anM x M upper triangular matrix,

1 a2 013 ... O1m
0 1 adz3 ... 0Oy
0 O...
A= ,
1 dam-m
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andW is anN x M matrix with orthogonal columng;. The space spanned by the set
of orthogonal basis vectorg is the same space spanned by the seg 0dnd (2.14)
can be rewritten as

d=Wg+E. (2.20)

The orthogonal LS solutiogis given by

T

g= M9 iom (2.21)

wl wi

The quantitieg) and® satisfy the triangular system
AB=g. (2.22)

The classical Gram-Schmidt algorithm [GL83] can be usedetivd the above equa-
tion and thus to compute the LS estim&te The OLS method further provides the
regressors subset selection. In the case of RBF networksutimder of data points
X(t), N, is often very large and the centres are chosen as a subketddtaset. In gen-
eral, the number of all the candidate regressors, M, can yddage and an adequate
modelling may only requirdls(< M) significant regressors. These significant regres-
sors may be selected using the OLS algorithm by operatingfarveard regression
manner.

The geometric interpretation of this OLS procedure is obsidSince the original
basic vectorgy; are correlated, it is hard to calculate their individual trioution to
the variance of the output variable. In order to solve th@bfgm, orthogonal basic
vectors are calculated, to reflect the independent coniitst During the computa-
tion, the dimension of the space spanned by the selecteesissgs is increased one by
one. The newly added regressor maximises the incremené texjpected variance of
the output variable. Orthogonality ensures that thesewsleules do not have similar
conditions. Therefore, the reduced fuzzy model does nae tra similarity or incon-
sistency problems. Essentially, the OLS attempts to séhecimportant fuzzy rules
based on their contributions to the variance of the outpiis & quite similar to the
strategy of selecting componentspnincipal component regressiddol86, Rog71],
where those components with large variances are retairtbe iregression model.
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Wang and Mendel [WM92a] have proposed OLS on fuzzy basistiumg rather
than radial basis functions [CCG91]. Although these twolhmds use the same tech-
nique, the work of [WM92a] is the first designed for the pumpas$ fuzzy rule base
simplification. In order to understand how it works, the nefece formulae are first
defined as follows.

Definition 1 The fuzzy systems with singleton fuzzifier, product inéeserentroid de-
fuzzifier, and Gaussian membership functions have theesiméer
St 2 (M by (%))
f(X) = M n
>i=1(Mita Haj (%))

, (2.23)

where f:U C R" — R, x= (X,X2,...,Xn) € U; “Aij (%) is the Gaussian membership
function, defined by

(-x))2

- 2
Hy(x) =ale = (2.24)
where ql xij, andcsij are real-valued parameters with< aij <1, and 7 is the point in

the output space R at whichj{z) achieves its maximum value.

Definition 2 Define fuzzy basis functions (FBFs) as

. Mk 6) Y .29
j X — ) — ) PR ] ) .
P le\/lzlﬂinzluAii(Xi> :

where W (%) are the Gaussian membership functions (2.24).

The fuzzy system (2.23) is equivalent to an FBF expansion:
M
(0 =Y pj(x9, (2.26)
=1

whered; € R are constants. From (2.25), an FBF corresponds to a fuzZyHIEN
rule. Note that this method is different from the work of [CZI} as it uses (2.25)
rather than (2.13).

As the numerator of (2.25) gives the degree to which a pdatiqule fires (the
product implements the AND operation) and the denominaigesgthe sum of the
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degrees for all rules, (2.25) thus normalises the fire strenfone particular rule
over one particular datum in the ranffel]. Due to this normalization, each FBF is
calculated upon the whole FBF base. The work of [WM92a] cacessfully reduce to
Ms rules from the originaM rules (Ms < M). However, itis incorrect to believe that the
fuzzy model can be maximally reduced because the denomiofa@gach FBF in (2.25)
contains all rules’ contribution, including rules belongito theM — Mg non-selected
FBF’s. To tackle this problem Hohensohn and Mendel [HM95)ehproposed a two-
pass orthogonal least-square algorithm. The first run nesrthe same as in [WM92a].
After that, only those selected FBFs are kept together (thighrespective antecedent
parametersx;,o;) recorded). They are now only normalised ,k_jy'zslni”:l Hei (%)
That is, the first run of the OLS is used to choose the numbeB&Ts; but nlot the
final © parameters in (2.26). The next step runs OLS again to deternbased on
only Mg FBFs. This run is much faster than the first since usudiégz M. Note that
there is no need to use the same training samples in the seaord OLS as in the
first run. In order to obtain a precise model, the second ruy msa a much larger
training set than that used in the first run without requitimg much computation.

Sugeno-Type models [TS85] have also been attempted by roédmesOLS method
[WL95]. The only difference is thatin the previous methduse ard;, i =1,2,..., Mg,
needing to be calculated, but in Sugeno-Type model, ther® ar=1,2,...,(r +1)
Ms (r is the number of input variables) needing to be identified.e Thmputation
process is the same except for the size of identified parasete

2.3.2 Consequence Matrix Based Singular Value Decompositi  on

Unlike fire strength matrix based methods, Yam and his cgllea [Yam97, YBY99]
have applied SVD to the rule consequence matrix which dessthe outputs of a rule
set. The idea is to transform the original membership fomstifor each variable into
a fewer number of membership functions. It amounts to theagoh of the fuzzy
model since the rule number is determined by the possiblétwtion of fuzzy sets
of each variable. In particular, consider the rule sequenae the SVD form

F=UsVvT, (2.27)
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where ¥ is ng x Ny, andU andV areny x ng andny x n,, respectively. Similar to
the matrix computation discussed above, a close approximet # can be obtained
by keeping those components having large singular valuesn;Lbe the number of
singular values to keep, the approximation becomes

F =uOsOyO’ (2.28)
whereU (") is ny x n; andV (") is n, x np. The essential idea is to construct new fuzzy
setsfj(x),j =1,...,r of variablex through the original fuzzy setg(x),i =1,---,na
and matrix

fi(x) :-2 fi(X)Ui,j. (2.29)

The number of fuzzy sets of variabkedecreases from, to n,. Likewise, all other
variables have a decreased number of fuzzy functions. Theauof possible rules
generated from these functions are hence significantlycestiu

However, from (2.29) the validity of the new fuzzy functianderms of normality
and nonnegativeness cannot be guaranteed. To supporstussiion, the properties of
Sum Normalization (SN), Nonnegativeness (NN) and Norm@NO) are introduced.

Definition 3 Sum Normalization (SN)A set of functions;{x), i =1,...,m, is SN if
for any value of x within the domain of interest

m
fi(x) = 1. (2.30)
2
Without ambiguity, a matrix F is SN if
sun(F) =[1,---,1", (2.31)

where surntF) denotes the column vector obtained by summing over the rowatoix
F.

Definition 4 Nonnegativeness (NNA set of functions;{x), i = 1,...,m, is NN if for
any value of x within the domain of interest

fi(x) > 0, (2.32)

for eachi=1,...,m. Likewise, a matrix F is NN if every one of its elementsi§
greater than or equal to zero.



Chapter 2. Background 21

Definition 5 Normality (NO) A set of functions;fx), i =1, ...,m, is NO if itis SN
and NN and each of the functiong) attains the value of 1 at least on one point
within the domain x. Correspondingly, a matrix F is NO if itS&8 and NN and each
of its column contains the value 1 as an element.

A theorem follows these three definitions:

Theorem 1 Given a set of function;(fx), i = 1,...,m, and a matrix F of dimension m
by g, and g new functiong (k), j = 1,...,q, such that

f(x) = i f9R. (2.33)
Then
1. the set of functions; () is SN if f(x) and F are SN;
2. the set of functions; @) is NN if f(x) and F are NN;

3. the set of functions;x) is NO if fi(x) and F are NO.

Since thelJ in (2.29) is in general neither SN nor NN, the work presentetfam97,
YBY99] gives the mathematical procedure for convertihgito SN and NN matrices,
and possibly, a NO matrix.

This method has been successfully implemented in [SimO@\weéver, there are
several points worth noting [Tao01]: 1) the approach foedatning the number of
singular values is not provided; 2) the performance is noags$ satisfactory; and 3)
the computational load is increased for each input sinceng@bership functions are
modified.

From the semantic perspective, it is easy to see that thetfeegith matrix based
methods are semantic-keeping since they simplify the fuzagel by selecting the im-
portant rules, while the consequence matrix based methredseanantic-losing since
they construct new fuzzy sets, which have different physmeaning from those pre-
defined.
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2.4 Interpolative Reasoning Methods

Conventional fuzzy reasoning methods such as Mamdani [MlAR8 TSK [TS85,
SK88] require that the rule bases thense That is, the input universe of discourse is
covered completely by the rule bases. When an observatmm®i@ consequence can
always be derived by using such dense rule bases. On thepgnitfuzzy rule bases
aresparsethat is, the input universes of discourses may not be cdwempletely by
the rule bases, the conventional fuzzy reasoning methocsueter difficulties if an
observation occurs in a gap, resulting in no rule fired and tlmiconsequence derived.
This problem was initially proposed by Mizumoto and Zimmam{MZ82] as the
tomato problemwhich is shown in Equation (2.34) and Fig. 2.1.

observation: This tomato is yellow

rules: if a tomato is red then the tomato is ripe (2.34)
if a tomato is green then the tomato is unripe '

conclusion: ???

The intuitive consequence by the human being would be tiatdmato is half ripe.

|

@ ?

unripe ripe Y

Figure 2.1: Fuzzy reasoning of tomato problem

However, none of the conventional fuzzy inferences is ableeich such a conclu-
sion. Motivated by this, Kbczy and Hirota have proposedfiftst fuzzy interpolative
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reasoning method, termed the KH method [KH93a, KH93c, KHKH(G97, KHMOO,
KHM91, KH93d].

In addition to support reasoning on sparse rule bases [BB92%y interpolation
can be used to simplify the complexity of fuzzy rule bases §&Hoy eliminating the
fuzzy rules which may be approximated from their neighbgrunles. This potential
opens a new door to tackle rule base simplification problems.

Despite these significant advantages, earlier work in fuzigrpolative reasoning
does not guarantee validity of the derived fuzzy sets [KKA894b, KK94a, KK94c,
YMQ95, SM95, KC96]. In fuzzy interpolation literature, thalidity can be defined
as follows.

Definition 6 Validity: A fuzzy set described by the membership functio, fs valid

if for any value of x within the domain of interest, it has oahe corresponding fuzzy
membership value (k) (with 0 < f(x) < 1 normally assumed, which is always pre-
sumed throughout this thesis).

Based on this definition, fuzzy s8t as shown in Fig. 2.2 is invalid as it may have
two different fuzzy membership values corresponding toiopet value. In order to
eliminate the drawback of invalidity, there has been carsidle work reported in the
literature. In terms of the methodology, this work is roygtlvided into two cate-
gories: then-cut based interpolationand theintermediate rule based interpolations
The a-cut based interpolations infer the results based on thguatation of each
a-cut level. The KH method [KH93a, KH93c, KH97, KHG97, KHMOBHM91,
KH93d] is a typicala-cut based interpolation. Further development and modidica
has been carried out. For instance, Vas, Kalmar and Kéoay maposed an algorithm
[VKK92] that reduces the problem of invalid conclusions.déen and Koczy [GK96]
have enhanced the original KH method. Dubois and Prade [PB8Z95, DP99]
have operated all possible distances among the elemenigzf $ets at each-level
and computed all conclusions for the saouevel. Tikk and Baranyi [TB0O, Tik99,
BTYK99a, BTYK99b, YBTK99, WGFO00] have presented a modifieetut based
method which changes the coordinates when applying the Kithade and Tikket
al. have shown that the modified method inherited the approxamatability of the
KH interpolation [TkM97, TBYk99, JKTV97]. This method waarther extended in
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[TBGMOL1]. One of the recent methods [WGFO00, WGTO00] have ubeccombination
of different interpolation techniques. Despite the rapgielopment of thei-cut based
fuzzy interpolations, there is a drawback in this group. @khaut based interpolations
should consider all possibke-cuts (an infinite number) in performing the interpola-
tion. However, all the previously listed methods only takiéngge number ofa-cuts
(usually 3 or 4) into consideration. The resulting points iren connected by linear
pieces to yield an approximation of the accurate conclusion

Intermediate rule based interpolations infer the resyitselasoning an intermedi-
ate rule (together with the observation of course) rathan tine given two original
fuzzy rules. In particular, an intermediate fuzzy rule im@eated by the given two
rules before the interpolation process. The antecederfieofyenerated intermedi-
ate rule is expected to be very close to the given observafidrus, the interpola-
tion problem actually becomes the similarity reasoning9RDSM89, DSM92]the
more similar between the observation and an antecedenttre similar conclusion
must be concluded to the corresponding consequent Blis semantic interpreta-
tion is in fact the extended version of the analogical infee2swhich was proposed
by Turksen [TZ88]. Within this category, Hsiao, Chen and [H€L98] have in-
troduced a new interpolative method which exploits the etopf the fuzzy sets to
obtain valid conclusions. Qiao, Mizumoto and Yan [QMY96}&aublished an im-
proved method which uses similarity transfer reasoning targntee valid results.
Baranyiet al. [BGK95, BK96a, BGK96, BG96, BK96b, BMK98, BKG04] have
proposed general fuzzy interpolation and extrapolatichregues. Kawaguctlet al.
[KMK97, KM98, KM00a, KM0OOb] have developed the B-spline bdsuzzy interpo-
lation from the semantic point of view.

Various further research has been reported in the fuzzyinigpolation area.
Kovaset al. have proposed an interpolation technique based on the xaption
of the vague environment of fuzzy rules and applied it in tbetw| of an automatic
guided vehicle system [KK97c, KK97b, KK97a]. Bouchon, Maesand Rifgi have
created an interpolative method based on graduality [BMB® BM00, BMMROO,
BMDM T01]. Jenei [Jen01, JKKO02] has suggested an axiomatic apiprofafuzzy
quantities interpolation and extrapolation. Bouchon-Kieuhas proposed a compar-
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ative view of fuzzy interpolation methods in [BMDM1]. In addition, Yarret al. has
introduced a Cartesian based interpolation in [YK98, YK?®/B00, YKNOO, YKO01],
where each fuzzy set is mapped into a point in high dimens{dadesian space. This
method can produce multiple interpolation results but éstot show how to choose a
proper one. Also, this approach is restricted to a finite nemoalb characteristic points.
For a brief review of the available fuzzy interpolation tejues, interested users may
refer to [MBKK99, MSK99, Miz01].

For the purpose of comparing the existing typical interpotamethods and the
newly proposed one (see chapter 4 and 5), this section estlime simplest case
(the triangular case) of the KH interpolation [KH93a, KH9The HCL interpola-
tion [HCL98], the general interpolation [BGK95, BKG04] atite QMY interpolation
[QMY96] methods. It is easy to spot that the KH method may leaohvalid fuzzy
sets and the HCL is limited to the interpolation of trianguiazzy sets. However,
the drawbacks of the general interpolation and the QMY willyde identified in the
real-life experiments (see chapter 8).

2.4.1 The KH Interpolation

The basic idea of interpolation is to get the fuzzy conclasiotwo rules and the
observation are given (see Fig. 2.2). An important notiomterpolative reasoning
is the “less than” relation between two continuous, valid aarmal fuzzy sets. Fuzzy
setA; is said to be less thaAy, denoted byA; < Ay, if Va € [0,1], the following
conditions hold:

inf{A1q} <inf{Axq}, SUp{A1a} < sSup{Asq}, (2.35)
whereAyq and Ayq are respectively the-cut of A; and that ofAy, inf{Ai4} is the
infimum of Ay, and sugAiq } is the supremum ofq, i =1,2.

For simplicity, suppose that two fuzzy rules are given:
If XisAthenY is B,
If X isAxthenY is B,

Also, suppose that these two rules are adjacent, i.e., thee not exist a rule such
that the antecedent valdeof that rule is between the region Af andA,. To entail
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the interpolation in the region between the antecedentgabdfithese two rules, i.e., to
determine a new conclusidi when an observatioA* located between fuzzy setsg
andA; is given, rules in a given rule base are arranged with respecpartial ordering
among the valid and normal fuzzy sets of the antecedentsiblas. For the above two
rules, this means that

A <A < Ao (2.36)

To determine the fuzzy resut’, the KH interpolation uses the interpolation equation

d(A",A1) _ d(B*,By) (2.37)

whered(.,.) is typically the Euclidean distance between two fuzzy sisugh other
distance metrics may be used as alternatives). This igréliesl in Fig. 2.2, where the

H Az A" Az

| | duALA) A

d u(AQ, Ala)

X
du(ALAwW | d . (Af, Az)
H B: B* B2
‘ du(Br‘i‘, Blu) du(BH, Bzu) ‘
o bFommfoe e W
d . (B&, Bia) d (B4, Bz) Y

Figure 2.2: Fuzzy interpolative reasoning with an invalid conclusion on a sparse fuzzy

rule base
lower and upper distances betwaeitutsA;q andAyy are defined as follows:

d(Are, Asa) = d(inf{Awa},inf{Agg)), (2.38)
du(A1a,Aza) = d(SUP{A1a},SUP{A2a})- (2.39)
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From (2.38) and (2.39), (2.37) can be rewritten as:

inf{B1q} inf{Bpq }
i = S A 20

L1
dL (Aé 7Alor ) dL (Aé »A2cx)
sup{Biq} sup{Baq }
* d o aA a d o aA o
- Mﬁ-ﬂ u (Ag ﬂ_ (2.41)

max{ B R
dU (Aa 7AlC() dU (Aa 7AZC()

From this,Bg = (min{B; },max{Bg}) results. And the conclusion fuzzy $&t can be

constructed by the representation principle of fuzzy sets:
B"= |J aBg. (2.42)
ae0,1]
Despite this method’s capability of handling the tomatdgbem, it does not guar-
antee validity (although they may be normal Bisshown in Fig. 2.2).

2.4.2 The HCL Interpolation

The HCL interpolation method [HCL98] is an interpolativasening method based on
the KH method. The difference is that it not only interpositiee bottoms of the fuzzy

set, but also interpolates the highest point of fuzzy setatt guarantee that “If fuzzy

rulesA; = B1, A2 = By and the observatioA* are defined by triangular member-
ship functions, the interpolated conclusiBnhwill also be triangular-type”. However,

this method is specially designed for triangular cases tlansl the piecewise linearity

property (see chapter 6 for more detailed discussion) ipregterved in general fuzzy
sets (such as the trapezoidal).

The HCL interpolation method calculates the bottonBoin the same way as the
KH method does, but calculates the top point in a differeng.wig. 2.3 shows the
typical fuzzy interpolation problem, wheliq, ti1, k, t, ko, t2, hy, mg, h, m, hy, and
My represent the slopes of corresponding fuzzy sets. The gsdoaletermine the top
point of B* is described as follows:

1. Deciding the slopels andm of the triangular type membership functiBh. Let

k = kix+ky, (2.43)
t = tix+1tyy, (2.44)
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Figure 2.3: HCL fuzzy interpolation

wherex andy are real numbers. If

ki , ko
TR
then uniquex andy are computed by solving (2.43) and (2.44) simultaneously.
Let
h = \h1x+ h2y|C, (2.45)
m = —|mXx+mpylc, (2.46)

wherec is a constant. Otherwise, let

h = Kkc (2.47)
m = tc, (2.48)

wherec is a constant.

2. Deciding the position of the top poibj by solving the following equation,

1 _ 1
CP(B*)—inf(B*) " suB*) — CP(B")

—h:m, (2.49)

whereCP(A) is the centre point of the specified fuzzy get It is defined as
follows:
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Definition 7 The centre point of a given fuzzy setA& (X) is: CP(A) = (Aq +
Aq)/2, wherea = height(A). Aq denotes the-cut of A,

The centre point of a triangular fuzzy set is just its top pgof membership
value of 1).
Equation (2.49) can be reformulated as

m- sup(B* —h-inf(B )
—h

CP(B*) = (2.50)

2.4.3 The General Interpolation

As a member of the intermediate rule based interpolationyathe general interpola-
tion [BGK96, BKGO04] is capable of handling arbitrary memdi@p functions, which
is the main advantage of this approach. The general intipalclaims two groups
of developed algorithms: one is based on the interpolatidnzzy relations and the
other is based on the interpolation of semantic relatiohss Subsection discusses the
original and most typical method of this family, which castsiof two key techniques:
thesolid cuttingand therevision principle

Solid cutting [BGK95, BK96a, BGK96, BG96, BK96b] is used totain the inter-
mediate fuzzy sed’ if the observatiorA* and two fuzzy rulesf; = B; andA; = By
are given. Aratio oA (0 <A <1)is calculated to represent the important impacsof
upon the construction of intermediate rule antecedémtith respect toA;. The solid
cutting method uses the centre point of the fuzzy set to semitats overall location.
TheA thus can be computed as:

_ d(ALA)
A = d(As Ag) (2.51)
_ (CP<A1) CP(A*>) (2.52)

d(CP(A1),CP(A2))’
whered(.,.) stands for the distance between centre points of two fuzizy de the
extreme cases: X = 0, A, plays no part in constructingy, while if A = 1, A, plays a
full role in determiningA'.
Fig. 2.4 shows how to calcula#é if A;, A andA are given. Dimensio8is orthog-
onal to planqux X. Letgk(s,tk), s€ S, tk = CP(Ay), andk = {1, 2}, be the function
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that is obtained by rotating the membership func#@nua, (x) by 90° around the axis
ti: Ok(X—ti, tk) = pa, (X). Let a solid be constructed by fitting a surface on geneeric
ok(S,tk). Letd/(s,t) be the cross-section of this imagined solid at positienCP(A'),
whereCP(A') = '(CP(A1),CP(A2),A) andT () stands for thdinear interpolation of
two points

Definition 8 The linear interpolation of two pointspand % is
X =T (Xg,%2,A) = (L= A)xg +Ax2, A €[0,1].

Turning backg'(s,t) into its original position, the interpolated fuzzy $8t pu () =
g (x—cp(A'),cp(A)) is obtained.

H

Figure 2.4: Interpolating fuzzy sets by solid cutting

For fuzzy interpolations only concerning triangular fuzmsts, the solid cutting
method works in the same way as the linear interpolation bygus

ay = (1—MN)ao+Aaz, (2.53)
a’l = (1—-MN)ag1+Aay, (2.54)
a = (1-MNan+Aaz, (2.55)

which are collectively abbreviated to

A = (1— M)A+ MAs. (2.56)
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Similarly, the consequent fuzzy s8tcan be obtained by

bo = (1—A)bio+Abzo, (2.57)
bl = (1—A\)b1+Abgy, (2.58)
by = (1—A\)bia+Abg, (2.59)
with abbreviated notation:
B = (1—A)B1+ABs. (2.60)

In so doing, the newly derived rul = B’ involves the use of only normal and valid
fuzzy sets. The fuzzy sé&{ has the same centre of pointAs The revision principle
based technique [SDM88, SDM93, MDS90, DSM89, DSM92] is usedhfer the
fuzzy conclusion by the new rule and the observation:

Definition 9 The revision function y= A(x,p1,p2), where xc [x,X], y € [y,¥], p1 =

[p11P12. .. Prm] €RM, where py=aand pv=b, andp, = [p21p22. .. p2ml € RM,
where p1 =cand pum = d, subject to pm < pims+1, 1 =1,2.

The revision function is a piecewise linear function whérelinear pieces are defined
by point-pairs(pym, P2,m). Fig. 2.5 shows a revision function wit = 4.

Y
(d) P2,4 ””””””””””””””” 1

|
|
|
|
|
|
|
|
|
|
|
|
l
P11Pi2 Pis x  Pug X

Figure 2.5: A revision function

In the triangular cases, the top point of the resulting fuzeiB* keeps the same
position as that oB’. That is,b; = b}. The left and right points are determined by the
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revision principle:

bo = A\(ag, P1,P2), (2.61)
b; = A(&3,p1,P2), (2.62)
where

p1 =[x A'CP(A") A'¥X],
p2=[yB CP(B) B'Y].

2.4.4 The QMY Interpolation

As with the general fuzzy interpolation, Equations (2.5 #2.60) are used to con-
struct an intermediate rul& = B’, whereA’ has the same centre point As. To
determine the left and right points Bf, The QMY method [QMY96] suggests fuzzy
reasoning in the following way:

1. Define a certain kind of similarity between two fuzzy sets.
2. Compared* andA’ to get their similarity.

3. FromB' reconstrucB* according to the similarity transferred from the antecéden
part.

This method is referred to as tlsanilarity transfer(ST) reasoning method. The
similaritiesbetween two fuzzy sets are defined as follows.

Definition 10 Given two normal and valid fuzzy sets A aricbA the universe of dis-
course X, the lower similarity and the upper similarity beem A and Aare respec-
tively defined as follows.

_ d(inf(Aq),CP(A))

AR = Giinf (A, CP(A) (269
_ d(sup(Aq).CP(A)

e = Gisupay) CRA) (269

wherea € [0, 1].
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Then the consequené¥ is derived from the following equations:

CP(B*) = CP(B), (2.65)
S A (@) = S (), (2.66)
Suana) (0) = Sy ) (A). (2.67)

Combining (2.63)— (2.67) gives

inf(By) = S_(A*’A/)(O()d(inf(B&),CP(B’)) +CP(B'), (2.68)
sup(By) = Sy(a- ) (a)d(sup(Bgy),CP(B')) +CP(B'). (2.69)

Thus the consequen&: can be calculated with the representation principle ofyuzz
sets.

2.5 Hierarchical Fuzzy Reasoning

An alternative way of dealing with the “curse of dimensiatydlis to use hierarchical
fuzzy systems [RZK91, RZ93]. Such a system consists of a reumibhierarchically
connected low-dimensional fuzzy systems. Fig. 2.6 showgpiadl example of hier-
archical fuzzy systems. Thisinput hierarchical fuzzy system comprises 1 low-
dimensional fuzzy systems, with each low-dimensional yuzgstem having two in-
puts. Ifmfuzzy sets are defined for each variable, the total numbede$ is(n— 1)m?
which is a linear function of the number of input variabies

Earlier research work focuses on the proof of the availgbdf this approach.
[Wan98, HB99, JKTV97, ZK04] show that any continuous fuantcan be approxi-
mated by hierarchical fuzzy systems to achieve the uniVagaoximation property.
This enables the potential to build compact and efficienzyunodels without the
restraint of the curse of dimensionality. As a worked exanfGB93] makes use
of the hierarchical fuzzy system to control the unmannedcbpter. The work of
[KHMOO0, KH93b] attempts the combination of hierarchicabtlesparse rule bases.

However, the main problem of the hierarchical reasonindnas it is often diffi-
cult to determine the low-dimensional fuzzy systems. Hwral fuzzy systems are
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Figure 2.6: An example of an n input hierarchical fuzzy system

also criticized for transferring the complexity from thetecedent parts to the conse-
quent parts. Nevertheless, the work of [Wan98] argued Heahéw structure no doubt
does a better job in terms of distributing the burden soméwaformly” over the
antecedent and consequent parts. Further improvemertistavdrk and the hybrid
version of this system are desirable.

2.6 Summary

This chapter reviews the existing fuzzy simplification teicjues which are vital to
machine learning, pattern recognition and signal proogss$n addition to overcoming
the curse of dimensionality, simplification techniques eapable of enhancing the
readability and transparency of reduced rule bases.

The outlined techniques consist of five categories: feabased reduction, merg-
ing and removal-based reduction, orthogonal transfoondtased methods, interpola-
tive reasoning methods and hierarchical fuzzy reasoniegiufe based reduction re-
duces the number of variables before the data is fed into maékarning tools. Merg-
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ing and removal-based reduction simplify the rule baseséngmg the similar rules or
fuzzy sets, and removing the inconsistent or inactive rubeghogonal transformation
based methods make use of matrix computation to optimisg/fude bases. Inter-
polative reasoning methods not only simplify the rule bagesliminating the rules
which can be approximated by their neighbors, but also peogi wise inference so-
lution for sparse rule bases. Hierarchical fuzzy systemdiipmohe structure of the
conventional rule models and hence avoid the curse of diimealgy.

Three concerns are considered to choose a proper simplific@chnique for a
question at hand. The first is about when the simplificatioas@be applied: Feature-
based reduction is a technique used before the rule indyetiost orthogonal transfor-
mation based methods and hierarchical fuzzy systems dmaitpes used within the
rule induction; and merging and removal-based reductiomesorthogonal transfor-
mation based methods and interpolative reasoning methedeehniques used after
rule induction. Based on when a technique is applied, catelsdcan be identified for
a given simplification task. For example, when a rule basévengand its associated
fuzzy membership functions for each attribute are fixed cénadidates could only be
chosen from the simplification techniques after the ruleigticon process.

The second concern to choose a simplification method is th&epration of the
semantic meaning, as this is the major advantage of fuzzyehinogl Unfortunately,
some simplification methods, such as the similarity mergimg most of the transfor-
mation based methods, destroy the predefined fuzzy lingtesins and hence resultin
loss of comprehensibility. In contrast, feature selectioterpolative reasoning meth-
ods and hierarchical fuzzy systems are good choices.

Finally, the concern is made to avoid generating sparselbrages. When given
observations have no overlap with the antecedent rule satlessical fuzzy inference
methods have no rule to fire, but interpolative reasonindhoas can still obtain certain
conclusions. Thereby, this concern can be removed if intatfye reasoning based
fuzzy inference is adopted.

Among all the existing approaches, the interpolative resmpmethods have been
paid extra attention as they are closest to this Ph.D. prdiEome typical interpolation
methods which will be used in comparison (chapter 8) have blescribed in detail.
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Although no significant difference can been seen througtetbdescussions so far, these
methods do make a lot of difference when they are used in adegd application in
chapter 8.



Chapter 3

RDFR Based Simplification Method

Rule model simplification techniques are desirable to atevthecurse of dimension-
ality [Gui01, KJS02] so that models’ effectiveness and transggrean be enhanced.
This chapter proposes a novel simplification method by meé&retrieving data from
rules. It first retrieves a collection of new data from an originaler base. Then the
new data is used for re-training to build a more compact rudeeh This method has
four advantages: 1) It can simplify rule bases without usirgoriginal training data,
but is capable of dealing with combinations of rules and .dajdt can integrate with
any rule induction or reduction schemes. 3) It implemengssimilarity merging and
inconsistency removal approaches. 4) It can make use ofweights. lllustrative
examples have been given to demonstrate the potentialsofvtirik.

The current rule simplification techniques are classifidd three categories in
terms of execution stages: the techniques executed beftgenduction (RI) pro-
cedure, such as feature selection [DL97, JS04b]; the tquksiintegrated in the RI
part, such as the orthogonal transformation based metl@@&91, WM92a, YW99,
YBY99]; and the techniques after the RI part, such as simylanerging [KB95,
CCT96, SBKL98], inconsistency removal [XL02] and intergible reasoning [KH93a,
YK98]. The simplification methods in the first two categorieake use of the orig-
inal training data during their processes, while the meshadhe third category are
independent of the original training data (or they only naextnall amount of data for
test purposes). This difference highlights the advantaft® latter since the training
data are not always available. In addition, most currenpkfioation methods do not

37
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consider cases where both training data and rules, whichaneecessarily obtained
from any data but may be acquired directly from domain expente available. An-

other common disadvantage of current simplification meshedhat they fail to make

appropriate use of the rule weights (if applicable). Thisoignce may destroy certain
information of the underlying rule model. To overcome thege existing problems, a

novel simplification method is proposed in this chapter.

The rest of the chapter is organised as follows. Sectioni8els@ brief overview
of the knowledge representation in IF-THEN production sul8ection 3.2 proposes
the simplification method based on retrieving data froms{RDFR). Section 3.3
gives realistic applications to illustrate the succes$isfinethod. Finally, Section 3.4
concludes the chapter and points out important further work

3.1 Knowledge Representation

By means of human-like reasoning, production rule modgli@comes more and more
popular in a variety of applications. The most outstanduigpatage of this modelling
is that it makes problem-solving systems understandabliéeublack-box techniques
such as artificial neural networks. In particular, as an irgya part of rule modelling,
fuzzy rule modelling is capable of handling perceptual utaieties and imprecise
information.

A typical fuzzy rule model consists of a set of IF-THEN ruleach of which takes
certain crisp or fuzzy terms for input variables and outgasses. Depending upon
whether crisp or fuzzy terms are involved, the model is dalerisp rule modelor
fuzzy rule modelSince a multiple output rule can always be representedv®ralesin-
gle output rules, without losing generality, only rules afhhave multiple input vari-
ablesX = (x1,X2, ..., Xn) and a single output clagsare considered. Each input variable
Xj, ] = 1,...,n, hasm(j) linguistic terms denoted a&j1,Aj2,...,Aj nj)- The whole
linguistic terms of each inpug can be defined by a vectdy = (Aj1,Ajz; .-, Aj m(j))-
Similarly, the whole linguistic terms of the outpuMg;.1 = (B1, By, ..., Byyns1))- Then
a universal rule in a knowledge base has the following form:

if Xp1) = SUBL(Vp1)) and---and Xys) = SUB(Vpyg)) then y=B, (3.1)
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wherep(-) is a mapping function fromi1,2,...,s}, (s<n),to{1,2,...,n} satisfying
VX #Y, p(x) # p(y), SUB(k=1,...,s) represents the subsethood operationsiad
V1.

