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Abstract

We present FaceCerts, a simple, inexpensive, and cryptographically secure identity
certification system. A FaceCert is a printout of person’s portrait photo, an arbitrary
textual message, and a 2-D color barcode which encodes an RSA signature of the message
hash and the compressed representation of the face encompassed by the photo. The signature
is created using the private key of the party issuing the ID. ID verification is performed by
a simple off-line scanning device that contains the public key of the issuer. The system does
not require smart cards; it can be expanded to encompass other biometric features, and
more interestingly, the ID does not need to be printed by a trusted or high-end printer, it
can be printed anywhere, anytime, and potentially by anyone. The ID verifier uses a single
scan process which does not require the use of displays. We detail system’s components and
present a preliminary performance evaluation using an in-field experiment.

1 Introduction

A typical identity certification such as a driver’s licence, passport, or visa, consists of a personal
portrait photo, an arbitrary message, and one or more features whose purpose is to guarantee
authenticity. Commonly, authenticity is assured using sophisticated printing procedures that are
difficult to replicate: holograms, watermarks, micro-printing and threading, special print paper,
and chemical coating [1]. However, the wide availability of such technology has rendered forging
most personal ID documents a relatively simple task with results often perceptually comparable
to the originals. Authentication of imprinted features via electronic devices is complex and most
importantly, expensive [1].

In all-digital environments such as smart cards or lasercards [2], authenticating the source
of a personal ID is an easy task using off-the-shelf public cryptography [3] and one-way authen-
tication protocols [4]. Typically, the stored photograph as well as other biometric features are
concatenated to the textual message and hashed. The resulting hash is then signed using the
private key of the issuer. In-field authentication is performed using the public key of the issuer
by a verification device (e.g., smart card reader), which also must display the signed data. While
the security of such systems can be made to follow even the strictest security standards, the
cost of supporting systems makes them undesirable for widespread identity certificate applica-
tions such as national ID cards, driver’s licences, or passports. A simple smart card costs about
$5-$35, while a lasercard reader costs about $2400 [5].

In this paper, we combine best of both worlds into a new technology we call FaceCerts
and show how sophisticated specialized compression algorithms can allow the use of paper as
an inexpensive hybrid analog/digital domain on which both the human readable information,
i.e., text and photo, and the secure digital information can be stored in a way that allows a
single-scan verification.
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1.1 FaceCerts
Instead of relying on the sophistication of the printing process to impose difficult forging, Face-
Certs rely on public-key cryptography for provable security, while deploying a standard-quality
low-cost color printing process which keeps the cost of printing a FaceCert two orders of mag-
nitude lower than that of a smart card or a lasercard. Issuing and verification of FaceCerts is
illustrated1 in Figure 1.
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Figure 1: Functional block diagram of the actions taken at the issuer and verifier of FaceCert
IDs.

The information certified on a FaceCert is both biometric and textual. The biometric data
can encompass facial, iris, and/or other features. The digital photo that represents a portrait of
the FaceCert holder, is the only biometric feature printed in plain-text on the ID. The textual
data can be of arbitrary length and is also printed on the ID. The ID is certified in the following
way. First, the textual data is hashed using a cryptographically secure hashing algorithm such as
SHA1 [7]. The resulting 160-bit hash is denoted as t. Next, the facial features on the photo are
identified and compressed using an algorithm partially described in this manuscript in Section 3.
The best-effort output of the face compression step, denoted as f , is constrained to 1-2Kbits. The
actual compression rate can be adjusted to meet the desired balance of picture quality vs. barcode
size, which is mandated by the application. Picture quality affects system performance for two
main reasons: first, to impose low likelihood of a false negative or positive during detection and
second, to set the desired level of facial feature detail which an adversary, whose photo has not
been taken for the ID, must resemble in order to use the authentic FaceCert.