Consider the Saturday Morning Problem [YS95] as an examnptl the attributes
and their values shown in Table 3.1. A possible rule for tl@bfem may be repre-
sented as

IF Temperature is Hot AND Outlook isSunny or Cloudy THEN plan is

Swimming.
Table 3.1: Saturday Morning Problem

Attribute name Values
Outlook Sunny, Cloudy, Rain
Temperature Hot, Mild, Cool
Humidity Humid, Normal
wind Windy, Normal
Plan Volleyball, Swimming, Weightifting

If the first datum in Table.3.8 is given as an observationfulzey inference is carried
out as follows. First, as the fuzzy linguistic term “Sunngkés on a fuzzy membership
value of 09 and the “Cloudy” takes on.0, the logic union operator “or” calculates
the maximal value (or other S-norm operators) of these that, is, 09 as the firing
strength (or confidence) @utlook is{Sunny or Cloud}y. Then the logic intersection
operator “and” calculates the minimal value (or other Tmaperators) offemper-
ature is Hot(1.0) andOutlook is{Sunny or Cloudy (0.9), resulting in a confidence
of 0.9 to choose swimming as plan. Generally speaking, more tharrule may be
fired for a given observation. All these rule results are eggted to generate the final
output.
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3.2 The RDFR Based Simplification Method

3.2.1 Framework

The idea of the proposed method is inspired by the interateivlg usage of rules and
data. In particular, the training data may be treated asifépegles. For instance
in orthogonal transformation based methods [CCG91, WMYR€99], each training
datum can be regarded as an individual “rule” (perhaps witzification of attribute
values) and only the “important rules” are retained to cartstmodels. The reverse
treatment that regards rules as data is attempted here. isfhae rules within an
original rule base are used as training data to achieve a nwmrmpact rule model.
However, some rules may not involve certain input varightass it is impossible for
them to get re-trained directly. In order to solve this peosb] a retrieving procedure is
performed on each rule to assign vacant attributes (in the} with proper values, so
that the retrieved data are ready for re-training.

The high level design (Fig. 3.1) of this method shows thatrthitional rule induc-
tion and reduction procedures usually take place in thelleshed box. Rule induction
algorithms (RIA) are generalization schemes which are tséshrn from an original
dataset (ODS) to derive an original rule set (ORS). Addalbyndimensionality reduc-
tion (DR) is applied before the training so that irrelevanhoisy input variables can
be filtered out. Rule reductions (RR) such as similarity dasée merging [SBKL98]
are applied to the original rule set to obtain a new one thaiose compact. The main
idea of the present simplification method is that it introelia procedure of retrieving
data from rules (RDFR) and a re-training procedure whichasa in the right dashed
box. The RDFR based method builds a flexible and modular frariesince any rule
induction or reduction methods can be used in the right dbbbzg.

3.2.2 Retrieving Data From Rules (RDFR)

To formalise the description of the retrieving procedube following concepts and
notations are introduced:

Definition 11 The rule expressed in (3.1) isstructure-complete ruliéall input vari-
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1 1 1 1
1 1 1 1
1 oDS RIA ORS —r=| RDFR|— RCD RIA FRS ‘
[} | [} |
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

ODS -- Original Data Sets ORS -- Original Rule Set

DR —- Dimensionality Reduction RDFR -- Retrieve Data from Rules
RDS -- Reduced Data Set RCDS -- Recreated Data Set

RIA —- Rule Induction Algorithms FRS -- Final Rule Set

RR -- Rule Reduction

Figure 3.1: Simplification via Retrieving Data from Rules

ables are involved, i.e.,=s n. Other rules are termedon-structure-complete rules

Structure-complete rules are not preferred in modellinghay cannot represent as
many data as non-structure-complete rules do.

Definition 12 The rule of form (3.1) is anulti-term ruleif at least one input ), i =
1,...,s takes more than one linguistic or fuzzy term. bB&.¢ {i = 1,...,s} such that
SUB(Vp(y)) involves more than one term.

Multi-term rules represent logical union between altakegierms for certain variables.
In contrast to multi-term rulesingle-term rulesontain variables which merely take
one linguistic or fuzzy term. Obviously, a multi-term rularcbe divided into many

single-term rules without losing information. All the rgl@ised later only concern
single-term rules.

Definition 13 A rule is acomplete-single-term rulé it is a single-termrule as well
as astructure-completeule.

In terms of the coverage of domain space, applying non4strecomplete rules is
better than using structure-complete ones alone. Thisdause the former are more
general than the latter. Let non-structure-complete rbkeshe “real rules” and the
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complete-single-term rules be “data”, the procedure aifedinhg “data” from rules
Is implemented as retrieving complete-single-term rutemfnon-structure-complete
rules. This implementation can be described as follows.

1. create a new datum in which each input variable is assignéd/alue and the
class variable is assigned the linguistic class term of thengrule
2: for each input variableo
3: if the variable is involved in the given ruleen
4: assign the linguistic fuzzy term of this variable in the givele as the value
of the new datum for this variable

5 else

6: assign arappropriatelinguistic fuzzy term as the value of the new datum for
this variable

7. endif

8: end for

If the process retrieves all possible data from the givee, tthiis retrieval is called
exhaustive retrievalOtherwise, it is calleshon-exhaustive retrievalNote that in the
exhaustive case, there is no need to assigapropriatelinguistic fuzzy term to
the newly constructed datum each time (as stated in lines6yj/lahe possible com-
binations of values of the vacant variables will be obtaiaegway. However, for the
non-exhaustive retrieval, such an assignment has to bédewsad. The next subsection
gives examples to show how different assignments work.

3.2.3 lllustrative Examples

All the examples given in this subsection involve two inpteindx, and an outpuy.
Assuming that each of them takes three linguistic (or fuzegns which are denoted
asAs, A2, Az, B, Bp, B3, andCy, Cy, C3 respectively.
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3.2.3.1 Exhaustive Retrieval

Example 1. This example shows how to retrieve data from a rule model imple
case. If a non-structure-complete rule is given as

if x1 =A;theny=C;.

This rule is applied by RDFR to generate three data, whichshosvn in Table 3.2.
As every datum has one fuzzy linguistic term associated wiitierx; or xp, it can
also be called a complete-single-term rule. Therefore, R@Etually retrieves three
complete-single-term rules from the given rule.

Table 3.2: Retrieve data from a non-structure-complete rule

No X3 X Yy
AT B C
A1 By C

3 AT Bs C

Example 2.1f two rules with different outputs are given:

if Xy = A then y=_Cq,
if xo =By theny=C,.

A total of six data are retrieved and they are presented iteTaB. As can be seen, the
first and the fourth data have the same inputs but deriverdifteoutputs, resulting in
an inconsistency. In this case, if weights are being asdigmeules to reflect their im-
portance, the data retrieved from the higher weighted rugghoto be retained and the
others removed. This treatment makes use of rule weightg@riéments the method
of inconsistency removal [XL02] at the data level rathenthale level. An experiment
of such a treatment is given in section 3.3 to show its sudodssilding compact and
effective rule models. If however the weighting informatis not available, voting
can be used to choose the dominant datum from the retriecedsistent dataset.
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Table 3.3: Retrieve data from two rules with different outputs

No X3 X2 VY

AT Bt C
AT B C
A1 Bs C
AT Bt &
A, Bt &
As By &

o 01~ W N B

Example 3.If two rules with the same outputs are given:

if X1 =A1theny=Cy,
if xo =By theny=C;.

A total of six data are retrieved as shown in Table 3.4. The dinsl the fourth data
are identical. Clearly it is sufficient to keep one datum iis ttase. Such a treatment
implements the similarity merging [KB95, CCT96, SBKL98&]¢ntity merging in fact)
at the data level rather than rule level. In the case of a daglemodel, massive
identical data may be retrieved. Such a process leads tadesputation effort in
re-training, thereby resulting in a more compact model.

Table 3.4: Retrieve data from two rules with the same output

No X1 X2 Yy
AT By G
AT B C
AL By C
B C
Ay B1 C
As B1 C

oA ®wWN R
R
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3.2.3.2 Non-exhaustive Retrieval

The previous three examples illustrate retrieving all ggedata from certain rules.
Such exhaustive retrieval is hereafter referred to as ERBEBrnatively,non-exhaustive
retrieval retrieves only partial of the whole possible data from gixges. The imple-
mentation of non-exhaustive retrieval is to assign an gppate fuzzy linguistic term
to each vacant variable (there is no need to assign to thablasi which have already
been associated with certain fuzzy linguistic terms). Irtipalar, the implementations
include assigning to each vacant variable:

e the most frequently used fuzzy linguistic term,
e the medium fuzzy linguistic term (if applicable),

e arandomly generated fuzzy linguistic term.

For later reference, the procedurerahdomly retrieving data from ruleis hereafter
denoted as RRDFR.

Example 4. Given the same rules as in example 3,

if X1 =A1theny=Cy,
if X =By theny=C;.

Suppose that the first and second rules have different veeigdgy 10 and 05, obtained
from certain training schemes (assuming the weights oraite in the range 40, 1]).
As the second rule is regarded to be not so confident as thediretdatum rather
than three, may be retrieved from it, to reflect the lessearisognce of this rule. One
of the implementations is to choose the most frequently tsed of x; (say,A2) to
generate the only data = Ax A xo = By = y=C4 from the second rule. The results are
presented in Table 3.5. This retrieving strategy makes tigeaule weights, leading
to a small amount of retrieved data which however may betienesent the underlying
model structure.

RDFR can be applied to simplify a model which has a combimatirules and
data. In this case, the data retrieved from the given rule bas combined with the
given data, to form a new training data set. Further prongssill be carried out to
the new training dataset to obtain the reduced models.
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Table 3.5: Non-exhaustive retrieve data from two different weighted rules

No X3 X2 Yy

At B1 C
2 A By G
3 A B3 C
4 A By G

3.3 Realistic Applications

The RDFR based method is applied in the same manner to etibprar fuzzy rule

models. Three examples concerned with both cases are giteis section to demon-
strate the success of this work. In particular, the appboator nursery prediction
shows a crisp case, and the Saturday morning problem and apgdications show
fuzzy cases.

3.3.1 Nursery Prediction

The Nurserydatabase [HBM98] has eight nominal input variables and fiwgpuat
classes. It was derived from a hierarchical decision modgirally developed to
rank applications for nursery schools. Table 3.6 shows tr&ble names and val-
ues involved in the given database. A total of 12960 dataisndatabase are divided
evenly for training and test purposes. 55 rules are gertetatehe well-known deci-
sion tree algorithm (C4.5) [Qui86] with leaf objects set 89 criterion to terminate
C4.5 training) and the prediction accuracy on the test da®2i48%. For further per-
formance comparison, a simplified C4.5 tree (with minimaf lebjects set to 70) is
obtained with 24 rules but having a lower prediction rate 78%0).

The ERDFR and RRDFR are applied to retrieve all possible (#860 in this
case) and approximately 10% (1254) from the original ruke(seoduced by C4.5)
respectively. The implementation of ERDFR and RRDFR in #xample removes
the inconsistency by following the firgh_first kept principle. That is to say, during
the retrieving process, if the previously retrieved datass a datum whose inputs are
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Table 3.6: Nursery data base

Attribute name| Values

parents usual, pretentious, gregtet

hasnurs proper, lesgroper, improper, critical, vergrit

form complete, completed, incomplete, foster

children 1, 2, 3, more

housing convenient, lessonv, critical

finance convenient, inconv

social non-prob, slightlyprob, problematic

health recommended, priority, naecom

class notrecom, recommend, vemgcom, priority, spegrior

identical to the newly retrieved one, the newly retrieved ae dropped.

After ERDFR and RRDFR procedures, different classificaiohemes including
decision trees (C4.5) [Qui86], PART [FW98, WF99] and Rid¥fH99] are applied
to the retrieved data to generate more compact rule setsT PAR classifier which
generates a decision list rather than a collection of eguaighted rules. Ridor per-
forms a tree-like expansion of exceptions with the leaf hgwinly a default rule. The
exceptions are a set of rules that predict a class differemt the one that would be
obtained if the default rule is fired. Using these classifieestest results, in terms of
rule number, average variable number (including the outfags) and prediction rate
on test data, are collectively presented in Table 3.7. Ruheber stands for the number
of rules for the rule sets obtained by classification schemesrage variable number
stands for how many variables are averagely involved in @ iruthe rule sets (used
as an indicator to show how complex a rule set is), and thegred rate on test data
shows the prediction accuracy.

Table 3.7 shows that ERDFR + C4.5 is able to achieve the san@rpance as
the original simplified C4.5 model. It is worth noting thaetRDFR based method
achieves this performance without using the original dafdhe ERDFR + PART
scheme reduces the rule number to 39, while maintainingaiime grediction accuracy
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Table 3.7: Results comparison between C4.5 and RDFR simplification method

Performance
Schemes Rule numbern Average variable Prediction rate
number on test data
C4.5 55 4.81 92.48%
C4.5 (simplified) 24 3.83 89.77%
ERDFR + C4.5 24 3.83 89.77%
ERDFR + PART 39 3.26 92.48%
ERDFR + Ridor 25 3.28 91.27%
RRDFR + C4.5 21 3.67 89.38%
RRDFR + PART 34 3.04 92.61%
RRDFR + Ridor 26 3.32 91.16%

(92.48%) as produced by the original C4.5 model. The ERDFR + Rsduplifies the
rule model to 25 rules with a satisfactory prediction accyr@®127%), which is still
higher than 8% 7% produced by the original simplified C4.5 model. Thesesexp
ments show that the ERDFR based simplification methods malplify rule models
while being capable of maintaining the same, or even impigpvoerformance of the
original rule set.

The experiments based on RRDFR produce more encouragialgsteb partic-
ular, RRDFR + C4.5 achieves a model consisting of only 21srblgt with a lower
prediction accuracy (898%), RRDFR + PART achieves the highest prediction rate
(92.61%) with only 34 rules. RRDFR + Ridor generates a satisfgctsult (9116%)
while significantly reducing the rule number from 55 to 26.

Considering the average number of the variables involved inle model, both
ERDFR and RRDFR based methods obtain more compact modejgaceto the
original C4.5 ones. As can be seen, the RRDFR based expdsmetperform the
ERDFR based ones. This is likely due to the fact that the narhgoetrieved data
generated from RRDFR may contain sufficient informatiorefaresent the underlying
model structure. As it has much less data (1254 vs. 12968)mbre likely to result
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in effective and compact rule models.

3.3.2 Saturday Morning Problem

The Saturday morning problem [YS95] concerns the prediadiosports plan (volley
ball, swimming and weight lifting) based on the status ofl@ak (sunny, cloudy and
rain), temperature (hot, mild and cool), humidity (humidiarmal) and wind (windy
and not windy). Table 3.8 shows the given training set whichudes 16 fuzzy data.
A fuzzy decision tree generation method [YS95] has beenieghpd this dataset to
generate six fuzzy rules which are presented below. Thepednce of the fuzzy
decision tree over the training data is 33%.

Rule 1: IF Tenperature is Hot AND Qutlook is Sunny
THEN Swimming (S = 0.85)

Rule 2: IF Tenperature is Hot AND Qutlook is C oudy
THEN Swimming (S = 0.72)

Rule 3: IF Tenperature is Hot AND Qutlook is Rain
THEN Wi ght lifting (S = 0.73)

Rule 4: IF Tenperature is MId AND Wnd is W ndy
THEN Swimming (S = 0.81)

Rule 5: |IF Tenperature is MId AND Wnd is Not_w ndy
THEN Vol | eybal | (S = 0.81)

Rule 6: IF Tenmperature is Cool THEN Weight lifting (S = 0.88)

Note that Rule 3 can be simplified to Rule 3’
Rule 3': IF Qutlook is Rain THEN Weight lifting (S = 0.89)

Also, note thaS is the classification truth level at the leaf.



Table 3.8: Saturday Morning Problem dataset

Case Outlook Temperature Humidity Wind Plan
Sunny Cloudy Rain Hot Mild Cool | Humid Normal| Windy Notwindy | Volleyball Swimming WIifting
1 0.9 0.1 00|10 00 00| 08 0.2 0.4 0.6 0.0 0.8 0.2
2 0.8 0.2 00|06 04 00| 00 1.0 0.0 1.0 1.0 0.7 0.0
3 0.0 0.7 03|08 0.2 00| 0.1 0.9 0.2 0.8 0.3 0.6 0.1
4 0.2 0.7 01|03 0.7 00| 0.2 0.8 0.3 0.7 0.9 0.1 0.0
5 0.0 0.1 0907 03 00| 05 0.5 0.5 0.5 0.0 0.0 1.0
6 0.0 0.7 03|00 03 07| 07 0.3 0.4 0.6 0.2 0.0 0.8
7 0.0 0.3 0.7 00 0.0 1.0| 0.0 1.0 0.1 0.9 0.0 0.0 1.0
8 0.0 1.0 00| 00 0.2 08| 0.2 0.8 0.0 1.0 0.7 0.0 0.3
9 1.0 0.0 00|10 00 00| 06 0.4 0.7 0.3 0.2 0.8 0.0
10 0.9 0.1 00|00 03 07| 00 1.0 0.9 0.1 0.0 0.3 0.7
11 0.7 0.3 00|10 00 00 1.0 0.0 0.2 0.8 0.4 0.7 0.0
12 0.2 0.6 0200 10 00| 03 0.7 0.3 0.7 0.7 0.2 0.1
13 0.9 0.1 0002 08 00| 01 0.9 1.0 0.0 0.0 0.0 1.0
14 0.0 0.9 0.1 00 0.9 01| 01 0.9 0.7 0.3 0.0 0.0 1.0
15 0.0 0.0 1.0| 0.0 0.0 1.0 1.0 0.0 0.8 0.2 0.0 0.0 1.0
16 1.0 0.0 00|05 05 00| 00 1.0 0.0 1.0 0.8 0.6 0.0

poyle uoealydwis paseg ¥4ay ¢ Jardeyd

0S
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Retrieving is now applied to the these rules. As there arg 88ldata retrieved by
ERDFR, it is not necessary to apply RRDFR. The RRDFR proaeduthus omitted
in this example. Within the retrieved 38 data by ERDFR, tregeetwo pairs of incon-
sistent data as shown in Table 3.9. In particular, data 1 axmh&titute an inconsistent
pair, and data 3 and 4 form another. Data 1 and 3 are retriggedrule 5 and data
2 and 4 are from rule’3 Since the weight (truth level) of rule 5 is 0.81 whilst that o
rule 3 is 0.89, data 2 and 4 are of a higher confidence than data 1 asp8atively.
Data 1 and 3 are hence removed from the retrieved 38 data.oRgrarison purposes,
both of these two datasets are used to construct new fuzzglsadd they are referred
to asdata 38anddata 36hereafter. For each dataset, three classification schemes i
cluding C4.5, PART and JRip [WF99] are adopted. The finallteswe compared to
the work of [YS95] in terms of rule number, average numberasfables involved and
prediction rate on the original training data. These resailé presented in Table 3.10
and Table 3.11 (for data 38 and data 36 respectively). Natelie prediction rates on
theretrieveddata are also given in the tables.

Table 3.9: Two pairs of inconsistent data after ERDFR

No | Outlook Temperature Humidity wind Plan
1 rain mild humid  not-windy  volleyball
2 rain mild humid  not-windy weightifting
3 rain mild normal  not-windy  volleyball
4 rain mild normal  not-windy weighlifting

Table 3.10 shows that ERDFR + C4.5 produces the same pradretie (81.25%)
on the original data as the work of [YS95], despite the praalicrate on the retrieved
data being much higher (94.74%). The ERDFR + PART achievesdme prediction
accuracy. It however reduces the average number of vasiablelved per rule from
2.67 to 217, resulting in a more compact fuzzy rule base. ERDFR + JRgctevely
reduces the rule number from six to three. Unfortunatelyirigs down the prediction
rate to 75%.
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Table 3.10: Results comparison based on data 38

Performance
Schemes Rule number| Average variable Prediction rate | Prediction rate
number on retrieved datg on original data
Fuzzy Decision Tree$ 6 2.67 81.25% 81.25%
ERDFR + C4.5 6 2.67 94.74% 81.25%
ERDFR + PART 6 2.17 94.74% 81.25%
ERDFR + JRip 3 2.00 84.21% 75%

Table 3.11: Results comparison based on data 36

Performance
Schemes Rule number| Average variable Predictionrate | Prediction rate
number on retrieved datg on original data
Fuzzy Decision Trees 6 2.67 81.25% 81.25%
ERDFR + C4.5 8 2.88 100% 81.25%
ERDFR + PART 6 2.17 100% 93.75%
ERDFR + JRip 4 2.50 94.44% 81.25%

Table 3.11 shows a much improved performance. Although BRBFC4.5 in
fact increases the rule number, ERDFR + PART reduces thageerumber of vari-
ables per rule from .B7 to 217 while achieving a high prediction accuracy (B&%).
ERDFR + JRip reduces the number of rules from 6 to 4 while kegfhie same pre-
diction accuracy as the work of [YS95]. These two successfaplified fuzzy models
are provided below. Note that PART and JRip generate ordezay rules, a firing
thresholda = 0.7 is imposed on both models to classify new data. That is )ifrate
in the ordered list has a firing strength (for the given data)enthan this threshold, the
prediction will be determined by this rule.

ERDFR + PART on data 36:

Rule 1: IF Tenperature is Cool THEN Weight_lifting

Rule 2: |IF Tenperature is Hot AND Qutlook is Sunny THEN Sw mmi ng
Rule 3: IF Tenperature is MId AND Wnd is Wndy THEN Weight _[ifting
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Rule 4: IF Qutlook is Rain THEN weight lifting
Rule 5: IF Tenperature is Hot THEN Sw nm ng
Rul e 6: Vol | eybal |l

ERDFR + JRi p on data 36:

Rule 1: |IF Tenperature is MId and Wnd is not_w ndy THEN Vol | eybal |
Rule 2: |IF Tenperature is Hot and Qutlook is C oudy THEN Swi mm ng
Rule 3: IF Tenperature is Hot and Qutlook is Sunny THEN Sw mmi ng
Rule 4: Weight _lifting

The comparison between Table 3.10 and Table 3.11 indich&tgrtconsistency re-
moval helps filter out noisy information, contributing taethonstruction of compact
and effective models. This step is particularly useful wiies performance of the
original rule base is poor, as it is very likely there are mgigtent or conflicting infor-
mation existing in that rule base.

From Tables 3.10 and 3.11, the performance of the rule bastesiton the retrieved
data is not proportional to that on the original data foretint classification schemes.
However for one particular classification scheme, the highe performance on re-
trieved data, the higher the performance is likely to be iokthon the original data.
Table 3.12 and Table 3.13 show the results of different neodeth various training
criteria for data 38 and data 36 respectively. For instafide8RDFR + PART results
in two models with a prediction rate of 3% and 8%7% on retrieved data 38 re-
spectively, it is more likely that the first model also oufpems the second (825%
vS. 6875%) on the original data. This observation provides a uggfide to find an
optimum rule base reduction without the use of original data

3.3.3 Credit Applications

The credit applications data [HBM98], provided by a largalgas a collection of

individual applications for credit card facilities. Eacppdication involves 9 discrete
and 6 continuous attributes, with two decision classesefatoor reject). To make the
comparison available to the results given in [Qui87], th@ @8ta (with 37 having one
or more than one missing value) are randomly divided int@aitng set of 460 and a
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Table 3.12: Results comparison based on data 38

Performance
Schemes Rule number| Average variablg Prediction rate | Prediction rate
number on retrieved datd on original data
ERDFR + C4.5 6 2.67 94.74% 81.25%
4 2.67 84.21% 75.00%
ERDFR + PART 6 2.17 94.74% 81.25%
5 2.20 89.47% 68.75%

Table 3.13: Results comparison based on data 36

Performance
Schemes Rule number| Average variable Prediction rate | Prediction rate
number on retrieved datg on original data
ERDFR + C4.5 8 2.88 100% 81.25%
4 2.50 83.83% 75.00%
ERDFR + PART 6 2.17 100% 93.75%
5 2.20 88.89% 68.75%

test set of 230 (keeping each decision class the same pi@mpad that of the original

dataset). As some discrete attributes have large coltectid possible values (one of
them has 14), this dataset results in broad, shallow decises. Also, since this data
is both scanty and noisy, the generated decision trees trarely complex and not
very accurate on unseen cases.

The fuzzy decision tree algorithm [UOHT94] is applied to thening data. For
simplicity, and not to give any bias towards any variable dom, each variable is
evenly divided intan (n > 0) fuzzy partitions. The resulting rule number and predicti
accuracy are shown in Table 3.14 (with respect to the numbevenly distributed
fuzzy partitions and the number of leaf objects). As can lemsthe size of the rule
set decreases and the accuracy increases while the numleaf objects increases.
This is because the increasing of leaf objects removes #sdeneral rules which
may cause model over-fitting, thereby resulting in more gadriezzy models. Further
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increasing the leaf objects to a large number, the numbaule$ and the accuracy)
tends to become independent of the size of the fuzzy parsiticed. This is because
all the numerical attributes are ruled out as importantsiesitmaking attributes, i.e.,

they are not involved in any of the rule sets. This indicabtes the numerical attributes
are less informative than the nominal ones in this appbeatiTable 3.15 shows that
in the extreme case (when the number of leaf objects is equal greater than 250),

only two rules:

Rule 1: IF A9 is true, THEN +
Rule 2: if A9 is false, THEN -

are generated with an accuracy of®8%. The result is obviously better than the best
result (which uses 11 rules with an average accuracy @8pproduced in [Qui87].

Table 3.14: Fuzzy C4.5 results over Credit dataset

Number of Objects =2 Objects = 10 Objects =20 Objects =30
fuzzy partitions | Rule No | Accuracy | Rule No | Accuracy | Rule No | Accuracy | Rule No | Accuracy
2 134 82.1% 72 85.6% 52 85.2% 45 85.2%
3 135 84.8% 74 85.2% 53 85.2% 45 85.2%
4 150 81.7% 84 86.0% 56 85.2% 47 85.2%
5 172 81.3% 82 85.2% 54 85.2% a7 85.2%
6 154 80.4% 82 84.4% 57 84.8% 48 85.2%
7 184 77.4% 89 83.5% 61 84.3% 49 85.2%
8 190 80.4% 95 84.3% 59 84.8% 50 85.2%
9 191 79.1% 102 83.4% 59 84.3% 50 85.2%
10 206 77.4% 110 83.5 62 84.8% 51 85.2%

Table 3.15: Fuzzy C4.5 results over Credit dataset

Objects 60 100 200 225 250 300
Rule numben 41 28 15 3 2 2
Accuracy | 85.2%| 86.1%| 86.1% | 86.5%| 86.5%| 86.5%

For this dataset, such a compact rule set (consists of 2) redeseffectively and
efficiently predict the unknown data. Thus, there is no needurther simplification.
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However, in many cases, such a satisfiable rule model mayenobtained (for in-
stance, the work of [Qui87]). To test if the RDFR-based sifigaition can manage to
find the model presented above, the case with 30 leaf objedt8 &zzy partitions is
chosen as the original rule base. Since exhaustive reltmapées the return of far too
many data for this problem, a random retrieval is employae e obtain 500 data.
Then these 500 data are fed to the PART (with the minimum nuwhi@stances per
rule is set to 2 as the training parameter) , resulting in @ lpalse with 16 rules and an
accuracy of 85%. If the minimum number of instances per rule for PART iste&i0
rather than 2 (in order to retain more general fuzzy rulé® rtile model with exactly
the same two rules (as presented above) can be obtained.

Similarly, if the 500 randomly retrieved data are fed inte #Rip algorithm (with
the minimum instances per rule set to 2 as the training paeain& rules are obtained
with an accuracy of 83%. Again, if the minimum number of objects per rule is
changed (from 2 to 30), the same two rules can be achieved.

In summary, the RDFR-based simplification method can usesittes of the re-
trieved data to determine the complexity of the final ruleehamd it is capable of
finding good solutions in the presented examples.

3.4 Summary

This chapter proposes a novel rule model simplification wetia Retrieving Data
from Rules (RDFR). It first retrieves a collection of new diatan an original rule base.
Then the new data is used for re-training to build a more catpde model. This
method has four advantages: 1) It can simplify rule basesowttusing the original
training data, but is capable of dealing with combinatiohsutes and data. 2) It can
integrate with any rule induction or reduction schemest Biplements the similarity
merging and inconsistency removal approaches. 4) It careraa& of rule weights.
lllustrative examples including the nursery predictioatu#day morning problem and
credit applications are given to demonstrate the successsofvork.

However, much more can be carried out to improve further gropmance of this
method. In particular, different retrieving methods wiéispect to the use of different
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weighted rules in a given rule set are worth further invegtigy. Also, this method
only applies tonon-structure-completaules. The retrieving techniques that can deal
with structure-completeules require further research.



Chapter 4

Transformation Based Interpolation:

Specific Examples

4.1 Motivation

As mentioned in section 2.4, fuzzy interpolative reasommghods not only reduce
the complexity of the fuzzy modelling, but also make infexeimn sparse rule bases
possible. However, some of the existing methods may inchateplex computation.
It becomes more difficult when they are extended to multigleables interpolation.
Others may only apply to simple fuzzy membership functiamstéd to triangular or
trapezoidal. Almost all generate unique results while tbewvof [YKO0O, YWBO0O] ob-
tains more than one result; the former lack the flexibilityilgttithe latter does not show
how to decide the final result. This chapter proposes a notetpolative reasoning
method which avoids the problems mentioned above. It is &odeh the category of
intermediate rule based interpolations. Firstly an intstrate fuzzy rule is constructed
by its two adjacent rules. Then it together with the obséovadre converted into the
final results by proposed scale and move transformationsjveamsure unique as well
as normal and valid fuzzy (NVF) sets.

The rest of the chapter is organised as follows. Section43and 4.4 describe
the proposed scale and move transformations with singkecadent variable having
triangular, trapezoidal and hexagonal fuzzy sets respyti Section 4.5 gives the

58
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outline of the interpolation method based on the triangtitapezoidal and hexagonal
examples. Section 4.6 summarises the chapter.

4.2 Single Antecedent Variable with Triangular Fuzzy

Sets

Triangular fuzzy membership functions are considered tforstemonstrate the basic
ideas of the present work, due to its simplicity and poptyai his is to be followed
by more complex functions such as trapezoidal and hexagotfa next subsections.
For presentational simplicity, only rules involving onetesedent variable are dealt
with here, with a generalised case to be given later.

To facilitate this discussion, thepresentative valuef a triangular membership
function is defined as the average of theoordinates of its three key points: the left
and right extreme points (whose membership values are Ghambrmal point (whose
membership value is 1). Without losing generality, givenzzly setA, denoted asap,
ai, a2), as shown in Fig. 4.1, its representative value is

aot+ait+ap

RefA) = 3

(4.1)

This representative value happens to bextmordinate of the centre of gravity of

do a1 Rep(A) a2 X
Figure 4.1: Representative value of a triangular fuzzy set

such a triangular fuzzy set [HS03].
Suppose that two adjacent fuzzy rukes=- B1, A» = B, and the observatioA*,
which is located between fuzzy seig and Ay, are given. The case of interpolative
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fuzzy reasoning concerning two variabdsndY can be described through the modus
ponens interpretation (4.2), as illustrated in Fig. 4.2.

"
A1 A" A2

aio au ar ao a az

B1 B~

b 1o bu b b bi b2 b2o b2 b2z

Figure 4.2: Interpolation with triangular membership functions

observationX is A*

rules: if X is Ag, thenY is B;
if X isAp, thenY is B,

conclusionlY is B*?

(4.2)

Here A = (a0, a1, a2), Bi = (bio, bi1, bi2),i = 1,2, andA* = (ap, a1, az), B* = (b, by, b2).
To perform interpolation, the first step is to construct a fiexzy setA’ which has
the same representative valuefds For this, the following is created first:

N d(A,A)

Rep — d(A )
d(RefA),ReA%))

d(RefA1),RefdAz))

otartay  ajotantayp

= 3 s (4.3)

gotapi+agy  ajotayi+ayn’
3 3

whered(Ag,A2) = d(RefdA1),ReAz)) represents the distance between two fuzzy
setsA; andAy.
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From this,ap, &) anda,, of A" are calculated as follows:

ap = (1—ARep@ro+ Are20,
a1 = (1 —ARep@11+ARef21,

’_
| =
> = (1—ARepai2+ Are@22;

a
which are collectively abbreviated to
A = (1—Arep A1 + ArepA2.

Now, A’ has the same representative valu&as

61

(4.4)
(4.5)
(4.6)

4.7)

proof 1
/+a/+a/
RepA) = 07 T%
efA) = 20—
With (4.4)—(4.6) and (4.3),
RefA) — (1_)\Rep>alo+a§1+a12+)\Repa20+a§1+a22

= (1-ArepRefA1) + ArefRefA2)
— RepfA").

Importantly, in so doing&’ is generated to be a valid fuzzy set as the following

holds giverag < aj; < aio, ago < a1 < a2 and 0< Agep< 1:

/

ay—ay = (1—ARep(d11—a10) +ARed@21— az) >

ay—a; = (1—Arep(d12—a11)+ARed@z2—a1) >

0,
0.

The second step of performing interpolation is carried owd similar way to the

first, such that the consequent fuzzy Betan be obtained as follows:

0= (1—Arepbio+ Are20,
1 = (1—Arepb11+ Are21,
5 = (1—ARepb12+ ARed22,

(4.8)
(4.9)
(4.10)
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with abbreviated notation:
B = (1_)\Rep)Bl+)\ReFBZ- (4.11)

As a result, the newly derived ruké = B’ involves the use of only NVF sets.

As A’ = B’ is derived fromA; = B; andA, = By, it is feasible to perform fuzzy
reasoning with this new rule without further reference smitiginals. The interpolative
reasoning problem is therefore changed from expressi@pt@the new modus ponens

interpretation:
observationX is A*

rule: if X is A, thenY is B/ (4.12)
conclusionyY is B*?

This interpretation retains the same results as (4.2) ifirdp@ith the extreme cases:

If A* = Aq, then it follows from (4.3) thadrep= 0, and according to (4.7) and (4.11),

A’ = A; andB' = By, so the conclusioB* = B;. Similarly, if A* = Ay, thenB* = By.
Other than the extreme casasnilarity measures are used to support the appli-

cation of this new modus ponens as done in [QMY96]. In paldicy4.12) can be

interpreted as

T he more similar X to Athe more similarY to B8 (4.13)

Suppose that a certain degree of similarity betw&esmndA* is established, it is intu-
itive to require that the consequent pastsand B* attain the same similarity degree.
The question is now how to obtain an operator which can reptate similarity de-
gree between fuzzy sef$ andA*, and to allow transforming’ to B* with the desired
degree of similarity. In this respect, two transformatians proposed as follows.

Scale Transformation Given ascale rate §(s > 0), in order to transform the
current supportap, — ap), of fuzzy setA = (ap,a3,ap), into a new supports= (az —
ap)) while keeping the same representative value and ratio b§lgfport(a; — ag) to
right-support(a, — &) of the transformed fuzzy se& = (&o,&1,&2), as those of its

original, that isRegA’) = RefdA) and% = 7o the newa'o, &1 anda’, must
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satisfy (as illustrated in Fig. 4.3):
ap(1+2s)+a1(l—9s)+ax(l—ys)

ap = 3 : (4.14)
o — ao(l—s)+a1(1;r 25)+a2(1—s), (4.15)
o — ao(l—s)+a1(13— s)+a2(1+25). (4.16)

In fact, to satisfy the conditions imposed over the tramaftion, the linear equations

U

/3

0 ap agaj az asa, X

Figure 4.3: Triangular scale transformation

below must hold simultaneously:

aptai+8 _ agtatap
2 3
-8 _ a—a

a’zfa’l ay—ag

a, — ag = S(@2 — o)

Solving these equations leads to the solutions as given.im)4(4.16). Note that
this scale transformation guarantees that the transfofmezy sets are valid as the

following holds giverag < a; < a ands> 0:

The above shows how to obtain the resultant fuzzyA$&then the original fuzzy
setA and a scale rate are given. Conversely, in the case where two fuzzy Bets
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/ / / / H H H
(ap,a1,a2) andA’ = (ay,a;,a,) which have the same representative value are given,
the scale rate is calculated as follows:

Al
o 22 Zg >0. (4.17)
-

This measure reflects the similarity degree betwaemdA': the closer isto 1, the

more similar isA to A'. It is therefore used to act as, or to contribute to, the dbkir
similarity degree in order to transforBi to B*.

Move Transformation Given a moving distanck in order to transform the cur-
rent fuzzy supporta, — ap) from the starting locatiom to a new starting position
ap + | while keeping the same representative value and lengthppicstiof the trans-
formed fuzzy set as its original, i.&Re A’) = Re[{A) anda, — a = a — ap, the new
ap, &) anda, must be (as shown in Fig. 4.4):

H BA A A

|
[
1/3 _________ |__+__ _____
|
|

Imax

Figure 4.4: Triangular move transformation

ay = ao+l, (4.18)
a; = ap—2, (4.19)
a, = ax+l. (4.20)

These can be obtained by solving the equations which aresetp the transforma-
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tion: o
Qptaitd _ agtaj+ap
3 - 3
a=ao+!
- =2~ 2

To ensureA’ to be valid, the condition of & | < Imax= (a1 — ap)/3 must hold.
If 1 > Imax the transformation will generate invalid fuzzy sets. Ftance, consider
the extreme case in whidkis transformed t&\’, where the left slope o’ becomes
vertical (i.e. a = a;) as shown in Fig. 4.4. Heré= Imax Any further increase it
will lead to the resulting transformed fuzzy set being a NdfF set. To avoid this, the
move ratioM is introduced: I

M:@?@ﬁ. (4.21)

The closer iVl to 0, the less move (in terms of moving displacenigrg being made,
and the closer i81 to 1, the more move is being made. If move ratloc [0, 1], then
| <lmaxholds. This ensures that the transformed fuzzyAs&b be normal and valid if
Alis itself an NVF set.

Note that the move transformation has two possible movingctions, the above
discusses the right-direction case (from the viewpoirdggdfwith | > 0, the left direc-
tion with | <0 should hold by symmetry:

|
Mhzaitziﬁée[—Lm. (4.22)

As with the description for scale transformation, the abdescribes how to cal-
culate resultant fuzzy sét given the original fuzzy seA and a moving distande(or
move ratioM). Now, consider the case where two valid triangular sets(ap,a;, ay)
andA’' = (aj, &}, a,) which have the same representative value and have the same su
port lengths are given, the move rakibcan be calculated as follows:

4.23)
3(ap—a0) . (
e ifap<a

3(a—a0) ¢ .
M:{ 220 if ag > ag
This reflects the similarity degree betwegrandA’: the closer iSM to 0, the more
similarisAto A'. As AandA’ both are validM € [0, 1] (whenaj, > ag) orM € [—1,0]

(whenaj < ap) must hold.
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Thus, in general, the third step of the interpolation predsso calculate the simi-
larity degree in terms of scale rate and move ratio betwéemdA*, and then obtain
the resultant fuzzy s&* by transformingd’ with the same scale rate and move ratio.

Through interpolation steps 1 - 3, given a normal and vaiahgular fuzzy set as
the observation, a new normal and valid fuzzy set can be eliiging two adjacent
rules.

4.3 Single Antecedent Variable with Trapezoidal Fuzzy
Sets

It is potentially very useful to extend the above interpekateasoning method to ap-
ply to rules involving more complex fuzzy membership fuoos. This subsection
describes the interpolation involving trapezoidal mersbgr functions.

Consider a trapezoidal fuzzy s&tdenoted a$ag, a1, a2, a3), as shown in Fig. 4.5,
for notation convenience, thieottom support, left slope, right slop@dtop supporof
A are defined aaz — ap, a1 — ap, ag — ap anday — a;, respectively. The representative
value ofAis defined as:

1 a1 +a
é(a” 2

RefA) = +ag). (4.24)

This definition subsumes the representative value of agulan set as its specific case.

1/3

Figure 4.5: Representative value of a trapezoidal fuzzy set
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This is because whemy anday in a trapezoid are collapsed into a single vadyeit
degenerates into a triangle. In this case, the representatiue definitions for trape-
zoidals (4.24) and triangles (4.1) remain the same. Of epwaiernative definitions
(e.g.,RefA) = 2F2721&8) may he used, but this will destroy its compatibility with
the triangular representation.

The calculation of the intermediate fuzzy r#le=- B’ follows a similar process as
applying to triangular membership functions except &i@&ndB’ here are trapezoidals
rather than triangulars. It is straightforward to verifyetbxtreme cases (such as if
A* = A; thenB* = Bs) in the same way as with triangular cases. To adapt the pedpos
method to be suitable for trapezoidal fuzzy sets, attensaonly drawn to the two
transformations.

Scale Transformation Given twoscale ratesgands (s, > 0 ands > 0) for bot-
tom support scale and top support scale respectively, iardodtransform the current
bottom supportaz — ap) to a new bottom suppo(s, * (az — ap) ), and the top support
(ap —a1) to a new top suppolts; x (a2 — a1)) while keeping the representative value
and the ratio of left slopéa) — ap) to right slope(a; — &,) of the transformed fuzzy

set the same as those of its original, thaReg(A') = Ref(A) andg1-22 = 2-20, the

newad'o, a1, @2 anda’s must satisfy (as illustrated in Fig. 4.6):

a; ai a; ax

ap ao as as X

Figure 4.6: Trapezoidal scale transformation
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C(2a1+az—2ag—ap) —D(ar+ax—ag—aa)

ap=A— 5 , (4.25)
o —p_ Cltotas—a—a) —BD(5a0+az—5a1—as), (4.26)
oy Cleotas—a—2) —BD(a1+Sas—ao—5az), 4.27)
aé:A_C(ao+2a2—a1—2a3)B—D(a1+a2—ao—a3)7 (4.28)

whereA = 2ot t2 B _ §(a) 1 a5 —ag—ap), C = 25(a3 —ap) andD = s (a —
a1). These results can be achieved by solving conditions betappsed over the

transformation: o
3(8p+ 157 + ) = (a0 + 252 + )

/ /
8 _ ay—ag
agfa’z az—ap

a3 — 8y = (83— a0)
| —ay=s(az—a)
Note that the scale transformation guarantees that theftnamed fuzzy sets are valid

given thats, ands ensure the bottom support of the resultant fuzzy set is vilokan
the top support and both left and right slopes are non-negakhis can be shown by
(a1 — @) (bot(A') —top(A'))

a/_ / — >O,
1~ % at+az—ag—a o
a—a; = s(a2—a)>0,
az —ao)(bot(A) —top(A
i, _ (- 2)(bOUA) —top(A))
at+az—ag—a

wherebot(A’) andtop(A’) stand for the bottom and top supports’ lengths of trans-
formed fuzzy se#, respectively. However, arbitrarily choosisgwhens, is fixed
may lead to the top support of the resultant fuzzy set becgmvider than the bottom
support. To avoid this, thecale ratioS;, which represents the actual increase of the
ratios between the top supports and the bottom supportxeoand after the transfor-
mation, normalised over the maximal possible such incréagbe sense that it does
not lead to invalidity), is introduced to restrigtwith respect tcs,:

st(ap—a) ap-—ag

S = e E e
St - St (az—af)siae?z—al (4 29)
B BB fg >8>0

a3-3
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If St € [0,1] (whens > s, > 0) or St € [-1,0] (whens, > s > 0), sp(az —ag) >

s(ag—a1), i.e.,bot(A") > top(A’). This can be shown as follows.

proof 2 When > s, > 0, assumegay —a;) > S(az — ao),
CS(—a)

also

~aw—ag
,',St>1.

This conflicts witts; € [0, 1], and hence the assumption is wrong. So
(83— o) > st(a2—au).

When g > & > 0,

Tag—ag > ax—a,

" Sp(az—ag) > s(ax—ay).

If, however, two valid trapezoidal fuzzy seis= (ap, a1, az, a3) andA’ = (&g, ay, a5, a5)

happen to have the same representative value, the bottdenrata ofA, s,, and the

top scale ratio oA, St, can be calculated as:

I Al
$ = 2 050

az—ap
- ap-ay
-5 3% e d—a  ag-a
liaz—al 6 [07 1] If a—ay Z az—ap Z O
St - L4 &%
E ’1_25_% ag—ay « a4
B4 _ _ i 3— b~
R €[-1,00 if Z2=>212>0

(4.30)

(4.31)

Thus, in this casey, is free to take on any positive value while< [0,1] or S; € [—1,0]

a/

(depending on wheth 2::1 > % or not) must hold given thah andA’ are both
valid. The closer i to 0, the closer is the ratio betwesmp(A') andbot(A') to that
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betweentop(A) andbot(A). Correspondingly, the closer & to 1, the closer is the
ratio betweertop(A’) andbot(A’) to 1. Similarly, the closer i§; to —1, the closer
is the ratio betweebop(A’) andbot(A) to 0. The ranges d; values (as shown in
(4.31)) are proven as follows:

ah—a &%
proof 3 Whenazﬂ,j11 > P >0,

/ /

1> 5> >0,
a3—a; a3—ao

S1>5>0.

o
Whenag_ao > % ar >0,
- i

a3—a a3

S0>§ > -1

Move Transformation Given a moving distanck in order to transform the cur-
rent fuzzy set from the starting locatiap to a new starting positioag+ | while keep-
ing the same representative value, the length of sugpgrt ag) and the length of the
top suppor{a; —az), i.e.,RefA’) = RefA), a; —ap = ag—ap anda, —aj = ax —ay,
the newey, &, &, andaj; must be (as shown in Fig. 4.7):

a = ao+l, (4.32)
a; = ap—2, (4.33)
a, = ap—2, (4.34)
a; = ag+l. (4.35)

These can be obtained by solving the equations which aresetpi the transforma-
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aia; azaz

ao a’o as a'3 X

Figure 4.7: Trapezoidal move transformation

tion:
( Lo+ B2+ &) = L(ao+ 252 + ag)
ay=2ao+|
—ay=az—a
a—ai=a—a

\

To ensureA’ to be valid, the condition of & | < Imax= (a1 — ap)/3 must hold.
If I > Imax the transformation will generate invalid fuzzy sets. Astwthe triangular
case, thenove ratioM is introduced to avoid invalidity:
I
~(a—a0)/3

If the move ratioM € [0, 1], thenl < Imax holds. Similar to triangular move transfor-

(4.36)

mation, there is another moving direction witkl 0. In that case the condition
I

" (as—ap)/3

is imposed to ensure the validity of the transformed fuzzg.se

€[-1,0] (4.37)

As with the scale transformation, if two valid trapezoidetssA = (ap, a1, ap, a3)
andA’ = (aj, a},a5,a;) which have the same representative value and have the same
support lengths are given, the move ra¥iocan be calculated as follows:

)

3%-2) jf g >
M:{3&2> ?—% (4.38)
s if ag<ap
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As A and A’ both are validM € [0,1] (if a; > ag) or M € [—1,0] (if ay < ap) must
hold.

It is easy to see that trapezoidal transformations are argkezagion of the triangu-
lar ones. In fact, ifay = ap the trapezoidal fuzzy set becomes a triangular one. Sub-
stitutinga; = ap ands = 0 in the trapezoidal transformation formulae (4.25)-(4.28
and (4.32)-(4.35) leads to the same results by the triangralasformation formulae
(4.14)-(4.16) and (4.18)-(4.20).

4.4 Single Antecedent Variable with Hexagonal Fuzzy

Sets

A fairly general case, the interpolation of the hexagonatjusets, is described in this
subsection. This is to be followed by dealing with the int@ation of any complex
polygonal fuzzy membership functions in the next chaptere Gpen issue for such an
extension is to determine the representative value for @angiomplex, asymmetrical
polygonal fuzzy set. For computational simplicity, the r@ge of thex coordinate val-
ues of all characteristic points is defined as the represemtaalue for more complex
polygonal fuzzy sets than trapezoidals.

Consider a generalised hexagonal fuzzyAsedenoted asap, a1, ap,as, a4,as), as
shown in Fig. 4.8a, andag are two normal, characteristic points (whose membership
values are 1)ap andas are two extreme, characteristic points (whose membership
values are 0), and; anday are the two intermediate, characteristic points (whose
membership values are the same and both are between 0 antligiex{g). For no-
tational convenience, thresipports(the horizontal intervals between a pair of char-
acteristic points which involve the same membership vadue)denoted as tHmttom
support(as — ag), middle suppor{as — a;) andtop support(az — a2), and fourslopes
(non-horizontal intervals between two consecutive charatic points) are denoted
asaj; — ag, ap — a3, a4 — ag andas — a4. Also, as indicated above, for computational
simplicity, the representative value Afis defined as:

pt+tagtaytaztastas

RedA) = 5

(4.39)
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Alternative definitions may be used to apply the transforomst For example, below

. Rep(A)

Figure 4.8: Representative value of a hexagonal fuzzy set
shows a definition making use of fuzzy membership values:

RefA) = %[(ao—i— as)+(1— %)(al +aq) + %(a2+ az)l, (4.40)

wherea is the membership value of bo#h andas. This definition assigns different
weights to different pairs of points. The weighted averagthéen taken as the repre-
sentative value of such a fuzzy set. Another alternativendiein, which is compatible
to the less complex fuzzy sets (including triangular, trapeal and pentagonal fuzzy
sets), can be defined as:

RefA) = :—:;[aoJr(l— %)(al—a’l) + %(a2+a3) +(1- %)(a4—a21) +as|, (4.41)

wherea) = aay+ (1—a)ap anda), = aag+ (1— a)as (see Fig 4.8). Note that the
interpolation by using either of these alternative defomsi follows the same procedure
as the one employing the simple definition (4.39).

The calculation of intermediate fuzzy ruké = B’ follows the triangular or trape-
zoidal cases. Attention is again drawn to the scale and nmrawsformations as de-
scribed below.
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Scale Transformation Given threescale rates§ sy ands (s, > 0, sn > 0 and
s > 0) representing the bottom support, middle support anduppat scale respec-
tively, the fuzzy sef\ = (ag, a1, a2, a3, a4, as) can be transformed & = (ag, &}, a,, a5, &, a)
by solving

(st taprabratal _ agtagtaptastastas
6 = 6

/ /
e
ad;*a4 as—ay

/

&8 _ amp—a

ay-ay  u—ag

a; — 8y = S(as — ao)

&) —ay = sm(as—ay)
| - =s(azs—a)
The solution of this is omitted here. As with the trapezoickde, the resultant fuzzy
setA’ must have property thaf) < a) < a, < aj < &, < &, given that the desired top
support is narrower than the middle support and the middipau is narrower than
the bottom support. Therefore, certain constraints shbealtmposed oves,, if s, is
fixed, and overs if sy is fixed. For this reason, the scale ratios of middle and top
supports ofA, denoted aSy, andS;, are introduced to constrain the scale ragand

s respectively:

2t 50 ifsm>9>0

(4.42)

St((asfaz)) _ag—a
Sm(ag—ay) _a4-a :
St - st(ag—ay)  ag—ay (443)
mee B A jfsy>§ >0
ay-aq

If Sm € [0,1] (whensy > s, > 0) or Sm € [—1,0] (Wwhens, > sy > 0) whilstS; € [0, 1]
(whens > sy > 0) orS; € [—1,0] (whensy > s > 0), thenag —a > &, —aj > a5 — &,.
Interested readers may refer to proof 6 in subsection 5dt.2he discussion of the
general polygonal fuzzy membership function case. Thetcainss ofS,, andS; along
with the scale transformation thus lead to a unique and CNRK'se
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Conversely, if two valid hexagonal fuzzy séis= (ag, a1, a2, as,as4,a5) andA’ =
(ap, &y, a), a3, ay, ag) which have the same representative value are given, thestal
of the bottom supporty, and the scale ratios of the middle and top supp&sand
St, are calculated as:

/Al
5 = 5-%5g (4.44)
as —ap
(4 -
%% B if 88 - 858
s € 01 if g >a2>0
Sy = N (4.45)
/ /T — / / / /
-8y 8579 : —8y &
SR —e[-1,0 if 3R> >0
a—-3ap
A -
i T
e €[00 22> >0
St - %7%a4;:£a2 (446)
a4, _’34—31 ) a,—a a.—a.
S €[-10] i S > 2z >0
\ a4-ay

Again, the proof ofS, € [—1,1] andS; € [—1,1] given thatA andA’ are both valid is
referred to proof 7 in subsection 5.2.2.

Move Transformation It is slightly more complicated to apply move transforma-
tions to hexagonal fuzzy sets although they still follow sane principle. Compared
to the cases of triangular and trapezoidal fuzzy sets, wir@seone move transforma-
tion is carried out in order to obtain the resultant fuzzy #es case needs two moves
(referred to asub-movesereafter) to achieve the resultant fuzzy set.

Given two moving distancdg andl,, in order to transform the bottom support of
the fuzzy sefA = (ap, a1, ap, a83,a4,as5) from the starting locatiomg to a new starting
positionay = ap + I, and to transform the middle support framto &; = a; +Im while
keeping the representative value, the lengths of threecstg remain the same (as
shown in Fig. 4.9), two sub-moves are carried out.

First, a sub-move to the desired bottom support positiottésrgpted. If it moves
ap to the right position, 6< Iy < lpmax= (253+% — a9) must hold. In the extreme
position wherdp = Ipmax the resultant fuzzy set”’ = (ag,a/,a},a5,a;,az), i.e., the
dotted hexagonal set in Fig. 4.9, hals= a] = a;. If I > lpmay it will lead to an
invalid fuzzy set. As with the triangular and trapezoidades, the bottom move ratio
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A A A
ayapaz az a, as

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

ao a’O(a"O) : ag+a; +ay asg aé(aHS) X
, 2071 T A2
3

Figure 4.9: Hexagonal bottom move transformation

is introduced to avoid this potential invalidity:

I

~ agfaira :
3031 2—a0

M (4.47)

If the move ratioM, € [0, 1], thenl, < Imax holds. The moving distance of the point
g (i=0,1,2) is calculated by multiplyin@1y, with the distance between the extreme
position W} and itself. In so doinggg, a; anday will move the same proportion
of their respective distances to the extreme positions.oflner three pointag, a; and

as can therefore be determined by attaining the same lengtkiseothree supports,
respectively. The fuzzy sét after this sub-move is thus calculated by:

2 = ao+My(XTETE g (4.48)

a] = a1+Mb(W—a1), (4.49)

& — @+Mmﬁi%i%—@% (4.50)

al = %+MM@i%i%—@% (4.51)

f = an+ MR gy, (4.52)
Bota+a

a = as+Mp( (4.53)

3 ap).
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From (4.48)-(4.53), it is clear th&{’ is valid as the following holds giveNl,, € [0, 1]:

aj —ag = (a1 —ao)(1—Myp) >0,
a,—aj = (ag—a1)(1—My) >0,
ag—ay=ag—ap >0,
ay—ay=as—az+Mp(ap—ag) >0,
ag —aj = as — a4+ Mp(a1 — ag) > 0.

It can be verified tha\” has the same representative valueAasThis is because,
according to equations (4.48)-(4.53),

ag+a] +aj+ay+aj, +al
6

Ppt+tayt+at+azt+agt+as
6

RedA”) =

= RefA).

For the opposite moving direction whdge< 0, the condition

Iy

Mp= —o
agtaut
ag — G

€[-1,0] (4.54)

is imposed to ensure the validity of the transformed fuzzy $&e results oA” can
similarly be written as:

B az+a4+as

ag = ao+Mp(as z ) (4.55)
B = aq+Mp(as— 2TE), (4.56)
a = a2+Mb(a3—W), (4.57)
ag = a3+Mb(a3—W), (4.58)
G = a4+Mb(a4—W), (4.59)
a = 85+Mb(as—W)- (4.60)

Of course, it can be proved from (4.55)-(4.60) that this Itest fuzzy set is indeed
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valid givenMy, € [—1,0]:

a] —ag=a1—ag+Mp(as—as) >0,
a—a] =ay—a;+Mpy(ag—ay) >0,
ag—ay=ag—ap >0,

ay —az = (as—ag)(1+Mp) >0,

ag —a) = (a5 —aq)(1+Mp) > 0.

Again,A” andA have the same representative value, ensured by (4.5%))(4.6
In both cased§ > 0 andl, < 0), aj = ap+Ip holds. This means the bottom support

of A is moved to the desired place after the first sub-move. Sodbensl sub-move
is aimed to move the middle and the top supports to the deplemds fromA” to A’

as shown in Fig. 4.9. This sub-move does not affect the plateedbottom support
as it is already in the right place. Considering moving thddte support to the right
direction (i.e., the new move displacemépt= 1 — (a] —a1) > 0), this move is almost
the same as the move proposed for a trapezoidal fuzzy septetkd the maximal
moving distance (in the sense that it does not lead to inglidhould be less than,

or at most equal t@ggalll (not a/z/;a/l/ as in the trapezoidal case due to the difference in
the representative definition for hexagonal fuzzy sets)is Tbecause the maximal
moving distance is also constrained to the bottom suppertlj, < al — &) as it may
movea, exceeding. It is intuitive to pick the minimal value of the two distarscas
the maximal moving distance. The move ratio therefore catelfieed as:

Im— (8] —a
My = — ,,_(a,,l 2 (4.61)
min{ %% af —aj}
When applying the second sub-move, considering both uppkiosver invalidity may
arise, theapplied move ratidMl'y, is introduced as:
A al—a
min{ 2L a —a)
MY, = My M2 %~ ) (4.62)

e
2

If Mp, € [0,1], M’ € [0,M]. The introduction of applied move ratio avoids the po-
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tential lower invalidity when applying the sub-move asdolb:

a = ap, (4.63)
a, = a’1’+M’m(a/1/J2ra/2,—a’l’), (4.64)
d, — a’2’+M’m(a,1/J2ra/2{—ag), (4.65)
& — ag+M’m(a/1/;ag—a'2’), (4.66)
a - aZ+M’m(a&/;ag—a{), (4.67)
a = as. (4.68)

Merging (4.61) and (4.62) into (4.64) and (4.65) leadsite= a; +Im anda, = a, —
I — I , which are the desired positions far anda, to be moved on to, respectively.
It can also be shown th& is an NVF fuzzy set an®RedA’) = RedA”) = RegA).
All these properties are maintained if in the opposite caserel/, < 0.

As discussed above, if given two move ratidg € [—1,1] andMy € [—1,1], the
two sub-moves transform the given NVF get (ag, a3, ap, a3, a4,as5) to a new NVF
setA' = (ay,a;,a), a5,a),a5) while keeping the representative values and the lengths
or supports to be the same.

Conversely, if two valid hexagonal fuzzy seis= (ap,a1,ap,a3,a4,a5) andA’ =
(ap, &y, a5, a5, &), ag) which have the same representative value and have the spme su
port lengths are given, the move ratios which are calculated order from bottom to
top must lie betweefi-1, 1]. First, the bottom move ratio is computed by:

[ —ag .
a{)Jrz(l)Jriaz_aOE[o,l] |fa62a0

My = (4.69)

%E[—l,q |fa6§ao
It is used to carry out the first sub-move Atto generateX’ = (ajj, a7, a}, a3, &), af)
according to (4.48) - (4.53) or (4.55) - (4.60). Then, the dilédmove ratio can be
calculated by:

,?11;,,&/1/ € [0,1] if aj >a
My, = J ™2t a-al) (4.70)
a4 €[-10 ifaj<a]

min{—a“; a)—al}
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45 Qutline of the Method

On top of thescaleandmove transformationsnintegrated transformatiordenoted
T(A,A), between two fuzzy sesandA’ can be introduced such thatis the derived
NVF set ofA by applying both transformation components. Obviously imtegrated
transformations are said to be identical if and only if bottiheir scale rate scale
ratios (for polygonal fuzzy sets more complex than triangular) amale ratiosare
equal.

As indicated earlier in (4.13), it is intuitive to maintainet similarity degree be-
tween the consequent pa@sandB* to be the same as that between the antecedent
partsA’ andA*, in performing interpolative reasoning. Now that the imgggd trans-
formation allows the similarity degree between two fuzzis4e be measured by the
scale rate scale ratios(for fuzzy polygonal sets more complex than triangular) and
move ratiosthe desired conclusidd* can be obtained by satisfying the following (as
shown in Fig. 4.10 for an interpolation involving triangufaizzy sets):

T(B,B*) =T(A AY). (4.71)
That is, the parameters stale rate scale ratiosandmove ratioscalculated fromd’

m S~ T(A ,AY)

mT(B‘,B*)

Az
X
B2
Y

Figure 4.10: Proposed interpolative reasoning method

to A* are used to computg* from B'. Clearly,B* will then retain the same similarity
degree as that between the antecedent pagadA*.
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4.6 Summary

This chapter proposes a novel interpolative reasoning eddihsed on specific exam-
ples (triangular, trapezoidal and hexagonal fuzzy seist &n intermediate fuzzy rule
is constructed by its two adjacent rules. Then it togethén Wie observation are con-
verted into the final results by proposed scale and moveftranations, which ensure
unique as well as normal and valid results. The generabaatf this work will be
discussed in the next chapter.



Chapter 5

Transformation Based Interpolation:

General Approach

This chapter extends the work presented in Chapter 4 in &peds: 1) the represen-
tative value definitions are generalised, which provideggreke of freedom to meet
particular application requirements; 2) the interpolatroethod is extended to deal
with arbitrarily complex polygonal fuzzy sets; 3) furtheew@lopment has been made
on the scale and move transformations; and 4) the interpoléand extrapolation)
method is extended to deal with multiple antecedent vaegbhd/or multiple rules.
Numerical examples have been illustrated to show the uskeeoiterpolation meth-
ods.

5.1 General Representative Value (RV) Definition

To facilitate the discussion of the transformation baséerpolation method, theepre-
sentative valuef the polygonal fuzzy sets involved must be defined befardh&his
value represents the overall location of the fuzzy set agdides the transformations
as presented in the next section. As different RV definitieasl to different interpo-
lation results (although the transformations apply in ta@e manner), it provides the
flexibility to choose proper RV definitions to suit differeagpplication requirements.
The RV definitions deployed in the previous chapter are yirgtvViewed. Consid-

82
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ering a triangular fuzzy seA, denoted asap,a;,az), as shown in Fig. 5.1, the RV
definition is written as follows:

ap+a;+ap

RedA) = 3

(5.1)

This happens to be the centre of gravity of the triangulazyiset [HS03].

do aAi Rep(A) a-o X
Figure 5.1: The RV of a triangular fuzzy set

To be compatible to this definition, the definition of RV forragezoidal fuzzy set
A= (ap,a1,ap,a3) (as shown in Fig. 5.2) is calculated as:

a; +ao
2

Ref(A) = = (a0 +

3 +ag). (5.2)

This definition subsumes the RV of a triangular fuzzy setsaspiecific case. This is

1/3

Figure 5.2: The RV of a trapezoidal fuzzy set

because whea; anday in a trapezoidal fuzzy set are collapsed into a single vajue
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it degenerates into a triangular one. In this case, the septative value definitions for
trapezoidals (5.2) and triangles (5.1) remain the same.

It becomes more complicated to deal with more complex fuety such as hexag-
onal fuzzy sets (as shown in Fig. 5.3). The simplest solus@alculating the average
of values of all points as the RV of that fuzzy set. The workHé$D4a] also suggested
the possible RV definitions as:

T

7

j )

o

D

-
Y|-—-—-=-=-=-=-=
N
Q|--=-=-=-=-=-=
w

e =

A -

j

o

Figure 5.3: The RV of a hexagonal fuzzy set

(ao+as) + (1— %) (e +au) + 3 (a2 +ag)

RepgA) =
eriA o ,

(5.3)

wherea is the membership value of boy andas. This definition assigns differ-
ent pairs of points with different weights. The weightedrage is then taken as the
representative value.

Another alternative definition for the hexagonal fuzzy setsompatible to the less
complex fuzzy sets including triangular, trapezoidal aedtpgonal fuzzy sets. For
example, ifa; anday happen to be on the lines betwesa, andas, as, respectively,
such a hexagonal fuzzy set becomes a trapezoidal set, tmiidafis thus equal to
(5.2). Such a compatible definition can be written as:

RefA) = 5[ao-+ (L )(a1 —af) + 5(a + as)
a

+(1—-3)(aa—a) + ), (5.4)

wherea] = aaz + (1—a)ag anda), = aaz + (1 — a)as (see Fig 5.3).
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After the review of the previously adopted RV definitionsywnoonsidering the
general RV definition for an arbitrary polygonal fuzzy sethwi characteristic points,
A= (ag,...,an_1), as shown in (5.4). Note that the two top points (of membershi
value 1) do not need to be different. If they happen to haves#imee value, they are
collapsed into one. Also, although the figure explicitlylamgs that evenly paired
characteristic points are on eaakcut, this doesn't affect the generality of the fuzzy
set as artificial characteristic points can be created to frenly paired characteristic
points. Clearly, a general fuzzy membership function wittharacteristic points has
| 5] supports(horizontal intervals between a pair of characteristimpivhich have
the same membership value) and] — 1) slopes(non-horizontal intervals between
two consecutive characteristic points). A general RV d&diniof such an arbitrary

M |

0 ao ! an-1 X
' Rep(A)

Figure 5.4: The RV of an arbitrarily complex fuzzy set
polygonal fuzzy set can be written as:
n—1
RefA) = Z}Wiah (5.5)
i=

wherew; is the weight assigned to poiat
The simplest case (which is denoted asakerage R\definition hereafter) is that
all points take the same weight value, i\8.—= % The RV is therefore written as:

n—1
RefA) = % Z}a* (5.6)

Note that (5.1) belongs to this definition.
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Given a RV definition, if the RV of a fuzzy set by using more @weristic points
keeps the same value as that of the same fuzzy set but by @saglharacteristic
points, such a definition is calledcampatible R\definition. One such solution can be
specified by the following rules:

1. Artificial characteristic points are assigned weight6.of
2. Bottom points (of membership value 0) are assigned ngﬁ@

3. Top points (of membership value 1) are assigned weighgsibihe fuzzy sets
have odd characteristic points (e.g., triangular s%smherwise (e.g., trape-
zoidal).

4. Intermediate characteristic points are assigned vwetg‘r%tif the fuzzy sets have
odd characteristic pointé;(l— %) otherwise, where; is the fuzzy membership
value of characteristic poir, i = {0,...,n—1}.