Other biometric information such as iris or fingerprint patterns can be also certified and
verified using a FaceCert ID as illustrated in Figure 1. For example, details of a FaceCert
system that encompasses person authentication via iris patterns is described in [8]. We omit the
details of the feature extraction and compression process for iris patterns in this manuscript;
instead, we recognize a string of bits, i, as an output of this process. The iris digest can be

1The iris scan in this figure has been taken from the CASIA iris database. Portions of the research in this
paper use the CASIA iris image database collected by Institute of Automation, Chinese Academy of Sciences [6].



typically compressed down to 700-1.5Kbits [8] depending upon the desired balance of error rates
vs. barcode size.

Messages f ||i 2 and t are merged into a message m = (f ||i)� t using a reversible non-
commutative operator � such that (∃�−1)f ||i = m�−1t. Note that f ||i are not hashed
because their plain-text values must be retrieved during FaceCert verification. Also it is safe
to assume that message t can be recovered error-free from a printed FaceCert because of
deployed high-performance optical character recognition engines [9], [10]. Shortly, we review
this operator in more detail.

In the next step, message m is signed with the private key of the FaceCert issuer. We use
an RSA private key of |m| + 1 bits to sign/decrypt m. Considering typical lengths of f and i,
we bound the length of m within 1300 < |m| < 3400 bits. The resulting signature s is encoded
using Reed-Solomon error correction codes [11] and printed as a barcode onto the FaceCert.

Two aspects of printing and scanning are important: degradation of printed color and scan-
ning reliability. Independent studies have shown that state-of-the-art inks have an estimated life
of 65 years on a cotton paper in average indoor display without noticeable fading and several
years of corresponding outdoor lifetime [12]. The second requirement has been already addressed
in modern barcode standards such as PDF417 [13].

A FaceCert verifier initially scans all three printed components: the photo, the text, and
the barcode. The barcode is decoded into the originally printed signature s. The scanned
textual data is also converted into a text-string using reliable optical character recognition. For
successful verification of a FaceCert, the text and the barcode need to be read without errors.
Next, after verifying/encrypting the signature with the corresponding public RSA key of the
issuer [3], the verifier obtains the signed message m. After the verifier hashes the text to obtain
t, it computes f ||i = m�−1t. Then, the verifier decompresses f into a subimage of the original
photo that contains the facial features. Finally, the verifier quantifies the level of similarity
between the decompressed and scanned face. If the two images are similar within the maximum
tolerable compression-print-scan noise, only then the FaceCert is declared as authentic.

In case additional biometric features such as iris patterns are required for person authentica-
tion, the FaceCert verifier captures a photo of person’s iris, extracts its features, and compares
them to the features decompressed from i. If the feature comparison yields positive identifica-
tion, the FaceCert is declared as authentic. Since the FaceCert verifier does not query a
trusted database with iris digests (i.e., does not perform the traditionally error-prone iris recog-
nition procedure), the detection threshold in the FaceCert system can be set to adjust for
much lower false positive error rates than “classic” iris recognition systems [8]. In general, two
verification procedures are recognized in the FaceCert system: (a) low-cost, where only facial
features are verified, and (b) high-security, where both facial and iris (possibly, fingerprint and
retina) patterns are verified in order to decide upon FaceCert’s authenticity.

Finally, we revisit the selection of the operator �. Its purpose is to prevent adaptive exis-
tential forgery on the signing primitive, e.g., RSA, where the adversary creates a valid signature
with no control over the message [14], [15], [16]. This problem is well known to the cryptogra-
phy community and has been addressed in several protocols including the probabilistic signature
scheme with message recovery (PSS-R) [17], which is based upon optimal asymmetric encryp-
tion padding (OAEP) [18]. Although several integrity check mechanisms for RSA signatures can
be used with different security properties, the exemplary PSS-R achieves provable security with
near-optimal redundancy used in order to achieve a desired level of security. In case� = PSS-R,
then message m is created by setting M = f ||i and hashing M ||t||r to obtain w = h(M ||t||r),

2Operator || denotes concatenation.



where h() is a hash function and M , w, and r refer to the corresponding variables in Figure 2 in
Section 5 of [17]. PSS-R derives m = b||w||r∗||M∗ where b is a single bit set to 0 and variables
r∗ and M∗ are created as in Figure 2 in Section 5 of [17]. Signature’s integrity check in this case
is performed according to the RecPSSR procedure presented in Section 5 of [17] with the last
step altered to: if h(f ||i||t||r) = w and b = 0 then return f ||i else return REJECT. The
signed message m has bit-length |(f ||i)|+ 2hLen+ 16, where hLen is the length of the output
of the hash function h() in bits (160 bits for SHA1 [7]).