Another alternative definition (denoted as theighted average Rifefinition) as-
sumes that the weights increase (or decrease) upwardlythetmottom support to the
top support. This weight assignment strategy is inspirethbyassumption that differ-
ent characteristic points may have varied weights, and thgiws may have something
to do with the fuzzy membership values. For instance, assyithie weights increase
upwardly from% to 1, the weighty; can thus be calculated by = % (whereaq; is
the fuzzy membership value &f, i = {0,...,[5] —1}), and then be normalised by the
summary ofw, i = {0,...,n—1}. The RV therefore can be written as:

[31-11ta .
RepA) = 21=0_ 2 (8 +an-1-i)

< . (5.7)
n_1 ]
Zi[:zl) —120('

Also, the definition (5.3) is another particular case of thaghit average definition

although the weight assignment is different : the weightsekse upwardly from 1 to
1

?.
One of the most widely used defuzzification methods — thereaftcore can also
be used to define theentre of core RVIn this case, the RV is solely determined by

those points with a fuzzy membership value of 1:

1
RedA) = E(a[gw_l—f—an_[%w. (5.8)



Chapter 5. Transformation Based Interpolation: General Approach 87

The general RV definition can be simplified if the length$ $f supports, ... ., SL%j—l
(the index in ascending order from the bottom to the top) am@nwn. Asan 1 i =
a+S,i=10,...,|5] — 1}, the general RV definition (5.5) can thus be re-written as:

REF(A) = ao(Wo —l—Wn,]_) +SWho1+...
+arg)-1(Wig1-1+ Wn-rg7) + F31-1Wn-13]
911
= Z) a (Wi +Wn—1-i) +C, (5.9)
i=

whereC = SWp_1+ ... +5(g1—1Wn—fg1 is a constant. From this definition, the rep-
resentative value acts as a function with respect to theegadfithe points on the left
side of the fuzzy set.

The general RV definition (5.5) subsumes all the RV defingiased earlier on in
[HS03, HS04b, HSO05d]. It provides more room to define sugdtVs for different
applications. In fact the general definition is the lineambmation of values of all
characteristic points. Beyond this, non-linear comboratf such values, such as the
one including the product of two or more points’ values, isvadid as the interpolation
is itself linear.

5.2 Base Case

5.2.1 Construct the Intermediate Rule

In fuzzy interpolation, the simplest case is commonly ugedeémonstrate the under-
lying techniques without losing any generality. That isyegi two adjacent rules as
follows

If XisAithenY is B,
If XisAxthenY is B,

which are denoted &, = B1, Ay = B respectively, together with the observatiéin
which is located between fuzzy sétsandAy, the interpolation is supposed to achieve
the fuzzy resulB*. In another form this simplest case can be representedghribe
modus ponens interpretation (5.10), and as illustratedgn35.
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AA A

Aain-1ag

AA A

b1n-1bo bzn-1

Figure 5.5: Interpolation with arbitrary polygonal fuzzy membership functions

observationX is A*

rules: if X is Ag, thenY is B;
if Xis Ay, thenY isBy

conclusionly is B*?

(5.10)

Here, A = (&, ...,ain-1), Bi = (bio,...,bin-1), i = {1,2}, andA* = (ap,...,an—1),

= (bo,...,bn-1).

The transformation based interpolation method begins wathstructing a new
fuzzy setA’ which has the same RV #§. To support this work, the distance between
A1 andA; is herein re-represented by the following:

d(A1,A2) = d(RefAr), RedA)). (5.11)

An interpolative ratioArep (0 < Arep< 1) is introduced to represent the important
impact of A, (with respect toA;) when constructingy:
d(Al,A*)

d(As,Az)
_ d(RefA;),RedA"))
~ d(RefA1),RedA2))’

)\Rep

(5.12)

That s to say, ifrep= 0, A2 plays no part in the construction &f. While if Arep= 1,
A, plays a full role in determining’. Then by using the simplest linear interpolation,
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al,i=1{0,...,n—1}, of A’ are calculated as follows:

a = (1—Arepayi + ArefR2i, (5.13)
which are collectively abbreviated to

A = (1—ArepA1 + AReP2. (5.14)
Now, A’ has the same representative valu&as
proof 4 As RegA') = ™ twial. With (5.13) and (5.12),

RedA)
n-1
= -Z)Wi [(1—ARepa + AreRai]

n—1 n—1
= (1—ARep) Z)wiali +)\RepZ)WiaZi
i= i=

= (1-ArepRe[AL) + AreREAA?)
_ Ref(A") (5.15)

Also, it is worth noting tha#' is a valid fuzzy set as the following holds givap <
atj+1, ag < agjy1, wherei = {0,...,n—2}, and 0< Arep< 1:

/

a1 — 8
= (1—Arep(asit+1—as) +Ared@ri+1—az) > 0.
Similarly, the consequent fuzzy d8tcan be obtained by
B = (1_)\Rep)Bl+)\ReFBZ- (5.16)

In so doing, the newly derived rul¥ = B’ involves the use of only normal and valid
fuzzy sets.

As A' = B' is derived fromA; = B; andA; = By, it is feasible to perform fuzzy
reasoning with this new rule without further reference soatiginals. The interpola-
tive reasoning problem is therefore changed from (5.10h&rew modus ponens

interpretation:
observationX is A*

rule: if X is A, thenY is B’ (5.17)
conclusion is B*?
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This interpretation retains the same results as (5.10) alirdewith the extreme
cases: IfA* = A, then from (5.12Arep= 0, and according to (5.14) and (5.16),
A’ = A; andB' = By, so the conclusioB* = B;. Similarly, if A* = Ay, thenB* = Bs.

Other than the extreme casesnilarity measures are used to support the applica-
tion of this new modus ponens. In particular, (5.17) can berpreted as

T he more similar X to Athe more similarY to B8 (5.18)

Suppose that a certain degree of similarity betw&esmndA* is established, it is intu-
itive to require that the consequent pastsand B* attain the same similarity degree.
The question is now how to obtain an operator which can reptate similarity de-
gree betweed' andA*, and to allow transforming’ to B* with the desired degree of
similarity. To this end, the following two component tramshations are proposed as
follows.

5.2.2 Scale Transformation for General RV Definition

Consider applying scale transformation to an arbitrarygohal fuzzy membership
functionA= (ag,...,a,—1) (a@s shown in Fig. 5.6) to generaé= (a&;,...,a), ;) such
that they have the same RV, aafl ; ; — & = s(ap-1-i — &), wheres are scale
rates and = {0,...,|5| —1}. In order to achieve this,5| equationsa;, ; ; —a =
S(an-1-i —a),i={0,...,| 5] — 1}, are imposed to obtain the supports with desired
lengths, and[}] — 1) equations(,j‘a_‘?'/:1:(,3\:‘"/_2_i =g oadi={0,...,[3] -2} are
imposed to equalize the ratios between the (g} — 1) slopes’ lengths and the right

([51—1) slopes’ lengths oA\’ to those counterparts of the original fuzzy getThe
equationy s wia = ¥ wia which ensures the same representative values before
and after the transformation is added to make up5df+- ([3] — 1) + 1= n equations.
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il W ]
ag dp-1 an-1 X

Figure 5.6: Scale transformation

All thesen equations are collectively written as:

P

a g i—&=S(@-1-i—&) =9
(i={0,...,[5] -1}

ai/Jrl_ai/ — 31— q _ R
A1 i~ o An-1-i—8n-2-i R (5.19)

(i={0.....[31-2})

| Zo Wi = 3o wia

whereS§ is theith support length of the resultant fuzzy set &ds the ratio between
the leftith slope length and the righth slope length. Solving theseequations simul-
taneously results in a unique and valid fuzzy Aegiven that the resultant set has a

descending order of the support lengths from the bottomaadp. This can be proved
as follows.

proof5 AsR >0 (i={0,...,[3]—2}) and $> S1 (i = {0,...,[5] — 2}), from
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(5.19), the conclusions below can be drawn:

(8.~ 8 =1k (S—S:1) >0
i:{O,...,(g}—Z}

331~ g1 = 31120

a4 —a& = W{H(Sn—i—z —S-i—1) >0
(i={n—[3].....n=2}

It can be concluded from this proof that, if a fuzzy seand the support scale rates
s are given, the RV definition doesn’t affect the geometridedpe of the resultant
fuzzy set after the scale transformation. Instead, it offfigcés the position of this
fuzzy set.

However, arbitrarily choosing thigh support scale rate when tliie— 1)th scale
rate is fixed may lead thi¢h support to becoming wider than tfie- 1)th support, i.e.,
S > S_1. To avoid this, thdth scale ratioS;, which represents the actual increase
of the ratios between thigh supports and thé — 1)th supports, before and after the
transformation, normalised over the maximal possible socrease (in the sense it
does not lead to invalidity), is introduced to restsctith respect te_1:

Si=9{ seoiid) 18 (5.20)
-5 f s 1>§ >0

an_i—a_1
If Sj € [0,1] (whens >s_1 >0)orS; € [-1,0] (whens_1>5>0),S5_1>S. This
can be shown as follows.

proof 6 Whens>s_1 >0, assumeS> §_1,i.€,$(an-i-1—&) >S-1(an-i —a-1),

S(@n-i1-a) > 1.
S_1(an—i —a-1)
Also,
1> An-i-1—& >0,
an-ji — -1

SSi> 1
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This conflicts witts; € [0,1]. The assumption is therefore wrong. S0:S> S.
Whens 1>s >0,

" an—i—3ad-1~> an—i—1— &,
o.S-1(@-i—ai-1) > S(an-i-1— ),
.S5.1>8S.

In summary, if givers; (i = {0,..., 5] —1) such that;j € [0,1] or S; € [-1,0] (de-
pending on whethes > s_1 or not),i = {1,..., L%J — 1}, the scale transformation
guarantees to generate an NVF fuzzy set.

Conversely, if two valid setd = (ap,...,an—1) andA’' = (&,...,a)_;) are given,
which have the same RV, the scale rate of the bottom supgoend the scale ratio of
theith supportS; (Si, i = {1,...,[ 5] — 1}) can be calculated by:

a1~ 3
Sg=— 521
an-1—2ap ( )
(@18 ani_1-d
(i~ 4 an-i—8-1
ety o
, AL /
e i~ 1
(If An-i-1—& = An-i—d-1 = O)
Si = (5.22)
i1 A i1-G
(i~ an-i—8-1
- a;n—i—l_al €[-10
/an_'_é/liil / /
T e L NG I
\ (If an-i—g-1 = an_ji—1—4 = O)

Given thatA andA’ are both valid, the ranges 8f as indicated above can be proved
as follows.

e R e I
& = an-i—a-1 >0,

~

a_
proof 7 Whenan_i_l 3

)

-1, A
1> a:]—l—l /al > an-i-1— 4 >0
8 =& 1 Gn-i—a-1

2 1>8i>0.
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an_i—1—a _ a1~ & >0
an-i—ai-1 Ay —a g

Y

5.2.3 Move Transformation for General RV Definition

Now, consider the move transformation (as shown in Fig. &plied to an arbitrary
polygonal fuzzy membership functidn= (ag, ..., a,-1) to generaté\' = (ay, . ...a,, ;)
such that they have the same representative value and tledesagths of supports, and
a =aj+li,i ={0,...,[5] —2}. In order to achieve this, the move transformation is

an-18p-1 X

Figure 5.7: Move transformation

decomposed int¢[ 5] — 1) sub-moves. Thigh sub-movei(= {0,...,[5] —2}) moves
theith support (from the bottom to the top beginning with 0) to tlesired place. It
moves all the characteristic points on and abovaetisupport, whilst keeping unal-
tered for those points under this support. To measure theedeyg theith sub-move,
the first maximal possible move distance (in the sense thaith-move doesn't lead to
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the above invalidity) should be computed first. To simplig description of the sub-
move procedure, only the right direction move (frafis point of view) is considered
in the discussion hereafter. The left direction simply ovisrthis operation.

If the ith point is supposed to move to the right direction, the mzanl(qmmsitionai(i)>k
can be calculated as follows wh@@fl(wj +Wn_1-j) >0:

Al = 2 ' (5.23)
i=

whereA=5 w<o [(Sc1—%) zr[r?ilzl(wmjtwn,l,m)] andS is the length of théth
i<k<[3]
support (either béfore or after move transformation as #reythe same). If however

51217 (W) +wh_1_j) < 0, the maximal position " is calculated similarly to (5.23)
except that the conditiow, < 0 in termA is changed tav, > 0. The calculation of
(5.23) can be shown as follows.

proof 8 As the sub-move doesn’t change the RV and supports’ lerggtbsrding to
(5.9), assume that
[21-1 [21-1

2 al (Wi +Wn_1 i) = 3 A+ i) =D

In addition, as the ith sub-move doesn’t move the points utideith support, it can
therefore be assumed that

[

=)
—

MI\J

-1 [7-1
A(Wj+wn-1-j) = 3 aj(wj+wn1j)=E
J

NIS
—

]

Considering move pointi(ieY1> (a's new position after the ¢ 1)th sub-move) to the
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right direction andzj@fl(wj +Wn-1-j) >0,

[31-1
(W +Wn-1-i) =E— % aj(wj+Wn-1-j)
j=1+1

r mM_2
E— 32128 (W) +Wn_1j)
—an_o(Wrg-1+Wa-rg))

(if W[%],l—FWn,[%] > 0)

IN

E—3 2 e (Wi+Wn 1)
—8g)_p(Wig)-1+Wo_(g])
—(Sg1-2— Sp7-2) (Wrg-1+Wa-117)
(1T Wig1-1+Wa-rg <0)

where Sy, and Sy _; are the lengths of th¢[ 3] — 2)th and([3] — 1)th supports,
respectively. That is to say, if[g\q_lthn_[% > 0, in order to get the maximal
value of &(Wi +Wn_1-i), a’[%k1 is assigned the same value as that %ﬁgz. This
leads to the top left slope being vertical. Similarly, if rewer Wa1-1+ W3y <0,
a’[g]f1 = a,[EFZ +S11-2— 51711 and it thus results in the top right slope being ver-

tical. Repeating this procedure from the top down to the ughport leads that

[51-1
(W +Wo1i) SE—a Y (W)+Wh1-j)
j=1+1
[31-1
- Z [(Se-1— &) Z (Wm+Wn—1-m)],
Wi <0 m=k

i<k<[9]

which can therefore be rearranged to (5.23). The proof fer¢hse withzj@i_l(wj +
Wh—1-j) < Ois omitted as it simply follows. Note thatitis meaninglmggi_l(wj +
wh—1-j) = 0. With such a weight vector, the RV cannot represent the tvecation

of a given fuzzy set. This is because the RV of a fuzzy setsakeaps the same when
the fuzzy set is merely moved without changing the georaksheape.

From the proof, the other extreme poimﬁg* (j={i+1,...,[5] —1}) which are on
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the left side of the fuzzy set in théh sub-move can be calculated by:

i) {ag'l*l if wj+wn1_j>0 (5.24)

ag'l*lJrSj_l—Sj ifwj+wy1j<0
It can be proved that all the extreme points form an NVF fuzyA§)* (as shown in
Fig. 5.8) which must have at least a vertical slope betwegrvam consecutive-cuts
above thdth support. This fuzzy set has the same R\A8sY. That is:
Bt LIRS,
% a; (Wj +Wn—1fj> = % a; (Wj —|—Wn,1,j) (5.25)
= =

The proof is ignored here as it is obvious from the calcutatw the extreme point
i)+
a .

Rep(A) ap1 X

Figure 5.8: The extreme move positions in the ith sub-move

The move to the left direction from the viewpointafis omitted as it mirrors the
right direction move.

From above, the first maximal move distance can be calculddedever, thath
sub-move not only needs to consider the possible abovedityabut also needs to
pay attention to the possible below invalidity. Otherwismay still lead to invalidity
as shown in Fig. 5.8. To avoid this, the second maximal mostadce is calculated as
afj;” — afq'jllll Itis intuitive to pick the minimal of these two maximal modistances
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as the maximal move distance which doesn't lead to eitheveabobelow invalidity.
The move ratidVj, which is used to measure the degree of such a sub-move sis thu

calculated by:
( i@ -a)
min{al" 'Y oV -al "},
(if 1> (@' —a)
M = (5.26)
l-@'"Y-a)
minal D _al)" " D g0 1}
Lt <@ Y -a))
where the notatiorai(ifl) represents;’s new position after thei & 1)th sub-move.
Initially, ai(_l) =g. If Mj € [0,1] whenl; > (ai('_1> —a), or Mj € [-1,0] whenl; <
(ai('_l) —a&), the sub-move is carried out as follows: the charactenpstints under the

ith support are not changed:
7 j=A{0,...,i—1,n—i,...,n—1}

while the other pointsy,aj.1,...,8,-1-i are being moved. Initially, when= 0,
all characteristic points are being moved of course. If mgvio the right direc-
tion from the viewpoint ofai(i_l), i.e., M € [0,1], the moving distances & (j =
{i,i+1,...,[5] —1}) which are on the left side of fuzzy set are calculated by mult
plying M'; with the distances between the extreme posit'maiiﬁ?, and themselves. In
SO doing,agi_l) will move the same proportion of distances to their respeakireme
positions.agi) can thus be computed by:

; i—1 )% i—1
a)=a' " @) —a ), (5.27)

where (i) (i-1) (-1 _ _(i-1)
. i)x* i— i— i—
imm{ai —a A —ay 1}
— - .
ai(l) _ai(l )
M'; is theapplied move ratidor theith sub-move. 1M € [0,1], M; € [0,Mj]. The

adoption of applied move ratil’; avoids the possible below invalidity. Such a move

M'; =M (5.28)

strategy leads to an NVF sat) = {a{’,....a"), } which has the same representative
value asA and has the new poiaf” on the desired position, i.eReAl)) = Ref(A)
andai(') =a + ;. All these properties can be proved as follows.
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proof 9 Considering the ith point during the ith sub-move=({0, ..., [5] —2}), sub-
stituting (5.26) and (5.28) to (5.27) leads tﬁ)a: a +1;, which is the desired position
for a to be moved to. As the ith support length is fixed,1a; is also moved to the
desired position via this sub-move. Initially, tB& sub-move movegand g, ; to
the correct positions, and the first sub-move movemw g, 2 to the correct positions
while keeping a and &_1 unchanged. Following this by induction, the ith sub-move
moves g,...,aj,a,-1-i,---,an_1 to the correct positions.

The distances betweer<1+q and ag (j=A{i,i+1,...,[5] —2}) are calculated as
follows according to (5.27):

agiil—agi) = (agi+—11) —agi_l))(l M'j) +M'i(a Efl aﬁ”*).

Initially, when i= 0, aSH) — agi_l) = agﬁ) — ag_l) =ajr1—3aj >0and aﬁ*l

agi) agjl 5 >0(j=1{0,1,...,[9] - 2}) as A and A%* are valid. This leads

to agjl ( ) >0, j=1{0,1,...,[5] — 2}, which in turn leads to %1 ) >0,
j = {1 ( } 2} Also, as this sub-move causes moves to the rlght direction,
a >ay) =a’. so4” —a¥ >0, j={0,...,[3] - 2}. By induction, it follows
that

. —ad >0 ] :{o,...,(; _2}.
The new positions ofjgj = {n—[3],...,n—1—i}) which are on the right side of A
can be calculated similarly:

agi) = agifl) +M'i(aﬂl*1_,- - aﬂjlllp. (5.29)
Thus, the distances betweeﬁgand %i) (i={n—[3],...,n—2—i}) are calculated
by:
ol - am o
M8 a5 el el ).
From (5.24),

_ aT12](ianlj+Wj>o)
ar(wlz*lfj = anl 2t Sh-2-j —Sh-1-
<|f anlfj +W] < O)
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.'.ar(:l*z_j—a,q)*l i< > S —Sh2- j

-'-a?il a()>a§+1l)— 5 )+M’i(a§' 1)_agi;11))
=@ —a")a-mi >0
mmmw«§+ﬁ—a$”x1 M) = (a7 —al ) (1 M) = (aj,1—a)) (1 M) >
0(j={n—[2],...,n—2}). This leads to ) §°> 20(1 :{n_(gw,...,n_Z}),
which in turn leads to %1 W~ 0 (j= {n 3 1 —3}). Also, the adop-
tion of applied move ratio ensureéﬁ an > an 5, SO af ) >0 (j=

{n—131,...,n—2}). Again, by induction,

i . n
~a’>0 j={n-[5],....n—2}.

(i)
a 2

j+1
Also, as éiz[g] — a%_l = 8[21_1 > 0. Thus, it can be summarised that

aly a0 j={0...n-2}

i.e., Al is an NVF set.

The representative value of A after the ith sub-move,(R&p, is the same as its
original RegA). This is because the following holds according to (5.272%pand
(5.25):

f%W—lam(W. )
j; j \WjT Wn-1-j
[21-1

(i-1)
= 2 a (Wj+Wn_1-j)
£ j J J

R
= Z} a;j(Wj +Wn-1-j)
]:

The proofs of the properties including moving to the degesition, preservation
of RV and validity for moving to the left direction (i.84; € [—1,0]) are omitted as
they mirror the derivations as given above.

In summary, if given move ratidgl; € [—1,1], (i = {0,...,[5] —2}), the (5] —
sub-moves transform the given NVF skt= (a,...,an-1) to a new NVF sety =
(&, .- .,ar,_;) with the same lengths of supports and the same RV.
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In the converse case, where two valid fuzzy skts (ag,...,an-1) and A’ =
(ap,...,a), 1) are given, which have the same representative value, the matios
M, i={0,1,...,[3] — 2}, are computed by:

( (i-1)

Ay
min{ai<l)*_ai(lil)i)""n(l:il)_agjllzi}
. |—
(ifaj>=a" ™)
M = (5.30)
of—a "
min{aii—l)iai(i)ﬁ '(i—l)iai(i:ll)}
. i—1
((faj<g'™)
whereai(i_l) is thea;'s new position after th@ — 1)th sub-move. Initially, whein= 0,
ai<_1) = g;. This sub-move (bottom sub-move) will not lead to below litity as there

are no characteristic points underneath, whilst the othibfrsoves need to consider
situations where invalidity arises both above and undémehmitially, wheni = 0,
a,q_]l) — ar(]ijllli andai(ifl) — ai(ijll) are not defined. In order to keep integrity of (5.30),
both of them take on value 1 to present the bottom case.

Given thatA = (ag,...,an—1) andA’ = (&, ..., a),_,) are both valid, the ranges of
M (i.e.,M; € [0,1] whena] > ai(ifl) orM; € [—1,0] whena] < ai(ifl)) are obvious and
hence no proof is needed.

Moreover, the present work is readily extendable to rulgslinng variables that
are represented by Gaussian and other bell-shaped menpgb&rsbtions. For in-
stance, consider the simplest case where two réles- B1, A» = B> and the ob-

servationA* all involve the use of Gaussian fuzzy sets of the form (Fig):5.

—(x=¢)?

p(x) =e 27, (5.31)

wherec and o are the mean and standard deviation respectively. The rootish

of the intermediate rule is slightly different from the pgbnal fuzzy membership
function cases in the sense that the standard deviationssatkto interpolate. Since
the Gaussian shape is symmetricais chosen to be the representative value of such
a fuzzy set. In so doing, the antecedent vallief the intermediate rule has the same
representative value as that of observa#dn That means only scale transformation
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from A’ to A* as depicted in Fig. 5.9 is needed to carry out interpolatideuristics
can be employed to represent the scale satderms of the standard deviatian One
of the simplest definitions is to calculate the ratio of twazy sets’c values when
considering transformation from one to the other. The scatles can therefore be

written as:
=
The transformations involving other bell-shaped membpréimctions follows this

S

(5.32)

idea analogously.

0.9r

0.8

07

0.4

03

Figure 5.9: Gaussian scale transformation

5.2.4 Algorithm Outline

As indicated earlier, it is intuitive to maintain the simitg degree between the conse-
quent partd’ = (by,...,b, ;) andB* = (bg,...,b}_;) to be the same as that between
the antecedent parfs = (aj,...,a, ;) andA* = (&j,...,a" ), in performing inter-
polative reasoning. The proposed scale and move transfiomsaan be used to entail
this by the following algorithm:

1. Calculate scale rates(i = {0,1...,[ 5] — 1}) of theith support fromA’ to A*

by
8 1 i — &
S=——7—7-—. (5.33)
& 1 i~
2. Calculate scale ratg of the bottom support (or just get from the first step) and
scale ratiosSj (i = {1...,[5] —1}) of theith support fromA’ to A* by (5.21)

and (5.22).
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3. Apply scale transformation #& with scale rates; calculated in the first step to
obtainA”.

4. Assign scale ratg, of the bottom support d8’ to the value ofy (i.e., s, = ),
with the scale ratioS{, (i = {1...,|5] —1}) of theith support ofB’ calculated
as per (5.22) under the condition that they are equ8| {d = {1...,|5] —1})
as calculated in step 2:

s (if i =0)
§_5(5—8-1)(P==d ) _
S = T S 1 tq ,(ifsi>s-1>0) (5.34)
s-1( /7? :%*1)
i1y
a8 (ifs1>5>0)

5. Apply scale transformation 8 usings/ (i={0,1...,[5] —1}) as calculated in
step 4 to obtaiB” = (bf,...,0b" ;).

6. Decompose the move transformatior[ty] — 1) sub-moves. Far=0,1,...,[5]—
2,

(a) Calculate théth sub-move ratidVl; from A(—D to A* by (5.30), where
Al-1 s the fuzzy set obtained after thie— 1)th sub-move with initializa-
tion AL = A,

(b) Apply move transformation ta(~2 usingM; to obtainA® = {a{’ al" ... a}’}.
(c) Apply move transformation B0~ usingM; to obtainB®) = {b’ b{" ... b1,
7. ReturnA([21-2 = A* andB([21-2) which is the required resultant fuzzy &,
once thefor loop of step 6 terminates.

Clearly,B’ andB* will then retain the same similarity degree as that betwberan-
tecedent partd’ andA*.

There are two specific cases worth noting when applying take sransformation.
The first is that ifA* is a singleton while¥ is a regular normal and valid fuzzy set, the
scale transformation fro®' to A* is 0. This case can be easily handled by setting the
resultB* to a singleton whose value interpolates betwRemnB;) andReB,) in the
same way a#\" does betweeRRefdA;) andRefdAz). The second case (which only
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exists if both antecedentg andA; are singletons) is that &" is a regular normal and
valid fuzzy set whileA' is a singleton, the scale transformation frémto A* will be
infinite. Since infinity cannot be used to generate the regufuzzy set, a modified
strategy is created for this. The ratio between the indaidupport length of fuzzy
setA* and the distance dkefd A1) andRedAp) is calculated in order to compute the
corresponding support length of fuzzy &t by equalizing the corresponding ratio.
Note that the fuzzy set obtained by the scale transformdtmm a singleton is an
isosceles polygonal one.

5.3 Further Development of Transformation Based In-

terpolation

The proposed scale and move transformations help genenajaee, valid and nor-
mal fuzzy results, making the interpolation inference gaedor real life sparse rule
bases. However, a disadvantage of the previously proposéidooh is that the com-
putation complexity increases more quickly than the insiregof the point size (see
chapter 6 for details). In addition, tipgecewise linearitys preferred to generate piece-
wise linear results from the given piecewise linear ruled @lnservations. Almost all
existing interpolation methods do not preserve piecewrsgality in general cases.
Only a few (including the proposed one) retain this propartyriangular cases. In
this section, a further development is made to the prewquslposed scale and move
transformations, not only to reduce the computation effbt also to maintain piece-
wise linearity in arbitrary polygonal cases. Note that tieselopment does not affect
the definitions of RV and the construction of the intermezliaies. Attention is only
drawn to the modification of scale and move transformations.

5.3.1 Enhanced Scale Transformations

This enhanced version of scale transformation has the santegs as the one pro-
posed in subsection 5.2.2. The only difference is the wayatifutating scale rates.
For completeness, the description is partially repeated.
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Consider applying scale transformation to an arbitrarygohal fuzzy member-
ship functionA = (a, ...,an—1) (as shown in Fig. 5.10) to generate= (aj,...,a ;)
such that they have the same RV, agglfi —a =s(ap-1-i — &), wheres are scale
rates and = {0,...,| 3] —1}. In order to achieve thig,5 | equationsa;, ; ; —a =

Move

Figure 5.10: Enhanced scale and move transformations

s(an-1-i—&),i =10,..., ng — 1}, are imposed to obtain the supports with desired

lengths, and [5] — 1) equationsa%j':l_;iy = gt A i={0,...,[§] -2} are

imposed to equalise the ratios between the(lg}f — 1) slopes’ lengths and the right

([5]1—1) slopes’ lengths oA\’ to those counterparts of the original fuzzy getThe
equationy s wa = " wia which ensures the same representative values before
and after the transformation is added to make up5df+ ([5] — 1) + 1= nequations.

All thesen equations are collectively written as:

P

&1 i~ =s(@-1-i—a)=9

ai/-o-l_ai/ _ j+1—d D
A1 i~ o anfii_a?f%i =R (5.35)
[ S wial = 31g wiay

whereS§ is theith support length of the resultant fuzzy set &ds the ratio between

the leftith slope length and the righth slope length. Solving theseequations simul-
taneously results in an unigque and valid fuzzy Aegiven that the resultant set has a
descending order of the support lengths from the bottomeadp.

So far the enhanced scale transformation remains the sarfe asiginal one.
The difference is in the way of calculating scale rates. Rehat the scale ratios
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S are introduced in the original scale transformations, tsues the support lengths
decreased from the bottom support to the top support. lddefascale criterionSL;
andright scale criterionSR; are introduced for theh supportj = {0,...,[53] - 2}.

I _—al

SLj = 1 =& (5.36)
di+1— 4
/ _— / .

SR; = on-1-i =2 (5.37)
An—1-i — An—2—i

Obviously,SLL; > 0 andSR; > 0 if both A andA’ are valid. Having introduced these,
the scale rate of thigh support is computed:

S %d
S a1i—g
 SLi(aira—a&)+a, 5 —a, 1 +SRi(@n-1-i —a-2-i)
a n-1-i — &
_ SLi(air1—ai) +S+1(@8-2-i —a@1) +SRi(@8n-1-i —an-2-i) (5.38)
an-1-i— g ’ '

where§ and§ are the lengths of thah support ofA” and A respectively. AsS =
S41+SLi(ais1—a)+SRi(an-1-i —an—2-i), if SLj > 0 andSR; > 0, thenSLi (&1 —

) > 0 andSRj(an-1-i —an—2-i) > 0, hence§ > §_ ; must hold. So the scale trans-
formation guarantees generation of an NVF fuzzy set.

Conversely, if two valid setd = (ao, . ..,an—1) andA’ = (ay,...,a;,_;) which have
the same RV are given, the left and right scale criterion efitihh support,SL;, SR;
(i={0,...,[5]—2}) can be calculated by (5.36) and (5.37) respectively. GikiabA
andA’ are both validSL; > 0 andSR; > 0 must hold.

Special treatments are needed if: ALhas a vertical left slope on théh support
level, the term of(a; .1 — &) in (5.36) is replaced by the vertical distance of ttie
and (i + 1)th points to avoid division by zero; and 2)has a vertical right slope on
theith support level, the term dBn_1_ij —an_2—i) in (5.37) is replaced by the vertical
distance of théth and(i + 1)th points.

The above scale criteria are calculated from top to bottana(e the scale rates).
If on the contrary, the calculation order is from bottom tp,tthen it would be possible
that the scaled fuzzy set becomes invalidAddlustrated in Fig. 5.10.
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5.3.2 Enhanced Move Transformations

The enhanced move transformation is no longer like thermaigiroposed one. Instead,
it appears rather like the scale transformation, whicheséason that the computation
complexity is significantly reduced fro@(n?) to O(n) (n is the size of characteristic
points, see chapter 6 for details).

After performing the scale transformation, the lengthsugdorts of a fuzzy set
become equal to those of the desired fuzzy set. Now the mameformation is used
to move the supports to appropriate positions. Considdyagpmove transformation
to an arbitrary polygonal fuzzy membership functide= (ap,...,an—1) (as shown in
Fig. 5.10) to generat& = (aj, ..., al, ;) such thatthey have the same RV and the same
lengths of supports. In order to achieve thi$] equationss), ; ; —a = an-1-i —aj,
i={0,...,[5] —1}, are imposed to ensure the same lengths of supportg/ghe- 1)
equations. 3114 418 — RCj, wherei = {0,...,[5] — 2} andRC; are

a1 i—a o i/ %-1-i—8n-2-i
themove criterion are imposed to set the ratios betweenithdeft slope length and

theith right slope length of\, to their counterparts of the original fuzzy &t The
equationy s wa = ¥ wia which ensures the same representative values before
and after the transformation is added to make up5df+- ([3] — 1) + 1= n equations.

All thesen equations are collectively written as:

;

a1 & =a 1 i—aq=9
aﬁ—?{:l*z‘iz_i/an—?jlf_aiz_i =RGi (5-39)
| Sowal = Y g wia

where§ is theith support length of the fuzzy set (either before or after mgyand

RC; is the move criterion forth support. IfRC; > 0, solving thes@& equations simul-
taneously results in a unique and valid fuzzy set.

Conversely, if two valid setd = (ap,...,an_1) andA’' = (&,...,a,_;) are given,
which have the same RV and the same lengths of supports, the eniterion of the
ith supportRC; (i = {0,...,[5] —2}) can be calculated by (5.39). Given th#aand
A are both validRC; > 0 must hold.
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Unlike the scale transformation, the move transformatio@sdnot have to follow
a fixed order for calculation. In particular, the calculatfor all a-cut levels is carried
out simultaneously. However, there are special cases wigeld extra consideration
in calculating the move criterion: 1) & has a vertical right slope on thth support
level, the move criterion is set tol in the implementation. When any fuzzy sets are
moved using such a move criterion, they become fuzzy setsweittical right slopes
on theith support level. 2) If the original fuzzy séthas a vertical left slope on thtn
support level, the terrfa;1 — &) will be replaced by the vertical distance between the
ith and(i + 1)th points. 3) IfA has a vertical right slope on thi#h support level, the
term (an—i—1 — an—i—2) Will be replaced by the vertical distance between itheand
(i+1)th points. These are needed to avoid division by zero.