Under the assumption that the cryptographic functions are signing the biometric properties
and the associated text in a provably secure manner, the security of FaceCerts stems from the
fact that changing a single bit of the textual message or altering the photo beyond the print-scan
noise causes a global change in the barcode that appears to be random without the knowledge
of the issuer’s private key.

In this manuscript, we focus on the two crucial components of the system, a novel face
compression algorithm and a statistical metric for computing similarity between an original and
a corresponding compressed face in the presence of print-scan noise. The basic requirement for
the face compression algorithm in the FaceCert system is to compress an image of a face into
only several thousand bits with preserved sharpness of the main facial characteristics. We present
a novel face compression technology based on eigenfaces [19] and improved variants of principal
component analysis [20], [21]. We show that our technology achieves desired compression rates
even when the component analysis is trained on a small database of images.

2 Related Work

The idea of using digital technology and cryptography as key to enabling low-cost photo iden-
tification is not new. For example, one centralized card authentication system which relies on
displays has been developed and marketed by Kodak [22]. It stores a users photograph on a card
in a highly compressed code on the magnetic stripe or smart-card memory. The authentication
procedure entails reading the encoded photograph, comparing it against its database entry, and
displaying it on a screen for comparison against the cardholder.

System presented by O’Gorman and Rabinovich [23] is the most related to our work as it
aims at the same goal - however, it relies on signing image digests which are tolerant to scanning
errors instead of actual compressed images. In this manuscript, we show a successful attack on
the O’Gorman-Rabinovich system that manipulates an image using a simple procedure so that
its digest equals the digest of another distinct facial photograph. By using a compressed version
of the facial structure within an image instead of the image digest, in the case of FaceCerts
such attacks are reduced to seeking perfect human look-a-likes. Since this is a limitation of the
distinctiveness of a human face, the FaceCert system supports additional biometric information
such as iris patterns.

2.1 Comparison with Existing Solutions
Biometric Recognition. Another alternative to FaceCerts is biometric recognition. Bio-
metrics has been defined as a process of automatically recognizing a person using distinguishing
traits. Several biometric solutions have been proposed via face, speech, fingerprint, handwriting,
iris, and retina recognition. Solid survey of these techniques can be found at [24]. Just as Face-
Certs, a person identification system that relies on biometric solutions must involve a human
verifier who must ensure the identification system is not fooled. For instance, an adversary can



show a realistic size photo of the face of an authorized person to the face detector or play a voice
recording to a speaker detector.

While some types of biometric identification such as fingerprint detection are reliable, they
can be used maliciously to incriminate innocent users [25]. A malicious detector can record a
person’s fingerprint, create its physical copy, and then, incriminate this person at will. This
renders fingerprint detection systems relatively undesirable for most person authentication sce-
narios. Some biometrics systems are commonly subject to complaints for invasion of privacy
[5]; e.g., wide-spread face detection points can disclose at any time one’s location to a party
who gains control over such a system. Nevertheless, the three most important disadvantages of
almost all biometric recognition systems are:

• reliability, in particular in face and speaker recognition, does not stay constant as the
system scales up, which commonly renders these systems highly prone to false alarms and
false positives [26], [27], and

• centralized decision making – the verifier needs to be connected to a central trusted server
which actually performs the identification, which in a sense implies:

• high cost – the equipment performing the verification is costly.

For most applications, such solutions are inconvenient, costly, and most importantly, unre-
liable.

Smart cards. Smart cards represent an effective solution to person identification. A big
advantage of smart cards is all-digital communication with the verification device. A simple sce-
nario is to have a smart card which contains a digital photo, personal biometric and description
data, and a signed hash of this information using the private key of the issuer. Verification is
performed by hashing the photo and the personal description data and then verifying this hash
against the signature using the public key of the issuer. Finally, the verifier must display the
verified digital photo, so that a human can acknowledge that the person being identified is on
the photo. Note that a printed photo on the smart card is ineffective because a malicious party
can trivially extract the contents of a valid card, then create another one with the same digital
contents however with a different printed photo.

Smart cards just as FaceCerts, cannot be used to store private information (e.g., private
keys which are revoked if smart card is lost). It has been demonstrated so far that smart
cards cannot be considered a secure storage because it is relatively easy to extract the hidden
information even without reverse engineering the smart card [28]. Exemplary attacks that have
successfully identified encryption keys (both symmetric and private keys), have been based on
analyzing smart card’s I/O behavior via differential power analysis [29] or timing analysis [30].

Finally, there are several differences that strongly favor FaceCerts to smart cards.

• A smart card based system must display the photo, whereas FaceCerts only scans the
ID with no requirement to display any imagery. Medium-quality displays are significantly
more expensive than CCD (charge-coupled device) scanners (up to a factor of 5), which
reduces significantly the cost of the verifying infrastructure.

• Personal IDs are frequently lost or damaged. Replacing a FaceCert involves only reprint,
whereas replacing a smart card involves purchase of another hardware device in addition to
burning this device with the appropriate identification contents – two orders of magnitude
differential in replacement cost.



It is important to stress that smart cards should not be understood as competition to Face-
Certs; on the contrary, the information printed on a FaceCert can be stored in its digital
format on a smart card and verified in an ”all-digital manner” without scanning. The main
benefit of FaceCerts is that they enable the inexpensive paper ID version.

Watermarks. Another technique for authenticating content is to hide an imperceptible
secret information, watermark, in the digital photo. One serious disadvantage of this type of ID
authentication is the fact that in most watermarking systems, the secret hidden in the photo
must be present in the verifier. Hence, a single broken verifying device renders the entire system
broken. A public-key watermarking system has been developed, however, with a different target
application [31]. This system requires significantly longer host signals than a single photo to
reliably detect the existence of a given secret. Also, such a system would require that the
secret used to mark a photo is renewed after issuing several distinct IDs. In summary, using
modern watermark-based technologies results in the least robust and secure performance for
secure identity certification.

3 FaceCerts - Face Compression

The computer vision community has studied various models of faces in the past. The system we
are proposing in this paper does not need to encode the face image to facilitate recognition of
the person when observed under various new conditions, such as angle of view and illumination
changes, aging, or facial hair changes, but rather in the very same photograph from which the
face code has been extracted. Thus, we do not face the difficult issue of over-training that is
present in a typical face recognition application. Rather, our needs are simply for a very efficient
face image compression.

As faces form a class of images with substantially smaller variability then the class of all
natural images, they can be compressed better by using a class-specific compression scheme
than using general-purpose compression algorithms, such as JPEG. To develop such a scheme,
we need to model the variability of facial images, i.e., the probability distribution p(g), where
g denotes the vector of pixel intensity in a facial image. Then, according to Shannon’s coding
theorem, the code length for the image g is bounded bellow by − log2 p(g) bits. To build this
distribution, we focus on 2D subspace models.

The problem of subspace learning can be elegantly defined in terms of a generative model
that describes joint generation of the subspace coordinates, or factors, y and the image g by
linearly combining image components in the factor loading matrix Λ:

p(g,y) = N(g;µ+Λy,Φ)N(y;0, I) (1)

where Φ constitutes the non-uniform image noise, i.e., the variability not captured in the sub-
space model. Λ is an n× k matrix used to expand from the k-dimensional subspace into a full
n-dimensional one, where n is the number of pixels in the image g. The parameters Λ, Φ, and
µ can be learned by maximizing the likelihood of a set of images {gt},

log p({gt}) = log
∑

t

∫

yt

p(gt,yt), (2)

and a good low-dimensional representation of the image tends to be E[y|g]. The above probabil-
ity model, called factor analysis (FA), also allows for the design of the optimal encoding strategy
for the factors y. A realted method, principal component analysis, was used by Moghaddam and



Pentland for face recognition and compression [32]. By limiting their representation to the cen-
tral part of the face they were able to represent each image in a carefully manually preprocessed
database, with only 85 bytes describing 100 face factors y. In our case, we need a more robust
coding scheme that does not require precise manual registration of images, and can encode more
than just the central region of the face. We also include hair and the face shape, in order to
lower the probability of false positive matches.