5.3.3 Algorithm Outline

Now the proposed scale and move transformations allow thiéesity degree between
two fuzzy sets to be measured by t&ale criterionandmove criterion the desired
conclusionB* can be obtained as follows:

1. Calculate scale rates(i = {0,1...,[ 5] — 1}) of theith support fromA’ to A*

A
g8

according tcs

2. Apply scale transformation # using scale rates (i = {0,1...,[ 3] —1}) com-
puted above to obtaif’, by simultaneously solving linear equations as shown
in (5.35).

3. Calculate left and right scale criteriii;, SR;, i = {0...,[5] —2}), of theith
support fromA’ to A* according to (5.36) and (5.37).

4. Calculate scale rates (i = {0,1...,[3] —2}) of the ith support fromB’ to
B* according to (5.38). Note that B’ has two points of membership value

5. Apply scale transformation 8’ usings (i = {0,1...,[5] — 1}) as calculated

in step 4 to obtaiB” = (bfj,...,b!_;), by simultaneously solving the linear
equations as shown in (5.35).
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6. Calculate move criterioRCj, i = {0,...,[5] — 2}, on theith support level from
A’ to A* according to (5.39).

7. Apply move transformation t8” using the move criterion as calculated in step 6
to obtainB*, by simultaneously solving thelinear equations as shown in (5.39).

Clearly,B’ andB* will retain the same similarity degree as that between thecadent
partsA’ andA*.

5.4 Multiple Antecedent Variables Interpolation

The one variable case described above concerns inteigolagitween two adjacent
rules with each involving one antecedent variable. Thig&lily extendable to rules
with multiple antecedent attributes. This section desxithe multiple antecedent
variables interpolation using the originally proposede@ad move transformations.
The one using the enhanced transformations is ignored aloivs straightforwardly.
Of course, the attributes appearing in both rules must bedhee to make sense for
interpolation.

Without losing generality, suppose that two adjacent rRl@sdR; are represented

by

if XpisAgj and...and X%y, is AmithenY is B
if Xpis Agj and...and Xqis AnjthenY is B.

Thus, when a vector of observations (..., A, ..., A}) is given, by direct analogy
to one variable case, the valuig andAy;j of X, k=1,2,...,m, are used to obtain a
new NVF setAl:
A= (1= M) AG + MeAgj (5.40)
where
. _ d(RerAq) RerAy)
d(RefA), RefAqj))

Clearly, the representative value Af remains the same as that of tkte observation

AL
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The resultingh, and the giver\; are used to compute the integrated transformation

T(A{OA:;) = {S(O7Skl7 s 7Sk(|_gj_1),Mk0, e ,Mk([%-‘_z)}

just like the one variable case. From this, the combinecesedés;, scale ratioS;,
(i={1,...,[3] —1}) and move ratiod¢; (j = {0,...,[5] — 2}) over them condi-
tional attributes are respectively calculated as themetic means ofo, Sk andMj,
k=12,...,m

1 m
S0 = ak;&o, (5.41)
l m
Sei = akzlgki, (5.42)
1 m
Me; = EK;MKJ-. (5.43)

Note that, other than using the arithmetic mean, differemtmanisms such as the geo-
metric mean may be employed for this purpose. These megmsdygure the intuition
that when no particular information regarding which valéalbas a more dominating
influence upon the conclusion, all the variables are treageally. If such information
is available, a weighted mean operator may be better to use.

Regarding the consequences, by analogy to expressior),(B/X&n be computed
by

B' = (1—Aa)Bi +\aBj. (5.44)

Here, A5 is deemed to be the averageXaf k= 1,2,...,m, to mirror the approach
taken previously:

Aa= M. (5.45)

=l

x
™M 3

As the integrated transformation
T= {50078017 SC27 e 7SC(|_%J—1)7MC07 MCL ceey MC([%—‘—Z)}

reflects the similarity degree between the observatiorovertd the values of the given
rules, the fuzzy seéB* of the conclusion can then be estimated by transforr@nga
the application of the sanie.
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5.5 Case Studies

In this section, the example problems given in [HCL98, YMQ@gether with several
new problem cases are used to illustrate the originally@sed and enhanced interpo-
lation methods (denoted as OHS and EHS methods). The cotiveastudies to the
work of [KH93a, KH93c] (denoted as KH, as stated before) ath@dL[98] (denoted as
HCL) are provided. All the results except example 7 discddsdow concern the in-
terpolation between two adjacent ruks=- B; andA; = By, while example 7 shows
a case of interpolation between rules involving two anteoégariables.

Example 1 This example demonstrates the use of the proposed methalding
only triangular fuzzy sets. The average RV is used in thismpta. All the conditions
are shown in Table 5.1 and Fig. 5.11, which also include tiselte of interpola-
tion. Supposé\* = (7,8,9). First, according to (5.14) and (5.18Y,5.30,8.85,9.85)

Table 5.1: Results for example 1, with A* = (7,8,9)

Attribute Values Results

A1 = (0,5,6) Method B*

A, =(11,13,14)| KH | (6.36,5.38,7.38

B1 = (0,2,4) HCL | (6.36, 6.58, 7.38

B, =(10,11,13) | OHS | (5.83,6.26, 7.38
EHS | (5.54,5.97,7.97

andB'(4.81,6.33 8.33) are calculated by interpolation &f, A, andBy, By, respec-
tively, with Agep= 0.48, which is calculated from (5.12). Then, the calculations
are varied with respect to original and enhanced HS methéds.the former, the
scale rates = 0.44 and move raten = 0.36 in the integrated transformation from
A’ andA* are calculated with regard to (4.17) and (4.23). Finallg gkand m are
used to transforn®’ according to (4.14)-(4.16) and (4.18)-(4.20), resultingonse-
quenceB*(5.83,6.26,7.83). For the latter, the scale rase= 0.69 and move criterion
RC = 0.28 are calculated from (5.38) and (5.35), which are useddtesnd movd’

to result inB*(5.54,5.97,7.97).
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Figure 5.11: Example 1 Figure 5.12: Example 2

For this case, the KH method resulted in an invalid conclugimt even a mem-
bership function) while the other three concluded with nalremd valid fuzzy sets.

Example 2 The second case considers the infinity of the scale rate.giMea
observation is a triangular fuzzy s@,6,8). Table 5.2 and Fig. 5.12 present the an-
tecedents and interpolated fuzzy sets. The OHS interpoléi71,6.28 8.16) is ob-

Table 5.2: Results for example 2, with A* = (5,6, 8)

Attribute Values Results
A1 =(3,3,3) Method B*
A2 = (12,1212 KH (5.33, 6.33,9.00
= (4,4,4) HCL | (5.33,6.55,9.00
Bz =(10,11,13) | OHS | (5.71,6.28,8.16
EHS | (5.74, 6.23,8.18

tained as follows: First the ratio between the suppoA‘adnd the distance def{A;)
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andRefA;) is calculated. The support & is then computed by retaining the same
ratio but based on the distanceRéB;) andRefB,). Finally, the move transforma-
tion is applied as usual. With the same scale rate as in ther&etBod, the enhanced
scale transformation results in the same scaled fuzzy sstekker, the enhanced move
transformation leads to a different output6f74,6.23 8.18). The comparative results
show that the KH and HCL methods perform similarly (the sufgpof the resultant
fuzzy sets are identical since they are computed in the saaggwhile the OHS and
EHS methods also generate very reasonable outcomes.

Example 3 The third case considers a similar situation to examplée theuwbser-
vation is a singleto®\* = (8,8,8). Table 5.3 and Fig. 5.13 present the results. In this

Table 5.3: Results for example 3, with A* = (8,8, 8)

Attribute Values Results

A1 = (0,5,6) Method B*

A = (11,13 14) KH (7.27,5.38, 6.25

B1 = (0,2,4) HCL [7.27,6.25]

B, =(10,11,13) | OHS | (6.49, 6.49, 6.49
EHS | (6.49, 6.49, 6.49

case, the KH method once again generates an invalid fuzzansethe HCL method

even produces a non-triangular fuzzy set. However, the OkISEAHS result in the

same singleton conclusions, which are rather intuitivegithe singleton-valued con-
dition.

Example 4 This example concerns a trapezoidal based fuzzy intdrpoland
the compatible RV definition is used here. As there is no alwimdication for
HCL method to handle trapezoidal fuzzy sets, only KH metlsodsed in compar-
ison. All the attributes and results with observatidh= (6,6,9,10) are shown in
Table 5.4 and Fig. 5.14. For the OHS methdd= (5.30,7.85,8.85.9.85) andB' =
(4.81,6.33,7.33,8.33) are calculated by interpolation &f;, A, andB;, B;, respec-
tively, with A = 0.48, which is calculated from (5.12). The interpolation viale
and move transformations is then carried out according écstbps listed in section
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Table 5.4: Results for example 4, with A* = (6,6, 9, 10)

Attribute Values Results

A1 =(0,4,5,6) Method B*

A, =(11,12,13,14) | KH (5.45,4.25, 7.5, 8.5)

B1 = (0,2,3,4) HCL -

B, =(10,11,12,13) | OHS | (5.23,5.23,7.61, 8.32)
EHS | (4.83,4.83,7.83,8.83)

5.2.4: 1) The bottom support scale rate8@) and top support scale rate@Bfrom

A’ to A* are calculated according to (5.33) respectively. 2) Thestggport scale ra-

tio (0.68) from A’ to A* is calculated according to (5.22). 8) is scaled to generate
A" = (5.76,6.48,9.48 9.76) using the bottom and top scale rates calculated in step 1.
Note thatA” is a valid fuzzy set which has the same representative valdéas the
same bottom and top support length®\as4) According to (5.34), the bottom and top
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support scale rates @8 and 238) overB’ are computed. 5B’ is scaled to generate
B” = (5.09,5.52,7.90,8.18) using the bottom and top scale rates calculated in step 4.
6) The move ratio is calculated frod’ to A* according to (5.26). Its value isd as

A* has a vertical left slope. This move ratio is used to mB¥¢o obtain the resultant
fuzzy setB* = (5.23,5.23,7.61,8.32). Similarly the enhanced HS method results in
B* = (4.83,4.83,7.83 8.83). In this case, the KH method once again generates an in-
valid fuzzy set (which does not satisfy the definition of a fbenship function). How-
ever, both the OHS and EHS methods result in valid conclssiehich still maintain

the property of the left vertical slopes.

Example 5 This example shows an interpolation of rules involving dgonal
fuzzy sets. It also demonstrates the interpolation invah\different shapes of fuzzy
sets. For simplicity, the average RV definition is adoptethis example. Again, since
there is no obvious indication for the HCL method to be ablédadle such fuzzy
sets, only the KH method is used in comparison. All the aitebvalues and results
with respect to the observatidgki = (6,6.5,7,9,10,10.5) are shown in Table 5.5 and
Fig. 5.15. Note that in this example, the two intermediata{sa; andas of each
fuzzy set involved have a membership value &.0

Table 5.5: Results for example 5, with A* = (6,6.5,7,9,10,10.5)

Attribute Values Results
A1 = (0,1,3,4,5,5.5) | Method B*
A= (11,115,12,13,135,14) | KH | (5.73,6.00,5.89,8.56, 9.59, 10.09)
B1=(0,0.5,1,3,4,45) | HCL -
B, =(105,11,12,13/135,14) | OHS | (5.64,5.98, 6.29, 8.63, 9.46, 9.93)
EHS | (5.28,5.62, 5.94, 8.86, 9.86, 10.36)

The original HS interpolation is chosen to illustrate thegadure of the calcula-
tion. A’ = (5.94,6.67,7.86,8.86,9.59,10.09) andB’ = (5.67,6.17,6.94,8.40,9.13,9.63)
are calculated by interpolation @&, A2 andB;, By (with A = 0.54), respectively.
Then, the interpolation via scale and move transformatisresarried out according
to the steps listed in section 5.2.4: 1) The bottom suppa@iesate (108), middle
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Figure 5.15: Example 5 Figure 5.16: Example 6

support scale rate (20) and top support scale rate.qR from A’ to A* are calcu-
lated according to (5.33), respectively. 2) The middle aspl Support scale ratios
(0.25 and 035) from A’ to A* are calculated according to (5.22). &)is scaled to
generateA” = (5.79,6.39,7.32,9.32,9.89,10.29) using the bottom, middle and top
scale rates calculated in step 1). Note thdtis a valid fuzzy set which has the
same representative value and the same three supportedeagft*. 4) According

to (5.34), the bottom, middle and top support scale rate33(11.18 and 160) over

B’ are computed. 5B’ is scaled to generat®”’ = (5.50,5.91,6.50,8.83,9.39,9.80)
using the scale rates calculated in step 4). 6) Two sub-mareeequired in perform-
ing the move transformation in this case: 6.1), The bottobrrsove ratio ((R9) is
calculated fromA” to A* according to (5.26). This sub-move ratio is used to move
A to getA® = (6.00,6.42,7.08,9.08,9.92,10.50), and to moveB” to obtainB(® =
(5.64,5.93,6.35,8.68 9.41,9.93). Note that after this sub-mova has the same bot-
tom support a®\*. 6.2) The second sub-move moves the middle and top supports
of A to the desired places. In particular, the sub-move ratip4(0calculated from
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(5.26) is used to movB(© to the final resulB* = (5.64,5.98,6.29,8.63,9.46,9.93).
As a verification A* is obtained by moving\(?) with the same sub-move ratio.

In this case, both the OHS and EHS methods still ensure unimpuenal and valid
fuzzy sets, compared to the invalid result generated viKthenethod.

Example 6. This case considers an interpolation with Gaussian meshlgefunc-
tions. As there are no explicit Gaussian based interpalatutions for HCL and KH
methods, only the results of OHS (or EHS, as they result irséimee gutputs) method
together with the attribute values and observa#onr= p(x) = e% are presented
in Table 5.6 and Fig. 5.16. The OHS (or EHS) method resultssersible Gaussian

conclusion in this case.

—~(x-8)2
Table 5.6: Results for example 6, with A* = e 242

Attribute Values Results
—(x-3)2

Ai=e (2*22) Method B*
—(x—11)2

A2 = e 2+0.52 KH -
—(x-6)?

By =e 212 HCL -
—(x-13)2 —(x-10.38)2

B, = e 2182 OHS (or EHS)| e 2:12#

Example 7. This example concerns an interpolation of multiple ardec vari-
ables with trapezoidal membership functions. Specially tulesA;1 A Az1 = By,
A2 A\ Ao = B and the observations; = (6,7,9,11), A5 = (6,8,10,12) are given to
determine the resuB*. For demonstration purposes, only the original HS methad an
the compatible RV definition are employed in this examplebld®.7 and Fig. 5.17
summarise the results. In this case, the paramatefsr the first variable is b4
andA; for the second is .@4. The average.09 is used to calculate the intermediate
rule resultB’. The average of two bottom support scale rate$4Bnd 169) and the
average of two top support ratios.2@ and 007) are computed, equalling4il and
0.15 respectively, and used as the combined bottom suppdetrsta and top support
scale ratio. These together with the combined move rategvérge (B5) of the two



Chapter 5. Transformation Based Interpolation: General Approach 118

Table 5.7: Results for example 7, with A} = (6,7,9,11) and A5 = (6,8,10,12)

Attribute Values Results
A11=(0,4,5,6) Method B*

Ao =(1214,1516) | KH | (5.455.94,7.138.31)
Ar;=(11,12,13/14) | HCL -
Axx=(1,2,3,4) OHS | (4.37,5.55,7.48,9.33)
B1=(0,2,3,4)

B, =(10,11,12 13)

012345678910111213141516
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Figure 5.17: Example 7

move rates (3 and 018), are employed to transf8f to achieve the final resuB*.
Both the KH method and HS method resulted in a valid set ingk&nple. Interest-
ingly, the resultant fuzzy set of the OHS method reflectsebethapes of the original
observations than that obtained by the KH method.
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5.6 Extensions

All fuzzy interpolation techniques in the literature assuthat two closest adjacent
rules to the observation are available. In addition, mdstpolation methods presume
that such rules must flank the observation for each attriflutenot necessarily in the
same order). In practice, however, there may be a differ@miaer of the closest rules
to a given observation, and the attribute values of thesss nuay lie on one side of
the observation. The adoption of these two assumptiongainy limits the potential
applications of the existing work. In fact, this is the reasdy the existing interpola-
tion methods are limited to toy examples and have not yet bpphed to real world
prediction or classification problems. To resolve this peoh this section extends the
HS methods to allow interpolations that involve multiplées) without making the
strong condition that antecedent attributes flank the elasen. Furthermore, exploit-
ing the generality of this newly developed method, extrapoh can be performed
over multiple rules in a straightforward manner.

5.6.1 Interpolation with Multiple Rules

To allow fuzzy interpolation with more than two rules givenude base, the first step
is to choosen (n > 2) closest rules from the rule base. Then, selected rulassactto
construct the intermediate fuzzy rule. Once the interntedide is worked out, the rest
of the process remains the same as described in Sectionad23& The following
shows these two important steps:

5.6.1.1 Choose the Closest n Rules

Without losing generality, suppose that a rRleand an observation are represented by

Rule R :if Xyis Agj and...and X, is AmithenY is B (5.46)
Observation: X; is A] and...and Xy is A}, (5.47)

According to the distance definition (5.11) between two yuErms, the distanced,
k=1,...,m, between the pairs &; andA; can be calculated as:

de = d(Aq. A = d(RefiAq), Rep(Ay)). (5.48)
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As attributes may have different domains, the absolutadcss may not be compatible
with each other. To make these comparable, each distancineda normalised into
the range of 0 to 1:

g4 — d(Ad,Ay)  d(RefdAu),ReAy))
K™ Max.—Ming, ~ Max — Ming

, (5.49)

whereMax, andMiny are the maximal and minimal values of attriblitgiven. The
distancedis between a rule and an observation can be calculated as tfegavef all
attributes’ distances. A particular distance definitiohjch is to be used in the later
implementation, can be written as follows:

dis=\/di2+ 2+ ...+ 2 (5.50)

If, however, the importance of attributes are not equalgisi may be used. Note
that if a conditional part of a rule is missing, the distané¢his attribute is treated
as 0 to reflect that any data value is very close tonihkattribute value. This allows
for measuring the distance between a given observationwes which may not have
fuzzy sets associated with certain attributes.

Once the distance definition of (5.50) is given, the distamsgween a given obser-
vation and all rules in the rule base can be calculated.nuées which have minimal
distances are chosen as the closasiies from the observation. It is worth noting that
then closest rules do not necessarily flank the observation.drettreme case, all the
chosen rules may lie on one side, resulting in extrapolatdmer than interpolation
(see section 5.6.2).

5.6.1.2 Construct the Intermediate Rule

This section proposes how to construct the intermediate aftern (n > 2) closest
rules have been chosen. Mg, i=1,...,n,k=1,...,m, denote the weight to which
thekth term of thath fuzzy rule contributes to constructing tkik intermediate fuzzy
termA,. Obviously, the longer the distance frofyg; to A;, the less valu&\; should
take. In particular, the inversion of the distance is used:

1
Wi = m, (5.51)
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whered(Agi, A;) is defined in (5.48). Of course, alternative non-increaimgtions
such adM; = exp 4(A-A) may be adopted to assign different weights.

For each attribut&, the weightd\L;, i = 1,...,n are used to compute the interme-
diate fuzzy termAg. Prior to that, they are normalised as follows:
Wk

St=1..nWkt'

so that their sum equals to 1. The intermediate fuzzy ®&fk =1,...,m, are com-

W, (5.52)

puted as:

A g o

which is the same as (5.14) when only two rulas=(2) are considered for interpo-
lation. That is, the two-rule interpolation case is one ggemase of the generalised
multi-rule interpolation.

In the two-rule interpolation case, th#¢/ calculated via (5.53) has the same Rep
as the inputA;. However, this is generally not true when more than two rales
involved (that is why symbo/, rather tharA,, is used here). Thus, it does not satisfy
the requirement of having the same Rep value, as imposedebgcdle and move
transformations. In order to solve this problem, two pdssitays, namely theoom
andshift, are suggested to modifyf/ so that it becomes a new fuzzy intermediate term
A, which has the same Rep A§.

First, thezoomis suggested in whichy/ is zoomed by, k= 1,...,mas follows:

A= YA (5.54)
whereyy is a constant defined as
_ RepAy)

In so doing, the following holds:

RefA,) = RefA). (5.56)

Regarding the consequent, by analogy to (5.53), the iniatefuzzy outpuB” can
be computed by
B’ = W.B, (5.57)
i:g..,n N
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whereW,; is the mean of\[;;:

3

1
Wi == W
m&

B” is then zoomed t8' as follows:
B/ — B//ya7

wherey; is the mean of the zoom parametgysk=1,...,m,

l m
Ya=—= ) Yk
m kzl

Alternatively,shiftmay be applied té\, k=1,...,mas follows:

A, = A + O (Maxg — Miny),

122

(5.58)

(5.59)

(5.60)

(5.61)

whereMax, andMiny, are maximal and minimal values of attribtandy is defined

as

5 _ RefA) —RepAy)
KT T Max —Ming
In so doing, the following holds:

RefA) = RefA).

Similarly, the intermediate fuzzy outpBt’ can be computed by
B” = Z W,B;,
i=1...,n

whereW; is the mean of\j;:

3

Wy = Wi.

1

=l

k

B” is then shifted t&’ as follows:

B’ = B” 4 da(Max— Min),

(5.62)

(5.63)

(5.64)

(5.65)

(5.66)

whereMax andMin are maximal and minimal values of output variable &qdks the

mean of the shift parametedg, k=1,....m,

l m
63 _- — 6k
M&

(5.67)
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Using either the zoom or shift method, the intermediateyumnie
if Xpis Ay and...and Xyis A thenY is B,

can be obtained from (5.54), (5.59) or (5.61), (5.66). Thst oé the interpolation
reasoning is hence applied to this intermediate rule andliberved fuzzy term vector,
in the same way as presented in sections 5.2 or 5.3. An exdaliples to explain how
this works.

Example 8 Three rulesAi AB;j = Cj, i = 1,2,3 and the observations®, B* are
given in Table 5.8. For the first attribufe the distances betwedy), i = 1,2,3 and the

Table 5.8: Example 8

A1 = (0,1,3),B1 = (1,2,3),C1 = (0,2,3)
Attribute Values| A, = (8,9,10), B, = (7,9,10), C; = (9,10,11)
A3 = (11,13,14), 53 —(11,12,13), C3 = (12,13,14)
Observation =(35,5,7),B* = (5,6,7)

observationA*) are calculated as 4, 4, and 8 respectively (assuming theroaficore
Rep is adopted). According to (5.51), the weights are catedl as @5, 025, and
0.13 respectively. They are normalised using (5.52) with the weights being @,
0.4 and 02. According to (5.53), a fuzzy ter&l’ = (5.4,6.6,8.0) is obtained using the
normalised weights. A8” does not have the same Rep as the idgueither zoom or
shift method should be applied.

The zoom method is applied first. According to (5.5f),= 0.76 is computed.
The fuzzy termA” is zoomed byya to generate the required intermediate fuzzy set
A’ = (4.09,5,6.06). Similarly, B, B, andB3 have normalised weights¥B, 044 and
0.22 in constructing the intermediate fuzzy ®t = (5.89,7.33,8.33). With yg =
0.82, it is zoomed tdB' = (4.82,6,6.82). The fuzzy seC” = (6.33,7.7,8.7) can be
computed using the average weightsfodndB for three rules (87, 042 and 021
respectively) according to (5.57). The intermediate ou@u= (4.99,6.07,6.86) can
then be computed using the average/oandyg, that is 079, with respect to (5.59).
This is shown in Fig. 5.18.
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Figure 5.18: Example 8

Alternatively, the shift method can be applied. According%$.62),0p = —0.11
is computed. The fuzzy terA” andd, are used to generate the required interme-
diate fuzzy setA’ = (3.8,5,6.4). Similarly, B” = (5.89,7.338.33) is constructed
with the normalised weights d8;, B, and B3 (0.33, 044, and 022 respectively).
B’ = (4.56,6,7) is then computed based &f anddg = —0.11. For the consequent,
fuzzy setC” = (6.33,7.7,8.7) can be computed using the average weights of attributes
A andB for three rules (B7, 042 and 021 respectively) according to (5.64). The
intermediate outpu®’ = (4.76,6.13,7.13) can then be computed using the average of
Oa andodg, that is—0.11, with respect to (5.66). It is worth noting that zoom aniditsh
methods produce the same intermediate fuzzyAlileB” = C”, but notA’ A\B' = C'.

5.6.2 Extrapolation

The extrapolation is readily extendable. It is a speciakad#snterpolation with mul-
tiple rules as described Section 5.6.1. In particular, wakmf the n closest rules
chosen (see 5.6.1.1) lie on one side of the given observdtiemterpolation problem
becomes an extrapolation one. In fact, both choosing theestaules and construct-
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ing the intermediate rule are carried out here in the sameasgerformed in Section
5.6.1.

An example follows to explain the computation. Suppose tmysecond and third
rules in example 8 are considered, the interpolation besaneextrapolation of two
rules.

Example 9. Two rulesA; AB; = G, i = 2,3 and the observations’, B* are given
in Table 5.8 to carry out fuzzy extrapolation. Again, assuh&center of core Rep is
used. For the first attribut®, the normalised weights &, i = 2,3 are computed to
be 067 and 033. According to (5.53), a fuzzy terAl’ = (9,10.33,11.33) is obtained.
As A” does not have the same Rep as the iMdytzoom or shift method has to be
used.

Consider the use of zoom method first. According to (5.%563 0.48 is computed.
The fuzzy termA” is zoomed by to A’ = (4.36,5,5.48). Similarly, B, andB3 have
normalised weights.67 and 033 in constructind®” = (8.33,10,11). With yg = 0.6,
B” is zoomed t®' = (5,6,6.6). The fuzzy se€” = (10,11, 12) can be computed using
the average weights & andB for two rules (067 and 033) according to (5.57). The
intermediate outpu®’ = (5.42,5.96,6.50) can then be computed using the average of
vya andyg, that is 054, with respect to (5.59). This is shown in Fig. 5.19.

Alternatively, the shift method can be used. According t®2%, 0o = —0.38 is
obtained. Fuzzy termd” andd, are used to generate the required intermediate fuzzy
setA' = (3.67,5,6). Similarly, B, andB3 have normalised weights@®’ and 033 in
constructing the intermediate fuzzy €= (8.33,10,11). With 83 = —0.33,B" is
shifted toB’ = (4.33,6,7). The fuzzy se€” = (10,11, 12) can be computed using the
average weights o andB for two rules (067 and 033) according to (5.64). The
intermediate outpu€’ = (5,6,7) can then be computed using the averagéoénd
O, that is—0.36, with respect to (5.66).

The rules which are used for extrapolation may be twisteet i) their associated
fuzzy sets may not have the same order (as in Example 9) fdér a&thcbute. The
following shows this case.

Example 10 Two rulesA; A Bs = C; and Az A B = Cg, and the observations
A*, B* are given in Table 5.8 for fuzzy extrapolation. For the fistilaute A, A” =
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14

Figure 5.19: Example 9

(9,10.33,11.33) is obtained with the normalised weightsAf i = 2,3, being 067 and
0.33. Consider the zoom method is used. According to (5ya5% 0.48 is computed.
The fuzzy termA” is zoomed byya to generaté\ = (4.36,5,5.48). Similarly, B, and

Bs have normalised weights3B and 067 in constructing®” = (8.33,10,11). With

ys = 0.6,B" is zoomed t®' = (5,6,6.6). The fuzzy se€” = (10.5,11.5,12.5) can be
computed using the average weightsfadndB for two rules (05 and 05) according
to (5.57). The intermediate outp@t = (5.69,6.23,6.78) can then be computed using
the average ofja andyg, that is 054, with respect to (5.59). This is shown in Fig. 5.20.

Alternatively, the shift method can be applied. Fuzzy tekfis shifted (with
da = —0.38) toA’' = (3.67,5,6). B, andB3 have normalised weightsZB and 067 in
constructingB” = (8.33,10,11). With &g = —0.33,B” is shifted toB' = (4.33,6,7).
Fuzzy selC” = (10.5,11.5,12.5) can be computed using the average weights.5f 0
and 05. The intermediate outp@ = (5.5,6.5,7.5) can then be computed using the
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14

Figure 5.20: Example 10

average oba anddg, that is—0.36, with respect to (5.66).

It is worth noting that the values gfandd should be close to 1 and 0, respectively,
with respect to (5.55) and (5.62). If they are far away to #¢hweeues, they may cause
problems, which will be discussed in chapter 8.

5.7 Summary

This chapter has proposed a generalised, scale and moséotraation-based, inter-
polative reasoning method (OHS method) which can handéepotation of complex
polygonal, Gaussian and other bell-shaped fuzzy memhefsctions. The enhanced
HS method has also been proposed to preserve the piecemeseity property in in-
terpolating any polygonal fuzzy sets. The case studies baga given showing how
the methods work in numerical examples. In addition, themrsibn to handle inter-
polation (and extrapolation) involving multiple variabland multiple rules has been
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addressed. This helps bridge the gap between theory andatpp as the existing
fuzzy interpolations have not been applied to real worlddmtéon or classification
problems, which may often require reasoning with multiplles and extrapolation.

The original HS method not only inherits the common advaedagf fuzzy inter-
polative reasoning — allowing inferences to be performeith wimple and sparse rule
bases, but also has two other advantages. Firstly it prevadgegree of freedom to
choose various RV definitions for different applicationuggments. Secondly, it can
handle the interpolation of multiple rules, with each ruéimg multiple antecedent
variables associated with arbitrary polygonal fuzzy mersii@ functions. In addition
to the advantages the OHS having, the enhanced HS methodtha$wen. Firstly, it
has less computation cost than OHS (see chapter 6). Secdraigserves the piece-
wise linearity property for any polygonal fuzzy functiorseé chapter 6). It is worth
stressing that the piecewise linearity property is esakfati ignoring artificial charac-
teristic points in performing fuzzy interpolations.



Chapter 6

Transformation Based Interpolation:

Evaluations

This chapter evaluates the interpolative reasoning methomposed in chapter 5 from
different aspects including the dependency of the fuzaimésonclusion on observa-
tion, the preservation of the piecewise linearity and thegotational complexity. The
comparisons to other existing approaches such as KH ancetierag) method are pro-
vided. The results show that the original HS method preseaitve piecewise linearity
in interpolations involving triangular fuzzy sets and K&®?) computation complexity
(nis the number of characteristic points for each fuzzy sete fesults are more en-
couraging for the enhanced HS method, which not only presgpiecewise linearity
for interpolations involving arbitrary polygonal fuzzytsebut also requires oni®(n)
computation time.

6.1 Evaluation Criteria

In order to compare different interpolative reasoning rad#) the evaluation criteria in
terms of the dependency of the fuzziness of conclusion oergason, the preservation
of the piecewise linearity and the computational compjeta@ve been used.

The dependency of the fuzziness of conclusion on observatiows the degree
of uncertainty of the interpolative reasoning method. Itasnputed by the ratio of

129
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the fuzziness of the conclusion with respect to that of theeolation. This evaluation
brings different views of fuzziness derivation for fuzzyarpolation methods. Gen-
erally speaking, the fuzzier the observation is, the fuzitie conclusion should be.
Fuzzy dependency can not be simply used to justify somepokation methods out-
performing others. Instead, it is used as a guide to choatsbtifuzzy interpolative

reasoning methods under certain circumstances.

Preservation of piecewise linearity is an essential ptypenich reflects how good
the interpolative reasoning method handles the pointsd®iviwo consecutive char-
acteristic points. If the piecewise linearity is presenie safe to merely consider the
characteristic points rather than the infinite pairs of po{generated from an infinite
number ofa-cut levels). Therefore, it is worth investigating what paps to the non-
characteristic points when interpolation is applied. Areytstill on the line between
two interpolated characteristic points? Or if not, whatis tleviation?

Fuzzy interpolation techniques are desired to give prorappanses when they
are implemented in time critical applications. Therefottee complexity analysis
[CLRS90] in terms of time and space is an important issuelferterpolation meth-
ods. However, more attention is drawn to time complexitiieathan space complex-
ity as the latter nearly vanishes when the technology foag®hardware has recently
made significant progress. Although the current procedsars been developed to a
high comparative speed, they are still not able to handle &fRpdexity problems. In
this chapter, the time complexity with respecttthe number of characteristic points
for the fuzzy sets involved) is investigated for three eriptinterpolative reasoning
methods along with the proposed ones.

6.2 Evaluations

6.2.1 Dependency of the Fuzziness of Conclusion on Observat ion

The uncertainty of the interpolative reasoning method eawcdptured by the depen-
dency of the fuzziness of conclusion on observation. Usg) driterion, the work
of [TBOO, MBKK99] has compared the following methods: KH [RBa, KH97],
modified KH [TB00], Vass-Kalinbv-Koczy (VKK) [VKK92], Koczy-Hirota-Gedeou
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(KHG) [KHG97] and the general fuzzy rule interpolation aigom [BGK96, BGK95].
Due to the variety of the existing interpolative approachs&s simplest ruleg\; =

B; and A, = B, and an observatioA* which involve only triangular fuzzy sets are

used here to provide a uniform platform for comparisons. &acbmpatible to the

comparison in [TB0O, MBKK99], the three characteristicrgsiare indexed with 1,

2 and 3. That i\ = (a1, ai2,a3), Bi = (b, bi2,biz), i = 1,2, A* = (&}, a5,a3), and

B* = (bj,b5,b3). Instead of comparing the fuzziness of the whole conclu@®r- by)

to observationd; —ay), the partial fuzziness of them are investigated. For thrppse,

the central point (or reference point, defined in the workBEK96, BGK95]) of a

fuzzy setA is adopted as follows.

cp(a) = I {SUPHAG) )+ surfsupRAL)} 61)

wherea = heightA), i.e., the highest membership degree of a fuzzyAs@the fuzzi-
ness of the conclusidni® = b — b} is estimated with respect to the observation fuzzi-
nessay” = a5 — a;. The following shows the dependency functions for the KHdmo
fied KH, VKK, KHG and the general fuzzy interpolation methodisterested readers
may refer to the work of [TBO0, MBKK99] for further relevantsgussions.