Recently, an extension of the subspace models that takes into account the possible transfor-
mation of the facial image, such as translations, rotations and scale has been proposed in [21]. In
this model, called transformed component analysis (TCA), an additional random transformation
variable T is applied to the image expanded from y, and a new image h is observed:

p(h,g,y) = N(h;Tg,Ψ)N(g;µ+Λy,Φ)N(y;0, I)p(T).

Such a model, when trained on an image set tends to automatically align all images to
create the most compact subspace representation. The regular subspace models, in presence of
tranformational variability in the training data will tend to create blurry models, while TCA
creates sharper components.
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Figure 2: Block diagram of the face compression and decompression algorithm encapsulated
within the FaceCert issuing and verification system. The Λ-subspace model y follows a Gaus-
sian distribution and thus can be encoded close to its rate-distortion limit.

A hierarchical generative model like this is naturally suited for efficient compression, as it
decomposes the variability in the data. To develop the coder, the model is first trained on a
large number of face images, i.e., the subspace origin µ and subspace vectors Λ are estimated
together with the pixel noise levels Φ and distribution over the used transformations (rotations,
scales, shifts and deformations) p(T). Then, for a particular image to be encoded, the hidden
variables are inferred and each of the conditional probability distributions, i.e., p(T), p(y),
p(g|y), p(h|g,T), is used in an appropriate entropy coder to create codewords for describing
the geometric position and deformation of the image, as well as its subspace coordinates. As
the model distributions are either multinomial or Gaussian, this procedure is straightforward.
For example, for a Gaussian source a non-uniform quantization is used that is fine close to the
mean of the Gaussian and coarse in the unlikely areas of the subspace.

The transformation information is then combined with the face cropping information needed
to capture the face from the scanned ID and encoded in the barcode, while the subspace encoding
is illustrated in Figure 2. First, given an ID photograph, we identify the facial structure to be
modelled x = N(Λy+µ,Φ) with eigenfaces using a face detection algorithm [33], [34]. Vector µ



denotes the first order statistics of the input image x. As the posterior p(y|x) can be computed
using the Bayesian rule, hence we compute:

log p(y|x) = − log p(x)− 1
2
yy′ − 1

2
log(2πI)

−1
2
(x−Λy − µ)′Φ−1(x−Λy − µ)− 1

2
log(2πΦ) (3)

which points to: E[y|x] = ŷ = (I+Λ′Φ−1Λ)−1Λ′Φ−1(x− µ). Assuming Φ = σ2I, σ → 0,
we conclude that E[y|x] = ŷ = (Λ′Φ−1Λ)−1Λ′Φ−1(x − µ) which in the case when the basis
vectors are orthogonal (e.g., Λ has been derived using PCA [20]) results in a simple least-squares
approximation ŷ = (Λ′Λ)−1Λ′(x − µ). In the Λ-subspace, ŷ follows a Gaussian distribution,
and thus can be efficiently encoded using codes with long block lengths (for analysis see [35],
[36]), so as to approach the theoretical rate-distortion limit for the distribution illustrated in
Figure 4.

3.1 Face Compression Illustration
We conducted several experiments in order to evaluate system performance. We trained Λ using
400 images of 64x64 faces extracted from personal photo collections of our colleagues employees
using a face detection algorithm that follows the work of Viola et al. [34]. The resulting dataset
contains alignment errors that were dealt with automatically by the transformed component
analysis. We tested the coding performance on the Yale and Rockefeller face databases. Later
in the paper we also report a separate field test of the entire creation and verification process
by issued over 4000 IDs in two days and estimating the false positive and negative verification
rates.

Figure 3: Five faces extracted from the Yale face database and the compressed images using
JPEG (second row), PCA (third) and TCA (fourth). TCA achieved an RMSE of about ten
intensity levels, considerably bellow the difference between any two images in the set. Both
TCA and PCA were trained on a separate unrelated database of 400 images derived from
personal digital photo collections.

In Figure 3 we show comparison between the JPEG, PCA and TCA coders on several faces
in the test set. On average, at low bitrates, we were able to make JPEG encode the gray level
images with 255 levels with 360 bytes and a root mean square error rmsejpeg = 36, while both
PCA and TCA performed better, with rmsePCA = 17, rmseTCA = 10, and with significantly



Figure 4: The distribution over the coordinates (strengths of the subspace vectors, or principal
components) for the training set (blue), and a test set (red). According to the rate-distortion
analysis of the blue distribution computed on the training set of 10000 images, for errors of
roughly one intensity level out of 255, the image code would be only about 500 bits long.
Bellow, we show the mean and the first ten subspace vectors.

lower bit rates of about 200 bytes for a 200-dimensional representation of images. TCA models
used only shifts as the set of possible transformations T. The rmse differences among the images
in the test set were between 35 and 65, even for images of the same people with slightly different
expressions. Thus, the TCA result is well beyond the error of random photo replacement.

Figure 4 shows in red the distribution of component strengths over the coordinates in the
subspace. For this distribution, the optimal rate-distortion function indicates that for the error
of standard deviation of 0.5 intensity levels (out of the 255), the number of bits needed to
encode the image is about 5003. In other words, at 500 bits per face image, the coding error is
expected to be smaller than 0.5% of the dynamic range of the image. This value is far bellow
the scanning error of the system. On the same plot, in blue we plot the distribution over the
subspace coordinates of images in a separate small face dataset (165 images), using the derived
subspace vectors (first ten of which are shown at the bottom of the figure). Note again that
this results depends on fine alignment that TCA algorithm provides. In practice, it is possible
that to reduce the cost of creation a coarser alignment would be performed. In the field test we
describe later, for example, we used the face code that was 1000 bits long.

4 FaceCerts - Verification

FaceCert verification consists of simple template matching. To be in accordance with the
models in the previous section, a likelihood over the windows in the image can be used as a
cost metric instead of template differences. For example, to use the likelihood as the similarity
measure, one would take the message f , extract the window size and detection threshold thr as

3Result reported for Yale database. Images in the Rockefeller database required about 1600 bits for similar
performance.



well as the subspace parameters y to compute:

log p(h|y) =
∫
T,g

log p(h,g,T|y), (4)

for all windows of appropriate size. If maxh log p(h) > thr, then the ID does contain the
face encoded in the bar code. If the position of the isolated face is stored in the barcode, the
integration over transformation T is not necessary.

The detection threshold thr depends on the compression-print-scan error which FaceCerts
must tolerate. This error can be used by the adversary to minimally modify the facial features
on an image from a given collection of valid FaceCert IDs in order to create another image
possibly as close as possible to adversary’s facial features. In the next section of the paper we
show that the combined compression and scanning error can be made so low that such an attack
becomes futile - it leads to the altered face that is virtually indistinguishable from the original.
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Figure 5: The distribution of the compression errors vs. the distribution over the pairwise dis-
tances on the set of 4239 faces we collected in our field test. The abscissa denotes the normalized
Euclidean distance between two images, whereas the ordinate quantifies the distributions of in-
terest.

5 Experiments: A Field Test

To test the entire solution, we developed and installed fully automated ID creation centers at
a technology exhibition visited by thousands of people. The visitors created their own IDs by
scanning their existing smartcard badges to provide personal information and then standing
in front of the camera which took a snapshot of their face. Then, the face detection software
localized the face allowing both proper framing of the photograph and the speedup in the face
compression algorithm described above by reducing the search space for the transformation
variable. The proper FaceCert ID was then printed on an inexpensive business card paper
and issued to the user, who could then scan it at various stations equipped with business card
readers and scattered across the exhibit floor. The entire print and scan test was thus performed
without any manual intervention.
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Figure 6: An example of the attack on the O’Gorman-Rabinovich Personal ID System. A photo
from an authentic ID card (first photo) is obtained by the adversary (second photo) who does
not resemble the person on the authentic ID card. Therefore, his photo has a different photo-
signature. After applying the automated attack, the adversary obtains the set of guidelines
on how the first order statistics of his photo must be changed (third photo) and finally, the
adversary artistically edits his photo so that the suggested changes in the first order statistics
are fulfilled while having a realistic visual appearance (fourth photo).