From section 2.4.1, the dependency of the right point of treclusion on that of
the observationfH, can be expressed as

55 = fiH (ag%) = AN Mag® + 81, 6.2)

where
AKH _ b3 —Db13
azz—a1z’
S = \KH (—a5) + b,
For the modified KH method [TBOO],

bj’_k-}c _ f][\/lKH (a:>§0> _ AMKHa§C+6MKH, (63)

where

AMkH _ (P23 —D13) — (b2 — by2)
a3 — a3 ’
6MKH — )\MKH (—8(1:3) + bEI:_S
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The fuzziness dependency of the VKK interpolative reaspmethod [MSK99] is
computed by

b fVKK(a3 )
Z[AVKK(as) (2&2)\VKK+)\VKK+)\VKK)83 _)\VKK(aS)

()\VKK )\VKK)a +)\VKK( ) ()\VKK+)\VKK)a +)\VKK] 6VKK, (64)

where

bp3—bp;  byz—byg
VKK __ d3—az1 di3—ag1

L7 (agz+an) — (a13+a11)

bi3—b by3—b
AVKK _ Ay (@23 821) — o2 (a3 +a)
2

(agz+ap1) — (ar3+a11)
AVKK _ (b21+b23) — (b11+ b13)
3 (ag1+a23) — (a11+ a13)
VKK _ (@21 +23) (011 + brg) — (021 + bps) (a11 + &)
N (ag1+a23) — (a11+ a13)
VKK _ boo—apy ,  agbio—agohoo
dpp— a2 dzo —ai2

The KHG fuzzy rule interpolation method [KHG97] has

b = FHG (ag0) = (agf) 22— 221 6.5)
az2 —ap1

The fuzziness of the conclusion for the general fuzzy ruterpolation method
[BGK95] is computed as

bs® = £7%(a3°) = * (a3, 5, b, 0.X, 0, ym), (6.6)

where functionf * is the revision function defined in [KHG97] (as shown in Figh)2
ai3 andb‘3 are the right points of the intermediate interpolated fuzty(see [BGK95]).

ai3: (1—)\2)a13+)\2a23, (6.7)
by = (1—A2)biz+Asbys, (6.8)

—a12
azz ap’
To facilitate the comparison to the proposed original HShoéf the scale and

whereA, =

move transformations are applied to the antecedent an@quoaat of the intermediate
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rule. The results for moving to the left direction (from’s point of view) can be
computed as

. Dy+by+b 2(a;—ap)(bs— bi1)+(a§ a3) (b5 — bj)

= 6.9
! _ 3 _ 3(a;—a) _ 3(as—a) _ , ©-9
bt — by + b5+ by n (a3 — ;)(b's_ by) 2(a5-— _2)(b'3— b3) (6.10)
2 3 3(a'3 al) 3(a'3 a) '
bl +bh+bs (aj—aj)(by—b)) (a5—as)(by—b
3(a3 al) 3(313 az)
Thus,
" b — b'z OHS OHS
bs® = b3 —by = = 4 _a (a5 —a3) =A"""(a5") +9 (6.12)
3~ &
whereAOHS — B— 2 > and&OHS = 0, However, for moving to the right direction, the

3
results can be wrltten as

,_by+bhiby  (ag—ap)(bs—bh) (a3 —ap)(bh—by

s 3(as—a) ap-ay
. bi+bhbh  (ag—ap)(by—bh) | 2(a3—aj)(b,—bh)

P2= 3 3(a;—a)) 3(a,—a)), (614
bbbl 2ag-a(by-bh)  (a—ap)(b—bh)

b= 3 i 3(as—a)) 3(a,—a)) (619

Similarly,

biC — bt bt — (a3 —ap)(by—by) (a3—a;)(b,—by)
3T a,—al a —al
3~ 8 2 — 8

)\OHS( *C) 6OHS (6 16)

OHS _ b3~ OHS__ ) OHS
whereA = 1 b anddOHS = ) (—afs) +bis
If no move transformatlon is required, the results can bestyeyenerated accord-

ing to (4.14) - (4.16) as follows.

. Dbi(1+25)+by(1—s)+bh(1—9)

. ! | (6.17)
- bil(l—S)+bi2(13+23)+bi3(1_5), (6.18)
py — DUL=9) +bp(1-9) +By(1+2) (6.19)

3
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Therefore,

) ] at—af bi _ bi
05 = b — by = s — by = (B TUR=0) _yomsiay 5 (6.20)
3 1

whereNO"S — = andgOtS — AOHS(—afy) + b,
For the enhanced HS method, the scale crit@fiaandSR are calculated as

a,—ai
SL=-2"1 (6.21)

aQ—a
SR=23"% (6.22)

B—a

Thus, the scale rate & is
SL(b,, — b ) + SR(b} — bl

S = (b, —b3) + SR(bg 2)_ (6.23)

b — by
The enhanced scale and move transformations impose tbevfiot] constraints:

* ok i *_ I hi i
ag—a% a3—a, _ bg—b% b;—b,
G- ah—ay  D3brby-b)

b —bf = sp(bs— b})

The above equations can be reformed to

b; —b; = E(a3—a2)2+(D+E)(ag—az)JrC, (6.24)

whereC = S;éi—z,i—(biz —b}),D= 2:3%2:2 andE = (aé_(;:{)f::jizi)fz:z;ba).

The results are shown in Fig. 6.1 (see [TB00]). In this figtme coordinate sys-
tems are simultaneously used to demonstrate the dependefh@ziness of the con-
clusion on the observation. OneXsx Y that is the Cartesian product space of fuzzy
sets and the other is positionedHcp(A*),cp(B*)), or O(a3, b3). the solid lines show
the fuzziness of conclusion with respect to the fuzzinessbskrvation. In fact, the
calculation ofcp(B*) is independent of all the fuzzy interpolation methods comee
except for the proposed OHS (original HS) and EHS (enhancedrikthods. The
origin O of the inner coordinate system moves on the straightRiRérom P(a2, b12)
to R(ap2, bp2) due to the fact that the observatidh lies betweerA; andA,.

The straight lineKH (K (a13,b13) andH (ap3, bp3)) represents the function of (6.2)
for KH method. It indicates that if the fuzziness of obseimais less than a threshold
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bo3

Rep(B)
22

(b)),
(b})bs

bz |
Rep(B)
bip |

a2 a3 ay a;i a3 P Rep(/4) Q3 Xm X
ReP(A) (ap) (a))

Figure 6.1: The dependency of the fuzziness of conclusion on that of observation

s> 0, which can be determined by the work of [KHMOO], then sulbmalrconclusion
is obtained using the KH method.
For the modified KH method, the functiofM€H can be determined by point

M(ay3,cp(B*) + (b13—b12)) andL(aps, cp(B*) + (b23—b22)) as these two points must

b13)—(b22—b12)

and involves fixed distances between
az3—a13

be passedML has a slope off23=
M, L and axisX’.

The KHG method (function (6.5)) is represented by a straigletOD with slope
(bp2 —bp1)/(a22 — @21). Note that it cannot be interpreted whagp — ap; = 0 and
b2 — bp1 > 0, but otherwise the conclusion is always a normal and vakay set.

The general fuzzy interpolation method (function (6.6plgs two straight lines
OB andBG, whereB(a, b}) is determined b P_g = KB andG(xu,ywm) involves the
maximal values of the domains &f andY. The general interpolation always obtains
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NVF fuzzy sets a©BGnever crosses the axig.

Now consider the original HS method. Lir&T connects the pointS(RedA1),
RerB;)) andT(RedA2),RefdBy)). Thus, pointd’(RedA*),RedB*)) on this line
has propertyﬁggﬁgjgggﬁg = 22523:22523 = A, where\ = E9. Initially, suppose
A“ = (a a3, a3 ) (used to replace the observation for the HS methods to disith it
from the previously used observatiat) is a singleton input = a, = aj by = b, =
bg'. In the case when moving to the left (from;"s point of view), the function ob3®

with respect taaz® can be represented by liméSL which passe®’ andB, with slope
01 = 2:3_b:2. When moving to the right, the fuzziness dependency cangresented by
2
bl,— b}
a—a

. Similarly when no move is required,
b b}
aj—ay

line HS2 which passeB with slope8, =

it can be represented by li&S3 which passeB with slopebs =
Three points are worth mentioning for Figure 6.1.

1. ltis different from the previously shown approaches thatpointQ' is actually
not fixed. In particular, whea = a, = a3, b5 = bl, = b} holds. Ifa} increases,
by will change as well. So th¥” axis indicates only the difference bf — b5
(rather than the real values bf andbs).

2. If the centre point value is chosen to be defined a®©ORvecomes the same as
O, thus lineH S1 partially coincides witfOBG. In other words, when moving to
the left, theaj (less tharai3) generated fronHS1 is the same as that from the
general interpolative reasoning method.

3. B3 < 87 andB3 < 67 always hold.

Finally, the enhanced HS interpolation method is shownrs@'BE according to
function (6.24). It is a second degree polynomial functidriah passes point® and
B. It may be either valid or concave.

6.2.2 Preservation of Piecewise Linearity

Preservation of piecewise linearity is an essential pitypehnich reflects how good an
interpolative reasoning method handles the points betweemconsecutive character-
istic points. If the piecewise linearity is preserved, is&fe to merely consider the
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characteristic points rather than the infinite pairs of po{generated from an infinite
number ofa-cut levels). The preservation of piecewise linearity hasrbinvestigated
in the work of [KHMOO, TBOO]. In both cases, they slightly date from the calculated
linear fuzzy rule interpolations with some error bounds/mted. This subsection first
shows that the original HS method preserves the piecewisariity only in interpo-
lations involving triangular fuzzy sets, and then proves the enhanced HS method
preserves this property in interpolations involving adny polygonal fuzzy sets.

6.2.2.1 Original HS Method

Consider a triangular-based fuzzy interpolation as shoviig. 6.2. Given rulegy =

B1, A2 = By and an observatioA*, the task is to determinB*. The difference here
is that all fuzzy set#\;, Ay, A", By andB; have five characteristic points rather than
three. That s, each fuzzy set has two additional artifidiaracteristic points.

u

ajg a;y a;p dp ap aiay azax 2 ay axp

B1 B B

big P11 by, by bp  bibi bhby b by by

Figure 6.2: Interpolation involving triangular sets but with 5 characteristic points

The first step for OHS interpolation is to construct the imediate ruleA’ = B'.
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It can be shown in the following that bo#ki andB’ are two triangular fuzzy sets, with
each having 5 characteristic points.

proof 10 As
100 = (1—a)agp+0agg
aon = (1—a)ago+0a1 (6.25)
a6a = (1—0()a6+0(a’1
and
= (1—-MN)a A&
ap = ( Ja1o+ Aago (6.26)
a’l = (1—)\)3114‘)\821
Therefore
aoq = (1—0)[(1—N)ago+Aago] +af(1—A)ags + Aay] (6.27)
=(1-MN[(1—a)ap+aay] +A[(1—a)az+ 0az] (6.28)
= (1—)\)&100( +Aaooy .- (6.29)

The point 4, which is the interacted point of linga, and thea-cut level is also the
interpolated point between g, and &, it is thereby an artificial characteristic point
in A'. Similarly, &, is an artificial characteristic point. So’As a triangular set with
5 characteristic points. This proof also applies to B

Now the scale transformation will sca#é to AS (as shown in Fig. 6.3) which has
the same support lengths as thos@afAs A’ andA* are both triangular sets, the scale
rates for the supports of the bottom and ¢theut level remain the same, sayAS can
be computed fror&' using the five equations imposed to the scale transformation

(Rep(AS) = ReA)
a5-8 _
5%
aég_% =S (6.30)
a— su — all_afl)or
R

Y
\ =&y —ayy
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0 a3 ao a- a3 X

Figure 6.3: Preservation of piecewise linearity in triangular cases for original scale

transformation

The scaled fuzzy set is therefore the same as that genersiteglanly three charac-
teristic points. That is, the scaled fuzzy set is a triangfulazy set but with 5 charac-
teristic points. Similarly, a triangular fuzzy sBt with 5 characteristic points can be
obtained.

The preservation of piecewise linearity in move transfdramas shown in Fig. 6.4.
It might appear that in this case two sub-moves should beexpp! the first moves
a3 to a}, and the second moves, to a},, wherea, is the position fora$, after
the first move. However, that is not the case. In fact, only e is required to
transformAS (with 5 characteristic points) t&* (also with 5 characteristic points).
This move simultaneously move§, a3, anda; to the desired positions{, a;, and
aj) respectively, according to the move transformation.

In summary, the original HS preserves piecewise lineanifydrforming scale and
move transformations, resulting in the preservation df pin@perty in fuzzy interpola-
tion. Unfortunately, this property cannot be preservedmihe original HS method is
applied to fuzzy interpolations involving fuzzy membepshinctions other than trian-
gular sets. This is due to the way of calculating scale ratssale transformation. For
example, consider the scale transformation of trapez&idaly membership functions
with each having two artificial characteristic points (ség B.5). The task is to calcu-
late the scale rates f@' based on the transformation froto AS. Letap,, a5, a5,
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H ai a;

0 a3 ap as ab X

Figure 6.4: Preservation of piecewise linearity in triangular cases for original move

transformation

N , u
S

0 a ao : ai X o by bo ’ bs X
Figure 6.5: No preservation of piecewise linearity in trapezoidal cases for original scale
transformation
anda3, be artificial characteristic points, then

aéa _360( = a(a’z—a’l)+(1—a)(a’3—a’2), (6-31)
a%(x_a(s)a :a(ag—ai)+(1—a)(a§—a§). (6.32)

Let the scale rates for the bottom, middle and top supporés bé denoted asy, Sy
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ands; respectively. Then,

als%a _a(s)a
aSO( _aOO( ( )
a(@—ad) +(1-a)(a3—ay)
— 6.34
a(a,—aj)+(1—a)(ag—a) ( )
_asi(@—a) + (1 a)so(@; — %) 6 35
a(@—a) + (1-o)(&%—) | (6:99)
It can be reformed as

S-S a(@—d)
Consider the simple case of calculating scale rates, iteengy > sy, thensg > s > 51
holds according to Fig. 6.5. Let the scale rates for the battaiddle and top supports
of B’ be denoted as), s, ands] respectively, according to the way of calculating the
scale rates (see (5.343),= S > s, = S > S; = S1. Given thaty,, andb’, are artificial
characteristic points, according to (6.36), the followmgst hold so thalbg, andb3,
will be artificial:

% (-a)bsbp
$=% " alpb) ©=0

However, this is not true unless in the special situationrefg—» = bs—bh
2 1

b5 —b}
piecewise linearity cannot be always preserved in the n@igal cases.

. Thus the

6.2.2.2 Enhanced HS Method

The enhanced HS method preserves the piecewise lineartienpolations involving
arbitrary polygonal fuzzy membership functions. This sdbt®n proves this in both
scale and move transformations.

Fig. 6.6 illustrates the scale transformation in a trapgaiazase with six character-
istic points for each fuzzy set. Suppose W, a5, &y, a5, by, andby, are artificial
characteristic points. BS is transformed fronB’ using the same similarity calculated
from A’ to A, the question is whethds§  andb3, remain artificial. According to the
enhanced scale method,

as_as bS — bS
e (6.38)
a —apq 1~ Pog
S _ a8 pS _ps
aO(X a0 _ 0o 0 (639)

aé)a_ag)_b()a_bé).
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0 a; ao ‘ o b bo ’ b$ x

Figure 6.6: Preservation of piecewise linearity in enhanced scale transformation

Also, asaj, andag, are two artificial characteristic points, then
as—as S _ oS
1% _ %oa % (6.40)
8 ~3q g%
From (6.38), (6.39) and (6.40),
bi — b(sjo( _ b(sjo( — b(sj

/ / / ;-
bl_ Oa O(x_bO

(6.41)

From (6.41) and the fact thb},, is an artificial characteristic point, it can be concluded
thatbg, must be artificial. That isB® is piecewise linear in the left slope. Similarly,
B® is piecewise linear in the right slope. Thus the proposechatepreserves the
piecewise linearity in the scale transformations.

The proof is based on the trapezoidal cases and it in factstuat the piecewise
linearity is retained between twa-cut levels. For the scale transformation case in-
volving arbitrary polygonal fuzzy membership functionise tproof applies between
any two consecutiva-cut levels, resulting in the preservation of piecewisedirity in
this case.

Now consider the move transformation which is shown in Fig. &ivenAS and
A* which have the same RV and the same lengthes of top, middlbaitwn supports
respectively, the task is to mo®# to obtainB* using the same similarity betwedfi
andA*. According to the enhanced move transformation,
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s b1 b}

0 aiag ai a3 X 0 bt b bt b? x

Figure 6.7: Preservation of piecewise linearity in enhanced move transformation

* * S S * * S S
A — Ay A3q — 8 by — by b3, — b3

Ay — B ai - a?)cx b3cx - b2 bi - bga
aax_aga:s%_als%a _ bEk)a—bSb%—bia_ (6.43)
ag_aga a(s)a _ag bg_bgcx bgcx _b?)

Assume thasg,, ag,, a3, andas, are arbitrary characteristic points, then
ai—aéaaia—agza?ia—a?ia%—aﬁa. (6.44)
aga_aéai_aaa ag_agaa(s)a_a(s)

From (6.42), (6.43) and (6.44),
bi B baa bga B b% _ ba(x B b?i b% B bls%a ) (6.45)
bga - bE bi - b(sjo( b§ - bga b(s)a - b(s)

Given thatlg, andb3, are artificial characteristic points, it follows that

%G_bg — bg_ %G. (646)
bi - b?)cx b?)cx - b?)
From (6.45) and (6.46),
bi B ba(x ba(x B b?i
= (6.47)

bg(x_bé a b;—b;a'
As b5 — b§ = b} —bj, by, — b, = b3, — by, andb3 — b = b; — by, it can be concluded
thatbyg,, andbs, are artificial.
Again, although the proof is based on the trapezoidal casgsplies between any
two consecutiver-cut levels in arbitrary polygonal fuzzy memberships, l@sgin the
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preservation of piecewise linearity in the move transfdramainvolving those fuzzy
membership functions.

It can be proven that the construction of the intermediateyfuule preserves piece-
wise linearity. Now the scale and move transformations maggm to preserve piece-
wise linearity, property 1 as shown below can be achievetiéghhanced HS method:

Property 1 The interpolation of non-characteristic points which liettyeen two char-
acteristic points generates non-characteristic pointgohtstill lie between the two
interpolated characteristic points.

Property 1 points out that only characteristic points dffiee interpolated results using
the EHS method. Non-characteristic points can be safelyraeghas they are still non-
characteristic in the reasoning results.

If the representative value of a fuzzy set keeps the same wloea artificial char-
acteristic points are considered in the EHS interpolatiben the following property
holds:

Property 2 The interpolation of the same fuzzy sets but with additiari#icial char-
acteristic points leads to the same result if the repres@rgavalues of these fuzzy sets
(with or without additional artificial characteristic pots) are the same.

The work of [YK98, YKOO] represents each fuzzy set witlsharacteristic points
as a point in am-dimensional Cartesian space, thus a fuzzy interpolatioblpm be-
comes a high dimensional interpolation problem. Since tH8 Eterpolation method
is capable of handling fuzzy interpolation involving infmpoints (finite characteristic
points plus infinite non-characteristic points), it may\pde a solution to the interpo-
lation problem within a very high dimensional Cartesiancgpa

6.2.2.3 lllustrative examples for the maintenance of piece  wise linearity

In this section, the use of the average RV, compatible RVghted average RV and
centre-of-core RV to conduct fuzzy interpolations is destmated and the results be-
tween the original HS and enhanced HS methods are compaoediniplicity, both
examples discussed below concern the interpolation bettveeadjacent ruled; =
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B, andA, = B». In order to verify the piecewise linearity property, addial “char-
acteristic” points are added in the examples.

Table 6.1 shows values of the rule attributes and obsenatitable 6.2 and Table
6.3 show the interpolated results using different RV de@ing for the OHS method
and EHS respectively. These results are also illustratédir.8 and Fig. 6.9. As can
be seen, the original HS method satisfies property 1 onlyangular cases while the
enhanced HS satisfies that in all cases. In particular, ttex Rarther holds property 2
when the compatible and centre core representative vataesad. As a comparison,
the results of the KH method is also given in Fig. 6.8. It Segssneither property 1 nor
property 2.

Table 6.1: Attribute and observation values

Triangular | Triangular (5 points) Hexagonal | Hexagonal (8 points)
A; | (0,5,6) (0,2.5,5,5.5,6) (0,1,3, (0,0.5,1,2,3,

4,5,5.5) 4,45/5/5.255.5)

Ar | (11,13,14) | (11,12,13,135,14) | (11,115,12, | (11,11.25115,11.75,12,
13,135,14) | 13,13.25135,13.75,14)

A* | (7,8,9) (7,7.5,8,8.5,9) (6,6.5,7, (6,6.25,6.5,6.75,7,
9,10,105) | 9,9.5,10,10.25,10.5)

By | (0,2,4) (0,1,2,3,4) (0,051, (0,0.25,0.5,0.75,1,
3,4,4.5) 3,3.5,4,4.25,4.5)

By | (10,11,13) | (10,10.5,11,12,13) | (105,11,12, | (10.5,10.75,11, 115,12,
13,135,14) | 13,13.25,135,13.75,14)

6.2.3 Computational Complexity

In this section, the time complexity with respectnqthe number of characteristic
points for fuzzy sets involved) is estimated for interpm@atreasoning methods, in-
cluding the KH, the general interpolation, the modified Kkk briginal HS and the
enhanced HS. To have a uniform platform for comparison, impkest rulesA; = B;
andA; = B, and an observatioA* are used here.

The KH interpolative reasoning method can be written in gdeetbde as shown
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Table 6.2: Results of original HS method by using different RVs

Triangular | Triangular (5 points)| Hexagonal Hexagonal (8 points)
Average (5.84,6.26, | (5.76,5.97,6.18, (5.64,5.98,6.29, | (5.64,5.82,5.98 6.14,6.28,

7.38) 6.74,7.3) 8.63,9.46,9.93) | 8.64,9.05,9.47,9.71,9.94)
Compatible| (5.84,6.26, | (5.84,6.05,6.26, (5.67,6.01,6.33, | (5.66,5.84,6.01,6.16,6.31

7.38) 6.82,7.38) 8.66,9.50,9.97) | 8.67,9.08,9.50,9.74,9.97)
Weighted | (5.63,6.06, | (5.63,5.85,6.06, (5.61,5.95,6.26, | (5.62,5.80,5.96,6.11,6.26,
Average 7.16) 6.61,7.16) 8.59,9.42,9.89) | 8.62,9.029.44,9.68,9.91)
Centre (4.96,5.38, | (4.96,5.17,5.38, (5.47,5.79,6.08 | (5.46,5.64,5.81,5.95,6.07,
of Core 6.44) 5.91 6.44) 8.42,9.23/9.70) | 8.43,8.83,9.25,9.47,9.70)

Table 6.3: Results of enhanced HS method by using different RVs

Triangular | Triangular (5 points) Hexagonal Hexagonal (8 points)
Average (5.54,5.97, | (5.49,5.70,5.92, (5.28,5.62,5.94, | (5.28,5.45,5.62,5.79,5.95,

7.97) 6.92,7.92) 8.86,9.86,10.36) | 8.87,9.37,9.87,10.12,10.37)
Compatible| (5.54,5.97, | (5.54,5.76,5.97, (5.30,5.65,5.97, | (5.30,5.47,5.65,5.81,5.97

7.97) 6.97,7.97) 8.88,9.88,10.38) | 8.88,9.38,9.88,10.13,10.38)
Weighted | (5.41,5.83, | (5.41,5.62,5.83 (5.25,5.59,5.91, | (5.26,5.43/5.60,5.72,5.92,
Average 7.83) 6.83,7.83) 8.85,9.85,10.35) | 8.85,,9.35,9.85,10.10,10.35)
Centre (4.96,5.38, | (4.96,5.17,5.38, (5.12,5.455.75 | (5.12,5.28,5.45,5.60,5.75,
of Core 7.38) 6.38,7.38) 8.75,9.75,10.25) | 8.75,9.25,9.75,10.00,10.25)

in Algorithm 1, where[i] (see [KH93a, KH93c]) measures the important impact of

Algorithm 1 KH interpolation

Input: Polygonal fuzzy sefA* with n characteristic points

Output: Polygonal fuzzy seB* with n characteristic points

1: fori=0ton—1do

2:  calculate\[i] from theith points ofA;, A; andA*

3. calculate theth point of B*

4: end for
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Original HS with compatible RV
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Results using 3 odd points

Results using 5 odd points
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Original HS with average RV
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Original HS with weighted average RV

O 1 2 3 45 6 7 8 910 1112131
Original HS with centre core RV

Results using 6 odd points
Results using 10 odd points

Figure 6.8: Examples of piecewise linearity for KH and original HS method

the ith characteristic point of, (versus that ofA;) upon theith point of A*. The

computation time in line 2 has a unit time©f1) as it simply consists of several basic

calculations (no loop is involved). Similarly, line 3 costsother unit time of0(1).
The total computation time for line 2 and line 3 thugdél). Since line 2 and line 3
are executed once for every loop from 0 to{1), the total computation time for this

algorithm isO(n).

The general interpolation [BGK96, BGK95] method is desedilin Algorithm 2.
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Figure 6.9: Examples of piecewise linearity for enhanced HS method

Line 1 costsO(n) computation time as it has a loop running through all the atwar
teristic points. As line 3 cost®(1), the loop of line 2 cost®O(n) time. In total,
O(n) +0O(n) = O(n) is the time complexity for this method.

Now consider the modified KH method [TB0O] as shown in Algamt3. Line 1
costsO(n) computation time as it actually has a loop running througjthel charac-
teristic points. Line 3 costs the othé(n) as it simply reverses the operation in line
1. According to the KH interpolative reasoning method, EiakesO(n) time. So the
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Algorithm 2 General interpolation
Input: Polygonal fuzzy se* with n characteristic points

Output: Polygonal fuzzy seB* with n characteristic points
1: Compute intermediate fuzzy setsandB’
2: fori=0ton—1do
3:  calculate théth point of B* according to those o&*, A’ andB’
4: end for

Algorithm 3 Modified KH interpolation
Input: Polygonal fuzzy sefA* with n characteristic points

Output: Polygonal fuzzy seB* with n characteristic points
1. Convert the coordinate system to a different one
2: KH interpolation
3: Convert the coordinate system back to the original one

total time complexity iO(n) + O(n) + O(n) = O(n).
The proposed original HS interpolative reasoning methstiagsvn in Algorithm 4,
wherecalM andmoveare two procedures which are called by the OHS interpolation

Algorithm 4 Original HS interpolation
Input: Polygonal fuzzy sefA* with n characteristic points

Output: Polygonal fuzzy seB* with n characteristic points
Compute intermediate fuzzy se&sandB’
Compute scale rates froAd to A*
ScaleA’ with scale rates calculated by step 2 to generatdset
Compute scale rates appliedBb
ScaleB’ with scale rates calculated by step 4 to generatB%et
AT = AS: BM = BS:
fori=0to[§]—2do

MoveRatidi] = calM(A™, A*,i)

A™ = moveA™ i, moveRatif])

B™ = movéB™, i,moveRatif])
. end for

I =
= Qo
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algorithm. They are written in Algorithm 5 and Algorithm Gspeectively, Whereagi)

Algorithm 5 CalM(A, B,i): calculate move ratio of thith support level fronA to B
Input: Two polygonal fuzzy seté& andB (with each havingh characteristic points)

and support leval
Output: Move ratio of support leval of A
:suml =0,sun=0
:for j=ito[5]—1do
sunl = sunt + agi_l) (Wj +Wn-1-j)

: end for
: extX=min{ 3 — e&‘”,aﬁg” — a,ﬂ':fli}

1
2
3
4:  sun® =sun2-+ (Wj+Wwp_1-j)
5
6
7. Compute move ratio according #éxtX

Algorithm 6 MovegA,i,MoveRatig: move theith support ofA with the specified

MoveRatio
Input: Polygonal fuzzy sef with n characteristic points, support levelnd the spec-

ified move ratioMoveRatio
Output: Moved fuzzy seA™
sunl =0,sun =0
for j=ito[3]—1do
suml = sunl + agi_l) (Wj +Wn-1-j)
sun® = sun?+ (Wj +Wn_1-j)

end for

extX=min{m — g &)Y — a7} )
for j=ito[3]—1do

CalculateextX $j] according to (5.24)

end for
for j=ito[3]—-1do
newXsj| = curr[j] + (extXsj] —curr[j])MoveRatio

N =
L

12: end for

is the jth point of A after moving theth support levelw; is the weight for poing;,
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andextX, extX 3|, newX$| andcurr[] are the extreme moving point, extreme moving
points, new points and current points respectively (septen®).

In CalM algorithm, thefor loop in line 2 — 5 cost$(n) computation time and
lines 1, 6 and 7 each tak&(1). Therefore it cost®©(n) in terms of time complexity
in total. However, this calculation is based on the asswnpthat all the weights
are non-negative. If, however, that is not the case, theulzlon of extX should
be modified according to (5.23), resulting in a higher timmptexity. Nevertheless,
negative weights do not make sense in real world application

In theMovealgorithm, lines 2 — 5 lead tofar loop which cost$(n) computation
time, and similarly, the part of lines 7 — 9, and that of lin€s-112 each tak®(n)
time whilst line 1 and 6 each cost a unit time@f1). The whole algorithm thus needs
30(n) +20(1) = O(n) time complexity.

Now consider the time complexity of the main algorithm — @ginal HS inter-
polationwhich invokes theCalM andMovealgorithms. Lines 1 to 5 each tak¥n)
computation time as each of them needs linear time with mtgpehe characteristic
point number if). Line 6 only requires a unit time dd(1). However, lines 7 to 11
form afor loop with each step in th®r loop (line 8, 9 or 10) taking time complex-
ity O(n), thus the whole loop costd(n) *+ O(n) = O(n?) computation time. Based
on this estimation, the original HS interpolation methoda®more computation time
than the KH, modified-KH or general interpolation methodswdver,0(n?) is still
acceptable given thatis not significantly large in most cases.

One of the most widely used representative value definiticthe centre of core is
implicitly used in the KH, modified-KH and general interpiiden methods, although
the concept of representative value is not defined explicithose methods. In imple-
menting the centre of core RV definition, lines 1 — 5 of the athan CalM are omitted
as the extreme position is fixed &p;_;, which is the top left point’s position. The
CalM algorithm therefore need3(1) computation time. Due to the same reason lines
1 — 9 of algorithmMoveonly takeO(1) time. However, lines 10 — 12 still co§(n)
computation time, resulting in the event@(n?) time complexity for theOriginal HS
interpolationalgorithm. Nevertheless, the interpolation with the agwpof the core
of centre RV definition significantly reduces the computatmad.
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The enhanced HS interpolative reasoning method is showtgorithm 7. Lines 1

Algorithm 7 Enhanced HS interpolation
Input: Polygonal fuzzy sef* with n characteristic points

Output: Polygonal fuzzy seB* with n characteristic points
Compute intermediate fuzzy se&sandB’

Compute scale rates frod to A*

ScaleA’ with scale rates calculated by step 2 to generatdset
Compute scale rates appliedBb

ScaleB’ with scale rates calculated by step 4 to generatB%et
A" = AS BM=B°®

Compute move criteria applied B"

Move B™ with move criteria as calculated in step 7 to geneBite

to 5, 7 and 8 each take(n) computation time, while line 6 only cos®(1) time. The
whole method thus cost8(n) computation time, which is less than tt¥n?) time
required by the original HS method.

The above estimations show that all the interpolation nushexcept the original
HS have the time complexity @(n), while the original HS require®(n?). However,
the latter is acceptable given that the number of charati®points of involved fuzzy
sets is normally not significantly large.

6.3 Summary

This chapter has evaluated the original and enhanced Hpakétive reasoning meth-
ods as proposed in chapter 5. The comparisons to otherrexegtproaches such as
the KH and the general method have been provided with respéoe dependency of
the fuzziness of conclusion on observation, the presenvati the piecewise linearity
and the computational complexity.