In this way we collected 4239 faces and corresponding FaceCerts. Before the test, we
had estimated the best generative model parameters for the code length of 1000 bits using EM
optimization on a database with only 1000 faces. The compression error typically achieved
using this face model and data allocation, was within 2-3% of the dynamic range. The scanning
error was about 1% of the range. Note however that the scanning error can be reduced by
printer/scanner combo calibration to be virtually nonexistant. Also, the compression error can
be reduced to sub-2% levels by increasing the code to 2000 bits.

For our target code length of 100 bits and the inexpensive combination of an off-the-shelf
printer and a business card reader, we had set up the detection threshold to 5% of the dynamic
range of the images. We anticipated that such a threshold was high enough not to expect any
false negatives (failed scans of valid IDs), and so none of the FaceCerts that were properly
created failed the verification step.

To get a sense of the probability of false positives (IDs with photograph replaced that still
passed the verification), we computed all pairwise distances on the set of collected faces as well
as all compression errors (see Figure 5) and plotted the probability distributions on a single
graph. In our event with 4239 distinct people, the probability of face substitution passing the
verification step, i.e., that one of the computed pairwise distances was bellow the threshold of 5%
was in the order 10−6. Note that this probability is significantly lower than the probability that
one finds a look-a-like (estimated between 10−4 − 10−3). As we have stressed in Subsection 1.1,
by using other biometric features within the FaceCert system, one can rectify the deficiency
of using only person’s face for identification. Finally, we looked at the handful image pairs
that could be interchanged on the IDs based upon our threshold selection; they indeed looked
sufficiently similar that a human verifier would not make the difference between them.4

Note that data allocation of 1000 bits leads to a barcode of the size equal to roughly one
fifth of the size of the image on the ID. While our particular implementation only targeted a

4Unfortunately, due to privacy reasons we cannot show any photographs from the face database in the paper.



particular price/security ratio, there is plenty of ways to improve the rates depending on the
application requirements. Techniques such as increasing in the barcode size, calibrating the
scanner/printer combo, retraining the compressor on a larger database can be used to set the
error rate to practically an arbitrary level without any significant change in the core technologies
described in the paper.

6 Cryptanalysis of the O’Gorman-Rabinovich ID Card System

In order to demonstrate the effectiveness of our approach with respect to an existing technology,
in this section, we briefly overview the key ingredient of the O’Gorman and Rabinovich personal
ID system and then present a simple polynomial attack that guides an adversary to edit her
photograph such that it has the same digital signature as a given photograph that is imprinted
on an authentic ID card.

The ID card technology presented by O’Gorman and Rabinovich in [23] relies on a specific
image digest function the authors call a photo signature method (PSM). PSM is a digest of the
photographic content on a certified license. The objectives in PSM design are four-fold: (i) it
must be a unique (or very close to a unique) identifier of the photograph; (ii) PSM must be
concise (320 bits for a DSA signature); (iii) PSM must be invariant to noise, so that a PSM
that has been subject to fading, dirt, nonuniform contrast change, and other common card
noise still yields the same as or very close to the original PSM; (iv) the photograph must be
difficult to modify, so as to match its PSM with that of a different photograph. As oppose to
FaceCerts, both the original PSM as well as its cryptographic signature are printed on an ID
card. Verification of the ID card is governed by deployed crypto-protocols.