Section 6.2.1 has shown the fuzziness derivation of diffieirgerpolative reason-
ing methods. This evaluation cannot be simply used to pgté performance of an
interpolative reasoning method, but it can be used as a goideoose suitable fuzzy
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interpolation methods for particular applications. Sa&tt6.2.2 has shown that the
original HS method preserves the piecewise linearity pitgpe interpolations involv-
ing triangular fuzzy sets, whilst the enhanced HS methodemes this property in
interpolations involving arbitrary polygonal fuzzy selisis worth noting that the EHS
method is the first proposed method having this property.ti@e6.2.3 has shown
that all the interpolation methods except the originalripdéation have computation
complexity ofO(n), whilst the OHS ha®©(n?). However, this is not a problem as the
current processors have been fast enough to handle suchestiyp



Chapter 7

Transformation Based Interpolation:

Realistic Applications

Fuzzy interpolation methods not only help reduce rule baseszmoving fuzzy rules
which can be approximated by their neighboring rules, bst aupport reasoning in
sparse fuzzy rule bases. This chapter focuses on the drid®duzzy interpolation
method and demonstrates its usages over realistic apphsathe usages of the en-
hanced HS method is omitted as it follows straightforwayxdly first introduces the
fuzzy interpolation based inference and then illustrates realistic applications. In
particular, the truck backer-upper problem shows how tbe@sed OHS interpolation
method helps reduce the redundant fuzzy rules, and the demipardware problem
shows how it serves as a fuzzy inference for sparse rule bdkescomparison to the
most popularly used inference, Mamdani inference, is piteskeover these applica-
tions.

7.1 Interpolation Based Fuzzy Inferences

Fuzzy inference is used to predict or classify an obsemadiased on a given fuzzy
rule base. Traditional fuzzy inferences such as MamdaniTBIATSK [TS85, SK88]

are designed for reasoning on dense rule bases. That issablee fuzzy rule can be
chosen to fire for any given observation. If however, thisas the case, traditional

154
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fuzzy inferences cannot generate sensible results. Iir éodeesolve this problem,
interpolation based fuzzy inferences have been adopted.

Fuzzy interpolation inferences work by using the fuzzyiptgation methods such
as the ones proposed in chapter 5. In addition to the capatilhandling non-dense
(sparse) rule bases, they have a flexibility on choosingifft number of fuzzy rules
to apply fuzzy interpolations. Fuzzy interpolation basefiiences can be used to-
gether with traditional fuzzy inferences by settingrang threshold This threshold
decides on which inference scheme will be chosen to usenBtarice, a possible im-
plementation as shown in Fig. 7.1 may be: the inference rgechout by the Mamdani
method if the maximal firing strength of an observation isagee than the predeter-
mined firing threshold, otherwise, the decision is handest tva fuzzy interpolation
based inference. This is quite flexible as the proportionnéinewn data fired by the

maximal firing strength

> threshold <= threshold

| |

Mamdani inference  interpolation based inference

Figure 7.1: An implementation of fuzzy interpolation based inference

interpolation can be decided by the threshold. In the ex¢reases, if the firing thresh-
old is set to 0, no firing is made via fuzzy interpolationslfi¢ rule base is dense). On
the contrary, if the threshold is set to 1, all data will bedixea fuzzy interpolations.

7.2 Truck Backer-Upper Problem

To demonstrate the usage of interpolation methods, thk backer-upper problem has
been considered in this section. Truck backer-upper pnof\AV90, KK92, WM92Db,
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RRO1] is considered a well-known benchmark in nonlineartr@drsystem and thus
raises interest for many researchers. The first attemptde oy using neural network
approaches [NW90]. The shortcoming is that neural netweds too much com-
putation load. Then the fuzzy controller has been formdlatgh the basis of expert
knowledge or identified from control data. Although the cartgtion effort is signifi-
cantly saved, the controller design risks by the curse okdsionality and suffers the
loss of comprehensibility from over-sized rule bases.

The truck backer-upper problem is illustrated in Fig. 7.zheTmall cab is the
truck which can be determined by three state variakleg0,100, y € [0,200 and
@€ [-90,270. x andy are the coordinate values for horizontal and vertical axes

200 m

160 —

120

80

40 —

0 /\\ | | | | 1 | |
10

¢
|
0 20 30 40 50 60 70 80 90

Figure 7.2: Truck backer-upper system

respectively, andp is the azimuth angle between the horizontal axis and th&'suc
onward direction. The truck begins from certain initial pia (Xo, Yo, ®) and should
reverse to the desired end point (300) with desired azimuth angle 90. To control the
truck, the steering angkee [—30,30] should be provided after every small move made
by the truck. The control problem can thus be formulate@-asf (x,y, ). Typically, it
is assumed that enough clearance between the truck ancattiagadock exist so that
the truck y-position coordinatecan be ignored, simplifying the controller function to
0= f(x@).

The demonstration of the interpolation is based on the FISNIAt00] which
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originally has nine fuzzy rules as shown in Fig. 7.3. Eachhefrow is interpreted as

1 1 1
05 05 \ 05 f \
0 0 0
1n N1 100 _Zﬂn 0 200 A0() Il
05 /\ 05 \ 05 f \
0 0 0
1n N1l 100 _2(\0 0 200 AD() Il
05 05 \ 05 \
0 0 0
1ﬂ EQ 100 _ZN\ 0 200 AD() Il
05 05 [\ 05 ] \
0 0 0
10 N1 100 _2(\0 0 200 A0() Il
HIANE IR A N
0 0 0
1n EQ 190 _ZN\ 0 200 AD() Il
05 05 [\ 05 f \
0 0 0
10 N1l 100 _2(\0 0 200 A0() 0
05 05 / 05 /
0 0 0
1ﬁ A 100 _znn 0 200 A0 Il
0.5 /\ 05 / 05 / \
0 0 0
1!’1 N4 100 _znn 0 200 A00 0
05 05 / 05 / \
0 0 0
0 50 100 -200 0 200 400 -50 0 50

a fuzzy rule:

IF xisAAND @isBTHEN B isC,

Figure 7.3: Membership functions for 9 rules

whereA, B andC are the linguistic labels of the system variables. As thireguistic

labels are assigned farand@ respectively, it leads to 8 3= 9 fuzzy rules in total for

this controller. Controlled by these nine fuzzy rules, thuek backing trajectories for
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Figure 7.4: Trajectories for 9 fuzzy rules

four initial points are shown in Fig. 7.4. All these four &ajories roughly converge
to destination point50,200). The reaching position states including x amtbr four
trajectories are shown in the second row of Table 7.1.

Table 7.1: Reaching positions states

Initial states (20,20,90) | (80,30,120) | (60,40,-90) | (10,30,220)

9 rules without interpolatior
6 rules without interpolatior

6 rules with interpolation

(53.35, 89.69)
(53.44, 89.51)
(49.68, 84.65)

(53.45, 90.52)
(53.40, 90.45)
(49.49, 84.83)

(53.37, 90.35)
(53.43, 90.84)
(49.84, 97.97)

(53.37, 90.58)
(53.48, 90.84)
(49.71, 97.98)

Such an expert fuzzy controller may potentially suffersrrthe curse of dimen-
sionality. That is, as the input variables and the fuzzyudistc labels associated with
each variable increase, the number of rules increases erpalty. This is because
the domain partition which is associated with every vagabparticular label has to
be covered by at least one fuzzy rule, resulting in nine ringkis case. Based on
the given nine fuzzy rules (Fig. 7.3), it is intuitive to fingat they are symmetrical in
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some sense. For example, rule 4 and rule 6 are symmetribalifre mirrored by rule
5: both rules 4 and 6 have the sampend they are symmetrical for attribuiteand®
from rule 5’s point of view. This indicates that rule 5 can bterpolated by rule 4 and
6. Thus it may be removed from this fuzzy controller. Simylarules 2 and 8 may be
removed as they can be interpolated by rules 1 and 3, and#aled 9 respectively. In
so doing, a much more compact fuzzy controller which onlyststs of 6 fuzzy rules
is obtained. The trajectories and reaching positions otrinek controlled by the 6
fuzzy rules are shown in Fig. 7.5 and the third row of Table Wihich still roughly
converge to the destination point.

Loading dock
T
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180

160 ~

140 ~

120

100

Y position

a0 -

B0 -

40k

20

a 10 20 30 40 L0 &0 70 a0 20 100
# position

Figure 7.5: Trajectories for 6 fuzzy rules

This simplification potentially brings rule firing probleras the rule base becomes
more and more sparse (due to the removal of rules 2, 5 andi8)pdssible that no
fuzzy rules fire for a given observation (truck state herghoaigh this doesn’t happen
in this experiment. If, however, the firing strength thrdghs set to be 0.7 (that is, any
rule fires if only the firing strength is greater thai@)) then no rule fires the observation
with x being around 50 ang being around 90. This leads to the sudden breaks of the
trajectories as shown in Fig. 7.6.
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Figure 7.6: Sudden breaks of trajectories for 6 fuzzy rules with firing threshold 0.7

Fuzzy interpolation technique can be deployed to resolggitoblem. A possible
solution is to pre-determine a threshold to decide whicrgrice (Mamdani or fuzzy
interpolation based) should be applied. It indicates tloata given observation under
certain firing strength, the rule base should be treated @sasp Therefore, the inter-
polation based inference becomes a natural choice. Inxperienent, the threshold is
set to be 072 after several trials. With the implementation of intdgbion using two
closest rules, Fig. 7.7 and fourth row of Table 7.1 show tbat trajectories better
converge to the destination, although with slightly moremagh error.

This experiment shows that the interpolation method cap kehplify a given
rule base and support the inferences in a sparse rule basg.itHiemoves the fuzzy
rules which can be approximated (interpolated) by theiginieoring rules, resulting
in a more compact rule model. This alleviates the curse otdsionality by keeping
important rules only, rather than using all possible rul&s.course, how to decide
important fuzzy rules is still an open question, since idextaip applications it is not
as easy as the selection of key rules in this small applica8econd, as an alternative
for traditional fuzzy inferences (such as Mamdani and Saydhhelps generate the
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Figure 7.7: Trajectories for 6 fuzzy rules with interpolation

results even no fuzzy rules fire with certain firing strength.

7.3 Computer-Hardware

This section applies the RDFR simplification method (as psep in chapter 3) and
the original HS interpolation method to the computer hamdvaataset [HBM98]. This
experiment shows that RDFR can result in more compact rgedx@nd the OHS-based
fuzzy inference can outperform Mamdani inference.

Computer hardware dataset concerns with the relative qmegioce of computer
processing power on the basis of a number of relevant atisbT his dataset has 209
data, each of which has 7 numerical attributes (includingrmmerical class). In this
experiment, the dataset is divided into a training set anelsadet in the following
manner. For each data instance, assign a random valyé.1] to it. If r < 0.5, then
such data instance is put into the training set; otherwisthd test set. In so doing, 96
data are chosen for training and 113 for test.

For computational simplicity, trapezoidal fuzzy sets ateged here. An optional
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factor in this experiment is the way of determining the fupaytitions for each nu-
meric attribute. In order to provide an identical platformcbmpare the performances
of using rule bases before and after applying the RDFR-baskedreduction, two
methods of fuzzy partitions are used. The first evenly dwittee universe of each
attribute into partitions with a predetermined numberultesg in a fixed number of
evenly distributed fuzzy partitions. The second uses thpeetation maximization
(EM) algorithm [WF99] to determine the number of clustensdach numeric attribute,
and then uses the cluster information to determine theiposiof the fuzzy partitions.

7.3.1 Experiment based on evenly divided fuzzy partitions

Due to its popularity in machine learning literature, fua®8 [Jan98] is applied to
the training data of computer hardware dataset to obtaiorigeal fuzzy rule set. As
the dataset’s output class is numeric, thlative squared errors used to evaluate the
success of numeric prediction.

Definition 14 Let the predicted values on the test data hepp, .. ., pn, and the actual
values be g ay, ..., a,, the relative squared error is defined as

(pr—a1)%+...+ (Pn—an)?

RSE= ~= i ,
(@—a1)2+...+(a—an)?

(7.1)

wherea = % yia;. Infact, relative squared error is made relative to what awd have
been if a simple predictor had been used. And the simple gggdin question is just
the average of the actual values from the training data. Tielestive squared error
takes the total squared error and normalises it by dividiyghe total squared error
of the average predictor.

Fig. 7.8 shows the relative squared error of the test datane#pect to the size of
the evenly distributed fuzzy partitions and the number af tdes (used as a criterion
to terminate fuzzy ID3 training). As can be seen, the goodoperance is obtained
when the number of fuzzy partitions are in the rang&of 1].

For comparison between the use of rule bases obtained leefdrafter the RDFR
method, a local optimal case (in terms of the relative squareor) with the number
of fuzzy partitions being 7 and the number of leaf nodes b2igchosen as the base



Chapter 7. Transformation Based Interpolation: Realistic Applications 163

u

relative squared error
o o
(22}

number of leaf objects number of fuzzy partitions

Figure 7.8: Relative squared error of fuzzy ID3 training based on evenly divided fuzzy

partitions

comparison point. In this case, 25 fuzzy rules are obtaibedortunately, among the
whole 113 test data there are 6 data which cannot be fired byfathese 25 rules,
resulting in no outputs in these cases. In order to measereror of the unfired
data, each of them is assigned to the average actual outthg wiole data (which is
105.62). In so doing, the relative squared error is caledlas 23%3% for this case.

7.3.1.1 OHS interpolation based inference vs. Mamdani

The previous error estimation is based on the use of the Manfdazy inference,
which is not capable of handling the data falling in the gapheffuzzy rule base (this
is why 6 data were not fired). Now the proposed OHS fuzzy imiatpn method is
applied to the same rule base and test data. Note that dumngnterpolation, the
zoom method is used to construct intermediate rules thrauighll the experiments
undertaken in this chapter. In contrast to the Mamdani arfee, every data is being
fired at this time. Fig. 7.9 and Table 7.2 show the relativeasgg error with respect to
the number of interpolated rules and the firing threshold ésetion 7.1). The number
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in brackets is the amount of data which are fired by the intatfwm inference (rather

than Mamdani inference).

relative squared error

number of interpolated rules

threshold

Figure 7.9: Relative squared error of the OHS interpolation inference based on evenly

divided fuzzy partitions

Table 7.2: Relative squared error (%) of the OHS interpolation based inference

Threshold | 0(6) | 0.1(6) | 0.2(6) | 0.3(6) | 0.4(6) | 0.5(6) | 0.6(14) | 0.7(17) | 0.8(51) | 0.9(53) | 1.0(113)
2 2305 | 2305 | 2305 | 2305 | 2305 | 2305 | 2389 | 2408 | 2264 | 2259 | 1691
3 2327 | 2327 | 2327 | 2327 | 2327 | 2327 | 2206 | 2080 | 1926 | 1918 | 1673
4 2331 | 2331 | 2331 | 2331 | 2331 | 2331 | 2222 | 2094 | 1945 | 1938 | 1591
5 2358 | 2358 | 2358 | 2358 | 2358 | 2358 | 2260 | 2130 | 1992 | 1984 | 17.60
6 2373 | 2373 | 2373 | 2373 | 2373 | 2373 | 2318 | 2191 | 2056 | 2048 | 27.46
7 2369 | 2369 | 2369 | 2369 | 2369 | 2369 | 2325 | 2194 | 2060 | 2052 | 2952
8 2381 | 2381 | 2381 | 2381 | 2381 | 2381 | 2353 | 2226 | 2094 | 2085 | 3085

Generally speaking, the OHS fuzzy interpolation inferepiduces significantly

less relative squared error than Mamdani inference. Inquéat, if the threshold is.D

(that means all 113 test data are fired through the OHS inrpo inference) and the

number of participated rules in performing interpolatisrin {2,3,4} (the normally
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used cases), the average error is5266, much less than Z8%. This significant
change in performance is due to the fact that the OHS intatipol inference can
produce sensible firing results even when the data fall ig#ps which are not covered
by the original rule set.

This experiment is based on the assumption that beforeshddta are fed into the
inference mechanisms, they are fuzzified to trapezoidalfsets by assigning the top
support length to be 20 and the bottom support length to bef4fd(irse, the centres of
the trapezoidals are the same as the original crisp vallieg)reason for fuzzification
is that the test data may not be precise in practice — thersudnjective factors such
as measurements, readings during the data collectionzifieaion of the test data
may better represent the collected data. Fig. 7.10 showsliffierent fuzzifications
of the test data cause different relative squared errorsvitve OHS interpolation
inference (firing threshold set to 1) is applied. As can bensdee difference is not
significant when the normal siz€(5]) of interpolated rules are used. For simplicity,
the following experiments will be undertaken based on thezification of [20,40].
Note that fuzzificationO, Q] is a specific case in which no fuzzification is required for
the input test data. The performance is worse in that case.

7.3.1.2 RDFR rule base simplification

To further reduce the fuzzy rule bases, the RDFR simplificedis proposed in chapter
3 is applied in the experiments. As exhaustive RDFR prodtmesnany data (7to
be retrieved), random RDFR is used to generate less datapfayn this experiment.
The PART algorithm [FW98, WF99] is applied to the retrieveata] resulting in 13
ordered rules (i.e. a decision list of 13 fuzzy rules). The&genance is estimated
through the use of three different fuzzy inference methondsjely, the ordered firing,
Mamdani, and OHS interpolation based inference. As theyngemherated rule base
has a default rule which only consists of a class value anded to fire a certain test
datum if no other rules can fire, its existence may not be Sig@ittor Mamdani and
OHS interpolation based inference. To tackle this probléra,default fuzzy rule is
simply removed due to 1) the default rule is not as importardther rules in the sense
that the default rule usually covers less data than othesmib, and 2) the removal of
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Figure 7.10: Relative squared error of different fuzzifications

this rule will not cause the loss of class entries as the das®in is in fact numerical.

Ordered firing The ordered firing works with a predetermined threshold. drtip-
ular, each rule (in the ordered list) attempts to fire the migbservation data
in turn, it stops when the firing strength of itself is greatsan the threshold.
The inference result is thus fully decided by this fuzzy rulable 7.3 and Fig.
7.11) show that the average of the errors following this apph is 2463% and
the best performance is 8% (when threshold = 0.7), which are quite good
results in terms of the gain over rule base simplificatioar(fr25 rules down to
13).

Table 7.3: Relative squared error of the ordered firing

Threshold| O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Error (%) | 24.23 | 24.23 | 24.23 | 24.48 | 2448 | 2448 | 24.48 | 2350 | 2593 | 26.28

Mamdani inference The test of using the 12 rules (after the removal of the defaul
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Figure 7.11: Relative squared error of the ordered firing

rule) leads to a relative squared error of &». Among the whole 113 test
data, 6 are not fired. Obviously, this result is not good.

OHS interpolation based inference The errors of the OHS interpolation based infer-

ence with respect to the threshold and number of interplatkes are given

in Table 7.4 and Fig. 7.12. The threshold decides what podidhe test data
are fired by the OHS interpolation based inference (rathem thy Mamdani).
The values of O and 10 are tested in this experience, resulting in 8 and 113
data fired by OHS, respectively. Consider the normally usesegs (participated
interpolated rules in3,5]) and all test data fired via OHS interpolation based
inference (threshold = 1.0), the errors are similar to tmatipced by Mamdani
over the original rule base. The best performance here s BhB4% (with
threshold being 1.0 and the number of participated intatpdirules being 10).

Alternatively, the JRip algorithm [WF99] is applied to thetnieved data, result-
ing in 9 ordered rules. The performance is again examinexzligir the use of three
different inference methods.
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Table 7.4: Relative squared error (%) of the OHS interpolation based inference

Rule No 2 3 4 5 6 7 8 9 10 11 12

0.7 25.61 | 2546 | 27.31 | 26.76 | 26.12 | 2586 | 2519 | 2533 | 25,51 | 25.72 | 2580

1.0 4141 | 2328 | 2465 | 21.65| 1628 | 16.75 | 1437 | 11.89 | 11.84 | 1207 | 26.05

0.5
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—— threshold = 0.7 (8 data interpolated)
—— threshold = 1.0 (113 data interpolated)
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Figure 7.12: Relative squared error of the OHS interpolation based inference

Ordered firing Table 7.5 and Fig. 7.13 show that the ordered firing obtairsvarage
error of 2151% and the best performance of.20% (when threshold = 0.7),
which is a much better result compared to the original oner(®&s with error
23.53%).

Table 7.5: Relative squared error of the ordered firing

Threshold| O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Error(%) | 2157 | 21.57 | 21.57 | 21.57 | 21.57 | 21.57 | 21.57 | 20.11 | 21.99 | 2199
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Figure 7.13: Relative squared error of the ordered firing

Mamdani inference The test of the 8 rules (after removal of the default fuzze)yul
leads to a relative squared error of.@6%. The performance is quite good but
it is strange that among the whole 113 test data, 95 are ndt firkis is likely
due to the reason that most of the unfired data are close tovdrage result
(105.62). They do not contribute much error to the relatopeased error of the
whole test data.

OHS interpolation based inference The errors of the OHS interpolation based infer-
ence with respect to the threshold and number of interpblates are given in
Table 7.6 and Fig. 7.14. The thresholds of @nd 10 are tested in this ex-
perience, resulting in 98 and 113 data fired by OHS interiaespectively.
Consider the normally used cases (interpolated rules 3)[2r all test data
fired via interpolation (threshold = 1.0), the average ersdi2384%, which is
not bad compared to the original rule base. The best perfarenlaere is 1839%
(threshold = 0.7 and with 6 interpolated rules).
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Table 7.6: Relative squared error (%) of the OHS interpolation based inference

Rule No 2 3 4 5 6 7 8
0.7 1516 | 1471 | 1435 | 1324 | 1289 | 13.07 | 1297
1.0 2479 | 2412 | 2317 | 2326 | 2241 | 21.11 | 21.12
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Figure 7.14: Relative squared error of the OHS interpolation based inference

7.3.2 Experiment based on assigned fuzzy partitions

This experiment uses the assigned fuzzy partitions ratfaerthe evenly divided fuzzy
partitions. In particular, the Expectation MaximizatidBM) algorithm [WF99] is
used to determine the number and locations of clusters fur attribute. Using such
information, the seven attributes are assigned the fuzmytipas of 3, 5, 3, 4, 2, 3
and 9 respectively. Note that the partitions of each atfieilllo not have the same
shape, although all of them are trapezoidal fuzzy sets.rAglae fuzzy ID3 algorithm
is applied to the training data. The results with respech&rtumber of leaf nodes
are shown in Fig. 7.15. As can be seen, the best performarai#ased when the
number of leaf nodes is 15, which is chosen as the base casopayoint for future
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partitions

rule base simplifications. In this case, 33 fuzzy rules witkelative squared error of
73.02% are obtained. Unfortunately, 9 data are not covered pywas. That is, it
is a sparse rule base. This result is much worse thabi328 which is produced by
the experiment based on evenly divided fuzzy partitionse fifain reason for this is
that the fuzzy partitions for the conditional variables m@uced from 7 to an average
of 3.33, which may not be sufficient enough to model the underlgingcture. The
following experiments show how the combination of RDFR llaseenplification and
the OHS interpolation based inference help produce bedseits.

7.3.2.1 OHS interpolation based inference vs. Mamdani

With the same rule base and test data, the OHS fuzzy inteipoolaethod outperforms
Mamdani inference. Fig. 7.16 and Table 7.7 show the relativared error of the OHS
interpolation based inference with respect to the numbaertefpolated rules and the
firing threshold. Note that the number in the brackets is theunt of data which are
fired by the OHS interpolation inference. All the listed tala squared errors are less
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Figure 7.16: Relative squared error of the OHS interpolation inference based on as-

signed fuzzy partitions

Table 7.7: Relative squared error of the interpolation inference

Threshold | 0(6) | 0.1(6) | 0.2(6) | 0.3(6) | 0.4(6) | 0.5(6) | 0.6(14) | 0.7(17) | 0.8(51) | 0.9(53) | 1.0(113)
2 5729 | 57.29 | 5929 | 57.30 | 57.34 | 5742 | 5769 | 4922 | 4942 | 4931 | 4990
3 5591 | 5591 | 5592 | 5594 | 5598 | 5602 | 5653 | 4948 | 4969 | 4953 | 5038
4 4946 | 4946 | 4951 | 4952 | 4954 | 4955 | 5005 | 4612 | 4629 | 4615 | 4527
5 5364 | 5364 | 5365 | 5366 | 5367 | 5369 | 5418 | 5346 | 5362 | 5345 | 5417

than the one (782%) based on Mamdani inference. In particular, if the thoés =

1.0 (that means all the 113 test data are fired via the OHSpimion inference) and
the number of interpolated rules is {2, 3,4} (the normally used cases), the average
error is 4852%, which is much less than 02%.

7.3.2.2 RDFR rule base simplification

Similar to the experiment based on the evenly divided fuzayifoons, random RDFR
is used to retrieve 200 data from the original 33 rules. ThRPAIlgorithm is applied
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to the retrieved data, resulting in 19 ordered rules (a detisst of 19 fuzzy rules).
The performance is examined as follows.

Ordered firing Table 7.8 and Fig. 7.17 show that the errors of ordered firredess
than the original 732% if the firing threshold falls withifD, 0.5]. These results
are acceptable given that the rule number has been signijicaduced from 33
to 19.

Table 7.8: Relative squared error of the ordered firing

Threshold| 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Error (%) | 7221 | 69.97 | 70.88 | 70.18 | 70.53 | 70.94 | 74.64 | 77.80 | 8194 | 93.89
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Figure 7.17: Relative squared error of the ordered firing

Mamdani inference The test of the 18 (after the removal of the default one) l¢ads
a relative squared error of 7%, leaving 1 datum unfired.

OHS interpolation based inference The errors of the OHS interpolation based infer-
ence with respect to the threshold and number of participates in interpola-
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tion are given in Table 7.9 and Fig. 7.18. Again, the threddaff Q7 and 10

are tested here, resulting in 8 and 113 data fired by the Ol8omiation based
inference respectively. Consider the normally used cabesnumber of inter-
polated rules is in [2,5]) and all test data fired via integpioin (threshold = 1.0),

an average error of 485% is obtained, which is much better than the error rate

produced by the original rule base. The best performanaeibdb64% (when

threshold = 1.0 and the number of interpolated rules is 4mittedly, such an

error rate is itself quite high, but this does not affect tihespnt comparative

study as only the relative results are of actual interest.

Table 7.9: Relative squared error (%) of the OHS interpolation based inference

Rule No 2 3 4 5 6 7 8 9 10 11 12
0.7 50.96 | 48.46 | 4550 | 46.38 | 5452 | 61.98 | 63.07 | 61.24 | 55.15 | 5441 | 57.02
1.0 5441 | 49.18 | 45.64 | 4656 | 58.12 | 66.04 | 65.01 | 61.99 | 52.26 | 57.65 | 56.76

Figure 7.18: Relative squared error of the OHS interpolation based inference
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Alternatively, if the JRip algorithm is applied to the retved data, 11 ordered rules
are obtained. The performance estimations are shown asvill

Ordered firing The ordered firing results (see Table 7.10 and Fig. 7.19) shatv
the best performance is %% (when threshold = 0.5), which is worse than the
original error rate of 782%. This is not considered as a successful simplifica-
tion.

Table 7.10: Relative squared error of the ordered firing

Threshold| O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Error(%) | 7848 | 79.25 | 79.24 | 79.10 | 78.09 | 78.06 | 79.95 | 9857 | 9858 | 9856

relative squared error

0.75 I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

firing threshold

Figure 7.19: Relative squared error of the ordered firing

Mamdani inference The test of the 10 rules (after the removal of the default one)
leads to a relative squared error of59%, with 25 data unfired by any rules. Itis
a good simplification from 33 rules to 10 without significavg$ of performance.
However, the problem is that some data cannot be handled.
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OHS Interpolation based inference The errors of the OHS interpolation based infer-

ence with respect to the threshold and number of interpblaties are given in
Table 7.11 and Fig. 7.20. The thresholds of @nd 10 are once again tested,
resulting in 86 and 113 data fired by the OHS interpolatioredasference re-

spectively. Consider the normally used cases (the numbiaterpolated rules

is in [2,5]) and all test data fired via interpolation (threshold = 1&0),average

error of 3916% is obtained, which is much better compared to the ertter ra

produced by original rule base. The best performance hedé.®1% (when

threshold = 1.0 and the number of interpolated rules is 9).

Table 7.11: Relative squared error (%) of the OHS interpolation based inference

Rule No 2 3 4 5 6 7 8 9 10
0.7 4150 | 3997 | 37.31 | 4111 | 4474 | 4651 | 46.67 | 5204 | 5355
1.0 4201 | 37.71 | 36.79 | 40.11 | 4325 | 4538 | 4560 | 36.74 | 3815

relative squared error

Figure 7.20: Relative squared error of the OHS interpolation based inference

0.55

0451

0.4r

T T T
—— threshold = 0.7 (86 data interpolated)
—— threshold = 1.0 (113 data interpolated)

0.35
2

5
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7.4 Summary

This chapter demonstrates the effectiveness of the OHfpoitdive reasoning method
in two realistic applications. The truck backer-upper peabhas shown how the OHS
interpolation method help reduce the fuzzy rule bases, haccomputer hardware
problem has shown how the OHS method serves as an effectxg ifuference to deal

with sparse rule bases. The results in comparison with Mamdgerence have been
provided, which highlight the outstanding merit of the @mswork. In addition, this

chapter demonstrates the effectiveness of the RDFR-basedase simplifications,
which produce very good reductions with the use of the OHSotkt



Chapter 8
Scaled-up Applications

Unlike some computation based models such as neural netyokk base models pro-
vide a comprehensive and transparent way for system mogelowever, there are
no principal routine methods to obtain the optimum fuzzye todse which is not only
compact but also retains high prediction performance. ®ehd, two major issues
need to be addressed. First, the curse of dimensionalitidjlG&JS02] deteriorates
the model if only the structure-complete rules are adopfdthough some research
efforts [RZK91, Wan98, ZK04, GP01] have been attempted sigfeng fuzzy sys-
tems with special structures so that the number of rules@npeters employed grows
slower than exponentially as the dimension increases,ruumfately, these methods
cannot reduce but transfer the complexity. In addition réhationship between fuzzy
rules and the linguistic knowledge in the special struatduezy system may no longer
be preserved. The scale-up applications described in tiaigter avoid this problem
by using non structure-complete rules. Attribute selectechniques have also been
integrated to simplify the fuzzy rule bases.

The second issue appears following the usage of non staicamplete rules —
sparse rule bases (rather than dense ones) may be encduntkestraditional fuzzy
inferences such as Mamdani [MA75] cannot handle such spalsdases. Interpo-
lation methods have to be used under this circumstance. dinparison between the
proposed OHS, EHS interpolation methods and other existitggpolation methods
are investigated.

178



Chapter 8. Scaled-up Applications 179

8.1 Task Domain

The computer activity database [RNe96] is a collection oasuees over a computer
system’s activity. The data were collected from a Sun Sp@teos 20/712 with 128
Mbytes of memory running in a multi-user university depatin Users would typi-
cally be doing a large variety of tasks ranging from accegtie internet, editing files
or running cpu-bound programs. The data were collectedraomisly on two separate
occasions. On both occasions, system activity was gatloei@elevery 5 seconds. The
final dataset is taken from both occasions with equal numifesbservations coming
from each collection epoch in random order. This datasétides 8192 cases, with
each involving 22 continuous attributes as shown below. fékk is to predicusr,
portion of time that cpus run in user mode from all attribute?l.

1. Iread - Reads (transfers per second) between system mamsbuser memory
2. lwrite - Writes (transfers per second) between systemongend user memory
3. scall - Number of system calls of all types per second
4. sread - Number of system read calls per second
5. swrite - Number of system write calls per second
6. fork - Number of system fork calls per second
7. exec - Number of system exec calls per second
8. rchar - Number of characters transferred per second ltgray®ad calls
9. wchar - Number of characters transferred per second ligraysrite calls
10. pgout - Number of page out requests per second
11. ppgout - Number of pages, paged out per second
12. pgfree - Number of pages per second placed on the free list

13. pgscan - Number of pages checked if they can be freed pende
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14. atch - Number of page attaches (satisfying a page faukdgiming a page in
memory) per second
15. pgin - Number of page-in requests per second
16. ppgin - Number of pages paged in per second
17. pflt - Number of page faults caused by protection errapy(en-writes)
18. vilt - Number of page faults caused by address translation
19. rungsz - Process run queue size
20. freemem - Number of memory pages available to user pgeses
21. freeswap - Number of disk blocks available for page swapp

22. usr - Portion of time (%) that cpus run in user mode

8.2 Experimental Results

The data are divided into two folds so that the training daeehapproximately /23

of the whole data (5462) and test data take the rest (273Q)si@er there may exist
redundant or less relevant information in the original 22itaites, a process of at-
tribute selection is carried out to choose the most inforreaines. For simplicity, the
correlation-based feature subset selection [Hal99, Wi983$ed for this, resulting in
11 (read, small, sread, swrite, exec, rchar, pflt, vflt, ranfreeswap, and usr) selected
attributes.

8.2.1 Initial Fuzzy Rule Base

The well-known fuzzy ID3 training scheme [Jan98] is adophtede to create fuzzy
rules. For simplicity, triangular fuzzy sets are used amy #re assumed to be evenly
distributed over each attribute domain. Fuzzy ID3 with efiéint configurations (in
terms of the number of fuzzy sets and the minimal leaf nodestarried out and the
relative squared errors (relative to the simple averagéigi@) are shown in Fig. 8.1.
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This reveals a trend in the given dataset that the more fuztsyused in the training,

14

12

0.8
0.6

0.4

relative squared error

0.2

600

number of fuzzy sets

minimal leaf objects

Figure 8.1: Relative squared error

the better performance the resulting rules have. Howekiernumber of rules may
become very large at the same time. For instance, with theébauof the leaf nodes
(as a criterion to terminate the fuzzy ID3 training) beingh® resulting rule base size
increases from 55 to 477 if the number of fuzzy sets increfises 3 to 7. In order
to provide a fair platform to compare the interpolation lthsgerence with the well
known Mamdani inference [MA75], both the rule base size dragrediction error
have to be considered. For this, an optimal resultant ride bahich has 47 rules and
an error rate of 1.29%, is chosen (where the number of fuzzy sets is 6 and the@umb
of minimal leaf nodes is 480). Note that in this rule base, 4agthe 2730 test data
are not fired by any of the 47 rules using Mamdani inferenceut &) the obtained rule
base is in fact a sparse rule base.

8.2.2 Interpolation Based Fuzzy Inferences vs. Mamdani

The previous performance evaluation is based on the Mamufarence. Now the
interpolation based inference is tested over this rule laasketest data. To provide
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a fair platform for comparison, all methods used here (theegd [BGK96], QMY
[QMY96], the proposed OHS and EHS methods) are intermedidéebased fuzzy
interpolations (see section 2.4). That is, all of them male af the intermediate rule
in performing interpolations. Other methods such as KH [RBI9KH93c], modified
KH [TBO0O] are not considered as there is no indication fomnihe implement then
(n > 1) nearest rules interpolations.

It is possible that some attribute values of the intermediate exceed the limit
of the domain space of that attribute. This is because duhegonstruction of the
intermediate rule, extrapolation may be involved and it read to the intermediate
fuzzy terms becoming out of ranges. It is also possible thafuzzified data objects
exceed the domain space. Therefore, special treatmertssirable for interpolations:
For general interpolation, if either the fuzzified data ebjer the fuzzy term of the
intermediate rule exceeds the input space on a particutédywe, such an attribute is
ignored in performing the interpolation as this method carrandle it. Similarly, for
QMY and EHS methods, if the intermediate rule has a vertikcgdes(on either side)
for a certain attribute, such an attribute is ignored asalve methods cannot handle
this case. However, there is no constraint over the prop@d$¢8 method, thus no
attributes would be dropped in performing interpolatioth®®HS.

The interpolations are based on the assumption that thelaéstare fuzzified to
isosceles triangular fuzzy sets by assigning support kengfith proper portions of
the support lengths of the fuzzy terms used in constructurzgyf rules (of course,
the centres of the fuzzified observations are the same asritjieab crisp values).
For example, fuzzification of0,1/8) assigns% of the support length of the fuzzy
terms (used in the rule base) to that of the input data objEté reason of applying
fuzzification is that the test data may not be precise in practue to factors such as
measurement and readings errors. Fuzzification of the &tatrday better represent
the collected data. Of course, fuzzificati@®0) means no fuzzification is performed.

The results of different interpolation methods with regpewarious fuzzifications
of the test data objects are shown in Table 8.1 and Table Bshith and zoom interme-
diate rule constructions (see secti®?) respectively. Note that all errors are calculated
as the average of the errors in interpolating two or thregestaules. The results
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Table 8.1: Relative squared error of the interpolation inferences with shift method

Fuzzification (0,0) | (0,1/8)| (0, 1/4)

General 8.45% | 60.01% | 56.53%

QMY 8.05% | 7.62% | 7.60%

Original HS (centre of core) | 8.05% | 7.58% | 7.20%
Original HS (average) 6.92% | 6.92% | 6.92%
Original HS (average weighted) 6.22% | 6.25% | 6.28%
Enhanced HS (centre of core) 8.05% | 7.81% | 7.80%
Enhanced HS (average) 6.92% | 6.92% | 6.92%
Enhanced HS (average weighted.22% | 9.53% | 18.86%

Table 8.2: Relative squared error of the interpolation inferences with zoom method

Fuzzification (0, 0) (0, 1/8) (0, 1/4)

General 7.41x10P% | 7.31x 10P% | 7.24x 10P%

QMY 7.44x 100% | 7.39x 10°% | 7.33x 10°%

Original HS (centre of core) | 7.44x 10°% | 7.42x 10°% | 7.39x 10°%
Original HS (average) 24221% 24221% 24221%
Original HS (average weighted) 20993% 314.00% 60814%

Enhanced HS (centre of core) 7.44x 10°% | 7.39x 10°% | 7.33x 10°%
Enhanced HS (average) 32559% 32559% 32559%
Enhanced HS (average weighted) 290.25% 29517% 30354%

clearly show that all shift construction based interpolainferences (except for some
cases when using the general interpolation method) owtmerMamdani inference.
The reason of the poor performance for the general methduaatsttdrops too many
attributes (if either fuzzy terms of the intermediate rubeghe fuzzification of input
data objects exceed the input domain), resulting in massfeemation loss. On the
contrary, as the original HS method does not need to drop @nlyuaes, it results in
very good and stable performance. QMY and the enhanced HSodhere between
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these two and generate better performance than that prd@yddamdani. However,
as the strategy of dropping attributes is not part of the gematerpolation method, it
Is assumed so just for the comparison of interpolationsiiiwg multiple fuzzy rules.
There may exist other possible approaches, in which thergledees not necessarily
drop attributes, thus hopefully resulting in a better periance.

The best performance isZ2% where the original (or enhanced) HS interpolation
is used and no fuzzification is made for the input data obj€ldtss error is even less
than half of the error rate of 139% (produced by Mamdani inference). In addition
to the high performance, the interpolation methods infeesrare capable of firing all
data including those were not fired by the Mamdani infereiticis. worth noting that
the fuzzification of the test data with different supportdérs does not significantly
affect the prediction error of the original HS method. Thiseres the stability of this
method. In particular, if the average RV is used, the resuieexactly the same across
different support lengths. This is because the value of tkeage RV over a fuzzy set
is exactly the same as the fuzzified crisp value created fn@défuzzification method
used (centre of gravity) over the same fuzzy set.

8.2.3 Shift vs. Zoom

However, the zoom intermediate rule construction methedltgin poor results. This
is because during some rule firing, thealue may be very small or large, which is far
away from the desired stable value (1). This will make theotutuzzy term of the
intermediate rule to become very unstable, leading to amemas error in interpola-
tions. Fortunately, this problem does not occur in the stiftstructing method, which
makes the shift method a more reliable choice. An examplegasented to explain
this. Suppose a data object

1.0, 2165, 205, 101, 1.2, 43107, 19.4,161.8, 3, 1131931, 88

is considered to be fired by the 47 rules in the initial fuzze hase, two nearest fuzzy
rulesrq andr; are selected and they are listed as follow:

rq - null,null, null, null, null, null, null, FTermL, null, FTernB, FTerm4,

ro : null,FTerm, null, null, null, FTernO, null, FTerni, null, FTern2, FTern4
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whereFTermi(i = {0,...,5}) is theith fuzzy term assigned for a particular attribute.
Attention is drawn to attribute 6, on which the given dataueais 43107, and the
fuzzy term of rulerp is FTerm0(2780,2780,5055522) (rulers has null value on this
attribute). In order to move this fuzzy term to a new positsanthat it has the RV
value 43107, the calculatgdvould be 15506 >> 1 (assume the centre of core RV is
used), resulting in the averag®f all input attributes to be 397. This further causes
the output fuzzy term of the intermediate rule to becd2®3874,311832,3897.90).
This is obviously wrong as the output domain space actus|ly, 9. If, however, the
shiftis used, thé calculated on attribute 6 is@17, which is close to the stable value 0.
It thus leads to a reasonable output term of the intermedié¢59.40, 79.20,99.00).

In order to provide a unique platform for the following exipeents, several as-
sumptions are made. Firstly, as the general and QMY metmoplscitly make use of
the centre of core RV value, the original HS and the enhan&dckthods use this RV
definition as well. Secondly, the shift method (rather tH@zoom one) is chosen in
the following experiments due to its stability and effeetiess. Thirdly, the fuzzifica-
tion of the test data is set t@, %1). That is, for each attribute, the fuzzification process
assigns}l of the support length of the fuzzy terms (used in the rule ptsthat of the
corresponding input test data.

Now the RDFR based rule base reduction and interpolatioachaderences are
applied in the following two subsections, namely the reducbased on 11 attributes
and that based on reduced 4 attributes. The difference tghtdatter is integrated
with the feature selection technique to further reduce thralyer of attributes from 11
to 4.

8.2.4 RDFR Based Rule Base Reduction over 11 Attributes

Since exhaustive RDFR causes too many dafsi(@his case), random RDFR is used.
In order to sufficiently represent the model, 2000 data aocseh to be retrieved from
RDFR. To better demonstrate the performance of the RDFRbasge reduction and
interpolation based fuzzy inference, five experiments dasefive different random
2000 data are carried out. In each experiment, PART [FW989%)RRip [WF99]
and ID3 [Qui86] are integrated with the RDFR reduction resipely.



Chapter 8. Scaled-up Applications 186

8.2.4.1 PART-based RDFR Rule Base Reduction

The PART algorithm is applied to the five sets of 2000 randoma.ddhe number
of rules generated in the five experiments are shown in TaBle Bhe performance

Table 8.3: The number of rules in PART based RDFR reduction with 11 attributes

# 112345
Number| 31| 25| 30| 28 | 30

of the new rule bases is examined through three differeetanice methods, namely,
the ordered firing, Mamdani, and the interpolation basedrarfce. As the newly
generated rule base has a default rule which only consistslafss value and is used
to fire the test data if no other rules can fire, its existencg n@ be suitable for
Mamdani and interpolation based inference. As with beftire default fuzzy rule is
simply removed due to the observation that 1) the defaudt imihot as important as
other rules in the sense that it usually covers less datadtiaar rules does, and 2)
removal of this rule will not cause the loss of class entrietha class domain is in fact
numerical.

Ordered firing The ordered firing works with a predetermined threshold.drtipu-
lar, each rule (in the ordered list) attempts to fire the giwbeervation data in
turn, it stops when the firing strength of itself is greaterthhe threshold. Fig.
8.2 shows that the errors of the ordered firing (with respecifferent thresh-
olds) are not stable, although in a small range of thresh{{@ds 0.5]) the perfor-
mance seems good (with the error rates being in the rand®64% 12.47%)).

Mamdani inference After the removal of the default rule, the relative squanedreof
the Mamdani inference is shown in Table 8.4. As can be seerpdiformance
is bad for every experiment.

Interpolation based inferences The average errors of the interpolation based infer-
ences, namely the general, the QMY, the original HS, andthamced HS are
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Figure 8.2: Relative squared error of the ordered firing in PART based RDFR reduction
with 11 attributes

Table 8.4: Relative squared error of the Mamdani inference in PART based RDFR re-

duction with 11 attributes

# 1 2 3 4 5
Error | 54.37% | 60.84% | 61.67% | 35.98% | 56.20%

shown in Table 8.5. As can be seen, all interpolation metpedsrm differently

in the third experiment. This may be because the randomiieved dataset in
such experiment does not properly represent the underbjatg structure, or
the PART algorithm cannot learn a proper structure from sudhtaset. For all
five experiments, although the original HS interpolatiosdshfuzzy inference
outperforms or is roughly equal to (only in the third expezint) others, the low-
est relative squared error achieved is too high428o, by the original HS in
the fourth experiment). It can be concluded that none of tieemnsuccessful
reduction compared to the original rule base (with an emte of 1329%).
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Table 8.5: Relative squared error of the interpolation based inferences in PART based
RDFR reduction with 11 attributes

# 1 2 3 4 5
General | 80.68% | 62.60% | 11537% | 44.60% | 62.37%
QMY 69.50% | 55.67% | 109.35% | 73.43% | 34.03%
Original HS | 47.61% | 34.59% | 10990% | 26.42% | 29.62%
Linear HS | 69.68% | 55.91% | 10940% | 73.54% | 34.10%

It can be summarised that the PART based RDFR rule base redsicto not
achieve a satisfiable fuzzy model in this case. In fact, RDBRelreductions pro-
vide aframeworkfor rule base simplification. The implementation of suchnfeavork
has many choices. It includes which data retrieving teamig used and how many
data are retrieved, which training scheme is chosen tcare-the retrieved dataset,
and which fuzzy inference is adopted etc. It is not surpthse the reductions do not
always achieve good simplified models.

8.2.4.2 JRip based RDFR Rule Base Reduction

This subsection applies the JRip-based RDFR rule basetredua five sets of 2000
random data, resulting five new rule bases. The size of suetbases are shown in
Table 8.6. As can be seen, the rule number is significantlplgied from the original

47 to an average of 15. Note that experiments 3 and 4 resuieisame number of
rules. In fact, these two rule bases are so similar that teagt to nearly identical
error rates in the following ordered firing. As with the PARased RDFR rule base

Table 8.6: The number of rules in JRip based RDFR reduction with 11 attributes

# 112 (3|4)|5
14| 16| 15| 15| 14

Number

reduction, the performance is examined through the orddirmg, Mamdani, and
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interpolation based inferences.

Ordered firing The ordered firing results (see Fig. 8.3) show that all the dixe
periments except the second produce very consistent ablé €@aor rates. In
particular, the fifth experiment produces the best resut®7% when the firing
threshold is set to.@. A maximal error of 123% is obtained if the threshold is
set in the rang¢0, 0.5], which can thus be treated as a safe range to test unseen
data. In summary, the combination of the JRip-based RDFRctexh and the
ordered firing inference offers a very good simplificatiot rat only simplifies
the rule number from 47 to an average of 15, but also incresegrediction
accuracy when a proper fire threshold is given.
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Figure 8.3: Relative squared error of the ordered firing in JRip based RDFR reduction

with 11 attributes

Mamdani inference After the removal of the default rule, the relative squanedreof
the Mamdani inference is shown in Table 8.7. As can be seerpdlformance
is worse than the original (139%) for every experiment.

Interpolation based inferences The average errors of the general, QMY, original HS,
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Table 8.7: Relative squared error of the Mamdani inference in JRip based RDFR reduc-

tion with 11 attributes

# 1

2

3

4 5

Error | 27.78%

24.02%

33.21%

33.83%

33.80%

and enhanced HS methods are shown in Table 8.8. The minifaavessquared
error achieved for four interpolation methods is82% (by general interpolation
in the first experiment). Although fuzzy inferences basethengeneral method

and the original HS produce less error than the average gioedby always

assigning the average of the output of the training data tthbeorediction),

neither of them is suitable to perform fuzzy inference. Téason that QMY

and the enhanced HS method perform so poorly will be expiaimsection 8.3.

Table 8.8: Relative squared error of the interpolation based inferences in JRip based

RDFR reduction with 11 attributes

# 1 2 3 4 5
General 3447% | 36.89% | 4552% 39.89% 38.50%
QMY 5.56x 10°% | 96.16% | 4.03x 10*% | 4.00x 10°% | 4.32x 10°%

Original HS| 50.99% | 41.33% | 55.25% 53.51% 52.95%
Linear HS | 5.56x 10%% | 97.58% | 4.04x 10°% | 3.99x 10°% | 4.32x 10°%

It can be summarised that the JRip based RDFR rule base m@utido not lead
to stable and good results if the Mamdani or interpolatioseblainference is adopted.
However, they do provide promising results when the ordérady inference is em-

ployed.
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8.2.4.3 ID3-based RDFR Rule Base Reduction

It is interesting to investigate the results of feeding teieved five sets of 2000 data

again into the ID3 training scheme. Is the new rule base mediby applying both

fuzzy ID3 and crisp ID3 better than the original one (meretyduced by fuzzy ID3)?

Table 8.9 shows the average number of rules and averagerategrof the five ex-

periments with respect to different number of leaf node®ff, used as a criterion
to terminate the training). In fact, the range{&0, 100 150,200} of T_obj has been
fully tested. As the former two settings (50 and 100) may gatieemore rules than

the original of 47 (which is against the purpose of rule bas®kfication), only the

settings of 150 and 200 are used for the results comparison.

Among the five experiments, the best results are achievedibyg the original HS

based fuzzy inference (as shown in Table 8.10), which hasil@8 with an error rate
of 7.25% (T_obj = 150), or has 34 rules with an error rate B3%/%6(T_obj = 200).

Table 8.9: Average results of the ID3 based RDFR reduction with 11 attributes

T_obj | Rule No| Mamdani| general QMY original HS | enhanced HS
150 36.8 14.39% | 4053% | 3.72x 10°% | 1090% | 3.61x 10°%
200 29.2 18.03% | 6245% | 7.20x 10°% | 17.37% | 4.29x 10°%

Table 8.10: Best results of the ID3 based RDFR reduction with 11 attributes

T_obj | Rule No| Mamdani| general] QMY | original HS| enhanced HS
150 37 1319% | 51.82% | 8.93% 7.25% 9.14%
200 34 17.67% | 53.92% | 11.40% 9.69% 11.63%

8.2.5 RDFR Based Rule Base Reduction with 4 Attributes

Feature selection is widely used to filter out the irrelevaress important attributes.

It can thus help achieve more efficient and compact rule nsod@his subsection
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illustrates the integration of feature selection into tHe@AR based rule base reduc-
tion. The basic idea is to apply feature selection techrigoethe newly retrieved

data, reducing the number of attributes for further renirgy. Again, the method of

correlation-based feature subset selection [Hal99, Wi98¢lopted, leading to only

four attributes (scall, vflt, freeswap, usr) remained. Thgioal randomly generated

five 2000 data are trimmed so that values of those four atashare remained for each
datum. Once again, five experiments are carried out and tf@pence is discussed.
In each experiment, the PART, JRip and ID3 are integratesltim RDFR rule base

simplification.

8.2.5.1 PART-based RDFR Rule Base Reduction

The PART-based RDFR rule base reduction is applied to theétseof 2000 randomly
retrieved data to generate five new rule bases. The rule mgmobsuch rule bases are
shown in Table 8.11. As with before, the performance evadnas made through the

Table 8.11: The number of rules in PART based RDFR reduction with 4 attributes

# 112 (3|4)|5
Number| 24| 19| 24| 25| 20

ordered firing, Mamdani, and interpolation based inferenégain, the default rule is
removed when the latter two inference mechanisms are used.

Ordered firing The ordered firing results (see Fig. 8.4) show that the eam@aot
stable, although in a small range of thresho[8s4 0.5]) the performance seems
good (the error rates are in the range[D4.32% 16.87%]). The best perfor-
mance is 182%, which is achieved by four out the five experiments (wiihdj
threshold set to G).

Mamdani inference After the removal of the default rule, the relative squanedreof
the Mamdani inference is shown in Table 8.12. As can be skemédrformance
IS poor in every experiment.
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Figure 8.4: Relative squared error of the ordered fire in PART based RDFR reduction
with 4 attributes

Table 8.12: Relative squared error of the Mamdani inference in PART based RDFR

reduction with 4 attributes

# 1 2 3 4 5
Error | 57.26% | 56.24% | 55.47% | 44.81% | 50.07%

Interpolation based inferences The average errors of the four interpolation based in-
ferences are shown in Table 8.13. As can be seen, althoughi¢heal HS inter-
polation outperforms the others, the minimal relative sgdarror achieved for
four interpolation methods is too large (88%, by original HS in the fifth ex-
periment). It can be concluded that none of them is a goodcteucompared
to the original rule model (with an error rate of.29%).

It can be summarised that the use of PART-based RDFR redsatioes not lead
to a satisfiable fuzzy model.
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Table 8.13: Relative squared error of the interpolation based inferences in PART based
RDFR reduction with 4 attributes

# 1 2 3 4 5
General | 8193% | 55.21% | 66.68% | 48.83% | 57.71%
QMY 69.16% | 52.83% | 55.51% | 49.63% | 54.02%
Original HS | 47.78% | 32.85% | 34.26% | 28.18% | 26.88%
Linear HS | 69.30% | 53.18% | 55.72% | 49.87% | 54.13%

8.2.5.2 JRip-based RDFR Rule Base Reduction

This subsection applies the JRip-based RDFR rule basetreduo five sets of 2000
randomly retrieved data. Five new rule bases are generatktha sizes of such five
rule bases are shown in Table 8.14. As can be seen, the rulbemusnsignificantly

simplified from the original 47 to an average of 10.4. Notd dibexperiments except
the second result in exactly the same rule base. Once aaipetformance of the

Table 8.14: The number of rules in JRip based RDFR reduction with 4 attributes

# 112345
Number| 10| 26 | 10| 10| 10

simplified rule bases are compared through different funtgrences including the
ordered firing, Mamdani, and interpolation based inference

Ordered firing The ordered firing results (see Fig. 8.5) show that all thedxeri-
ments except the second produce consistent and stableaesr However, the
second experiment produces the best resuB8®) when the fire threshold is
set to 02. The maximal error of 182% is obtained if the threshold is in the
range of]0, 0.5]. This gives a very good reduction in terms of rule size (from 4
to an average of 10.2), with little performance compromised

Mamdani inference After the removal of the default rule, the relative squaradre
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Figure 8.5: Relative squared error of the ordered firing in JRip based RDFR reduction
with 4 attributes

of the Mamdani inference is shown in Table 8.15. Althoughgbgormance is
not so bad, the problem is that this inference cannot hantiega amount of
data (330) among the 2730 test data.

Table 8.15: Relative squared error of the Mamdani inference in JRip based RDFR re-

duction with 4 attributes

# 1,3,4and 5 2
Uncovered data 330 330
Error 20.80% 18.60%

Interpolation based inferences The average errors of the general, QMY, original HS,
and enhance HS methods are shown in Table 8.16. The minitaaVessquared
error achieved for four interpolation methods is38% (by the general inter-
polation based fuzzy inference). Although the general amgiral HS based
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inferences produce less error rate than the inference oadgegredictor, none
of them is satisfiable. The reason that the QMY and enhanceahétBods per-
form so poorly will be explained in section 8.3.

Table 8.16: Relative squared error of the interpolation based inferences in JRip based
RDFR reduction with 4 attributes

# 1,3, 4and 5 2
General 38.38% 40.12%
QMY 3.64x 10°% | 49.79%
Original HS| 49.36% 39.27%
Linear HS | 3.64x 10°% | 51.00%

It can be summarised that the JRip-based RDFR rule baseti@udoes not lead
to a practical solution by using Mamdani, nor does it prodstedle and good results
by using the interpolation based fuzzy inferences. Howetdoes provide promising
results with the usage of the ordered firing inference.

8.2.5.3 ID3-based RDFR Rule Base Reduction

As with before, the rang€50, 100,150 200} of the leaf nodes has been tested. Since
only the use of 50 generates more rules than the original Bui@d), the leaf nodes
settings of 100, 150 and 200 are thus employed for the resuftparison. Table 8.17
shows the average number of rules and average error ratbefire experiments with
respect to the number of leaf nodesdlbj). From this table, it is clear that the original
HS based fuzzy inference outperforms the Mamdani inferemb&h outperforms the
general interpolation based inference. However, the QMY emhanced HS based
inferences again perform very poorly.

Among the five experiments, the best results are achievéddtigtuse of the orig-
inal HS interpolation based fuzzy inference. Such resskeg (Table 8.18) include an
error rate of 85% if T_obj is set 100 or 150 (with 24 rules), or an error rate aR5%
if T_obj is set 200 (with 21 rules). All these results are more araging compared
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to those produced in section 8.2.4. The main reason is tlea¢xtperiments in this

subsection make use of feature selection techniques.

Table 8.17: Average results of the ID3 based RDFR reduction with 4 attributes

T_obj | Rule No| Mamdani| general QMY Original HS | Enhanced HS
100 | 34.8 | 1653% |4319% | 3.72x10°% | 8.70% 3.72x 10°%
150 28.4 17.66% | 43.36% | 3.72x 10°% 9.32% 3.72x 10°%
200 21.8 21.07% | 65.64% | 4.35x 10°% 15.48% 4.35x 10°%

Table 8.18: Best results of the ID3 based RDFR reduction with 4 attributes

T_obj Rule No| Mamdani| general| QMY | Original HS| Enhanced HS
100 or 150 24 16.72% | 56.50% | 11.03% 8.85% 11.14%
200 21 2121% | 5861% | 1347% | 11.25% 13.58%

8.3 Discussions

Although there are considerable fuzzy interpolation meshexisting in the literature,
no work has so far been done to apply the fuzzy interpolatiethods to real world
applications. This chapter has applied fuzzy interpofabased inferences to solve
real life problems.

The work carried out in this chapter is based on the shift ot construct the
intermediate rules. It has been shown that this method weekswith the original HS
fuzzy interpolation, but not good with other fuzzy interatdbn approaches. There may
exist other techniques to create the intermediate rulesutfn which the performance
of other interpolation methods may become better.

As mentioned before, the QMY and enhanced HS interpolatiethads cannot
handle the certain cases where the intermediate fuzzy teamesvertical slopes. What
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happens if the intermediate fuzzy terms have slopes whehearly vertical? In these
cases, the rates (for QMY) or the scale criteria (for enhdht®) become very large,
leading to massive error in computing interpolations. Aaraple is given to explain
this. Consider the experiments with 4 attributes, if a testich is given as follows:

3783717.6,30,0,

representing the values of attributes scall, vflt, freepveard usr (the class attribute)
respectively. After fuzzification of the antecedent parthaf test datum, the following
vector of fuzzy terms is obtained:

(35253783 4041), (689.2,717.6,7460), (—0.5x 10°,30,0.5 x 10°),

where each element represents a triangular fuzzy set. Giveiman observation, the
intermediate fuzzy rule constructed by the shift method is

null, (4446,717.6,9906), (16,30,4.5 x 10°).

Fig. 8.6 shows the data object and the intermediate fuzay rAk the intermediate
rule has a null value on the first attribute, this attributégisored in performing the
interpolation.

The third attribute causes trouble for both QMY and enhant¢®dnterpolations.
As can be seen, the intermediate rule has a nearly vertoaya sin the third attribute. In
this case, the QMY method results in the left ratio being 333,Awhich is far greater
than the stable value of 1 (which normal ratios should beectoy The interpolation
contribution of this attribute leads to the final reguil.90x 10* 33.51,35.57), which
is fuzzified to the crisp output of-6.18 x 10%. Obviously, this output is far away
from the actual output (0). Similarly, the enhanced HS mettesults in the left scale
criterion being 333B7 >> 1 (the stable value that normal scale criteria should be
close to). It further leads to the output1.86 x 10%,33.51,35.57) in fuzzy form and
—6.18x 103 in crisp form.

For the general interpolation, as the fuzzy term of the olagEm on this attribute
exceeds the range of the domain spg2e2@43184), this attribute is simply ignored
while computing the interpolation, which leads to a crisppot of 3381. Ignoring
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Figure 8.6: An example showing why various interpolation methods perform differently

attribute three makes the interpolation to be still valibfding the difficulty in inter-
polation using QMY and enhanced HS interpolations). Howetevitably leads to
certain loss of information, resulting in less accurateatasions. Yet the original HS
interpolation handles this case as usual without any logsfefmation. The result is
33.44, which although is not so close to the actual output (Garisnore accurate than
those obtained by using other interpolation methods.

8.4 Summary

As a novel approach, RDFR based rule base simplificationigeeva flexible and
effective framework to simplify rule bases (crisp or fuzzyjhree training schemes
including PART, JRip and ID3 have been integrated into trasnework to solve real
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world problems.

This chapter has shown not only the success of the RDFR rske teauction, but
also the potential of interpolation based fuzzy inferencéeir major advantage is
that they are capable of handling sparse rule bases. Thearmop between different
interpolation based fuzzy inferences have shown that tiggnat HS interpolation
outperforms the others (although the enhanced HS has trentd)e of preserving
piecewise linearity, unfortunately, it cannot obtain asdjperformance as the original
one). The main reason is that the original HS method is rodustigh to handle the
vertical slope cases as described in section 8.3.

In all experimental studies there has been no attempt tongg®ifuzzification. It
can be expected that the results obtained with optimizatioud be even better than
those already observed. In addressing real world appiesitihis optimization should
be done via domain heuristics or by exploring fuzzy clusigalgorithms in order to
further improve the performance of the systems.



Chapter 9
Conclusion

This chapter concludes the thesis. Firstly, a summary ofdbearch presented in this
thesis is given. Secondly, possible future work is outlinedluding several further
developments for the RDFR rule base simplification methodetas those for the
family of HS interpolative reasoning methods.

9.1 Thesis Summary

This section summarises the main work which includes a nalelbase simplifica-
tion method and a family of fuzzy interpolation methods. Tenbination of these
two approaches results in very good reductions of fuzzy balges as described in
chapter 8.

9.1.1 RDFR Rule Base Simplification Method

Rule model simplification techniques are desired to altevilaecurse of dimensional-
ity and to maintain models’ effectiveness and transparencig thisis has proposed
a novel simplification method by means of a procedure cadeving data from
rules (RDFR) It first retrieves a set of new data from an original rule baBkeen it
retrains the new data using certain rule induction schemésild a more compact
rule model, while maintaining a satisfactory performanthkis proposed method has
four advantages. 1) It can reduce rule bases without usmg@tiginal training data,

201
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and it is capable of handing the case in which both a rule badesame training data
are given. 2) It builds a flexible framework in which any ruteluction or reduction
methods can be integrated. 3) It implements the approadhsisndarity merging
[CCT96, KB95, SBKL98] and inconsistency removal [XL02]. l#jnakes use of rule
weights (if applicable). lllustrative examples and rdadigpplications have been pro-
vided to demonstrate the success of this work.

9.1.2 HS Fuzzy Interpolations

This thesis has proposed a generalised, scale and movétraaton-based, inter-
polative reasoning method (original HS method) which candhainterpolation of
complex polygonal, Gaussian and other bell-shaped fuzzylmeeship functions. The
method works by first constructing a new intermediate ruderwanipulating two adja-
cent rules (and the given observations of course), and thievecting the intermediate
inference result into the final derived conclusion, usirggbale and move transforma-
tions. This has been further developed into the enhanced éiBaa. It can preserve
the piecewise linearity property for any polygonal fuzzymiership functions. The
extension to interpolation (and extrapolation) involvingltiple variables and multiple
rules is accommodated in detail.

The original HS method not only inherits the common advasggagf fuzzy inter-
polative reasoning — allowing inferences to be performetth simple and sparse rule
bases, but also has another two advantages: 1) It providegraal of freedom to
choose various RV definitions for different applicationuggments. 2) It can handle
the interpolation of multiple rules, with each rule havingltiple antecedent variables
associated with arbitrary polygonal fuzzy membership fioms. In addition to all the
advantages the OHS has, the enhanced HS method has lessabommzost than OHS
(see chapter 6), and preserves the piecewise linearitepsofor any polygonal fuzzy
functions (see chapter 6). It is worth stressing that theguigse linearity property is
essential to ignore artificial characteristic points infpening the interpolations. Un-
fortunately, the enhanced HS method does not perform asagélie original HS one
in practice as it cannot properly handle the vertical slogmes (see section 8.3). This
is set as the main future work to be resolved.
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The original and enhanced HS methods lead to a big family tefpolative rea-
soning methods. This is because of 1) the flexibility in chogdifferent RVs in
implementation, 2) the order swap of scale and move tramsfbons, and 3) the alter-
native choices for the order of computing the scale ratemfore rates). For example,
in the original HS method, the scale rates are calculated thee bottom to the top of
the fuzzy sets, the alternative solution may calculate énréverse way: from the top
to the bottom.

9.1.3 Complex Model Simplification

As a novel approach, RDFR rule base simplification providé@suaework to effec-
tively and efficiently simplify the rule bases (either crispfuzzy). This method has
been applied to the computer activity dataset [RNe96] wimncludes 8192 cases, with
each having 22 continuous attributes. The scaled-up atigic(chapter 8) has shown
not only the success of the RDFR based rule reduction, batthés potential of the
interpolation based fuzzy inferences. The major advanbadiee interpolation based
inferences is that they are capable of handling sparse agesh The comparison has
shown that the original HS interpolation outperforms Mamigdgeneral, QMY and the
enhanced HS interpolation approaches.

In all experimental studies there has been no attempt toncg#tithe fuzzifications
employed. It can be expected that the results obtained ptim@ation would be even
better than those already observed. In solving a real waddlpm, this optimization
should be done via heuristics or exploring clustering atgors in order to further
improve the performance of the systems.

9.2 Future Work

This section presents important further work to improveRID#FR rule base simplifi-
cation method and the family of the HS fuzzy interpolatiorchrnisms.
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9.2.1 RDFR Rule Base Simplification Method

Different retrieving methods are needed to carefully itigege with respect to differ-
ent weighted rules. The number of retrieved data shouldctefie importance of the
given rule in terms of its weight. Thus the principle shou#d Ithe greater weight a
fuzzy rule has, the more data are retrieved from this rule.

Also, this method only applies toon-structure-completeules. The retrieving
techniques to coping witktructure-completeules require further research. That is,
numeric data rather than the fuzzy linguistic terms basea @dl be retrieved. New
fuzzification partitions should be employed. This may rigstidoying the semantic
meaning of the original predefined fuzzy sets, but it may operew door to form
more reasonable fuzzy partitions, thereby leading to a maffi@ent way of modelling
the given problems.

9.2.2 HS Fuzzy Interpolations

Although the family of the HS interpolation methods haverbsggnificantly devel-
oped, there is still room to improve the present work. Inipatar, the piecewise lin-
earity is worth further analyzing from the mathematicalgpective. Since fuzzy sets
can be represented as points in high dimensional Cartepages [YKO0O0], a fuzzy
interpolation can be represented as the mapping from ome jpoad high dimensional
space to one point in another (with the two spaces having dahee slimensionality
which is equal to the number of the characteristic pointhefdonsidered fuzzy sets).
Due to the preservation of the piecewise linearity, the anbd HS method may be
used in the mathematics literature to solve high dimenspates interpolation (or
mapping) problems.

In addition, more development is desirable for the enhakt®dhethod. Although
it perfectly preserves the piecewise linearity propettgannot produce as good per-
formance as that given by the original HS method in the seafedpplications. This
is due to its less robustness in handling the interpolatases which involve vertical
slopes in considered fuzzy sets. Further effort to imprésveabustness seems neces-
sary.
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