The authors propose the following PSM: 1) Transform the original image into lower resolution
images by performing low-pass filtering and subsampling by successive powers of two. These
images are of sizes: level l0 → N × N ; level l1 → N/2 × N/2; level l2 → N/4 × N/4; etc. 2)
Choose all or some of these multiresolution levels, lL1 ≤ l ≤ lL2, and place a grid of size I × J
on each. At each grid intersection location, determine the average of pixels in k × k-sized pixel
neighborhoods, Gl(i, j), 0 ≤ i < I, 0 ≤ j < J . 3) For each grid point, a feature is determined.
This feature represents the relative intensities of the neighboring grid points. The feature Sl(i, j)
is contained in 8 bits, where each bit corresponds to the eight grid neighbors and where a bit
is one if the neighbor is greater than the grid value and zero otherwise. 4) For PSM elements
at grid intersection points of each level, l, represented as Sl(i, j), each PSM element is the next
grid intersection value from the next level. For instance, if L1 = 1 and L2 = 4, then the PSM
elements are:

S(i, j) = {S1(1, 1), S2(1, 2), S3(1, 3), S4(1, 4),

S1(1, 5), S2(1, 6), . . .} (5)

In general, for a total number of chosen levels, L, lowest chosen level, L1 , and a grid size of
I × J , the sequence of levels is, l(i, j) = [L1 + (i+ jJ)]L.

Given a valid photo ID card and a photograph of the adversary, the goal of the attack is
to edit adversary’s photo such that its digital signature equals the one presented on the valid
ID card. In that case, the adversary can replace the original photo on the ID card with her
own. In this manuscript, we present an attack that achieves this goal by relying on two separate
procedures: a) an automated phase – which creates a guidance for the next step, and b) artistic
follow-up editing – which manipulates a photograph to satisfy the constraints posed by the



automated step a). The steps of the attack and their effect on the corresponding photographs
is illustrated in Figure 6.

The goal of the automated step of the attack is to create a set of guidelines for artistic
editing. The idea behind the guidelines is based upon the fact that the important statistic
collected for a given image is based upon the averages (first order statistics) of certain image
regions Gl(i, j) and most importantly, not their values but relations between them (e.g., whether
Gl(i, j) < Gl(i + 1, j)). Therefore, the attack is aiming to change the first order statistics of
adversary’s image such that its image regions obey the same relations as the relations of the
image on an authentic ID card, while inducing minimal change to the adversarial image. An
example of such changes, marked as darkened or enlightened rectangles on the adversarial image
after the automated attack (see Figure 6), would guide the artistic editor of the image on what
has to be changed on the image such that it is semantically appealing but still satisfies the
suggested first order statistics. An example in Figure 6 shows that only slight edit of person’s
hair, an enlightened chin, and darkened right ear, is sufficient to equalize the PSMs of photos of
two persons who do not resemble each other5.

The algorithm that creates the guidelines for artistic editing is presented using the following
pseudo-code:

Lets denote the first order statistics of adversary’s
photo as GL

A(i, j), the authentic photo as GL
o (i, j),

and the resulting photo as GL
R(i, j) for all considered

levels L1 ≤ L ≤ L2.

for all L1 ≤ L ≤ L2, 0 ≤ i < I, and 0 ≤ j < J
set GL

R(i, j) = GL
o (i, j).

repeat I × J × L times
for each L1 ≤ L ≤ L2
for each 0 ≤ i < I
for each 0 ≤ j < J
set GL

R(i, j) to a value as close as possible to
GL

A(i, j) such that the relations of GL
R(i, j) with

respect to its neighbors in the resulting image
are the same as the relations of GL

o (i, j) and
its neighbors in the original authentic image.

update all Gl
R(i′, j′) that intersect with GL

R(i, j).

The attack first sets the first order statistics of the resulting image GR to the ones exhibited
by the authentic image Go. Then, it iteratively reduces the distances between individual compo-
nents of GR and GA such that for each alteration in GR, the ≷ relations between the altered grid
component GL

R(i, j) and its neighbors stay the same as the relations between the corresponding
GL

o (i, j) and its neighbors in the authentic image. By construction, this algorithm leads to a
set of first order statistics GR which is at minimal linear distance with respect to GA and still
satisfies all the constraints imposed by the photo-signature of Go. The worst-case run-time of
the algorithm is O(I2J2L2); however, in all empirical runs of this attack, we have achieved the
desired result in O(IJL). The outermost loop of the attack is aborted if no GR component is
changed throughout a single run of that loop. An example of how adversary’s photograph looks
like after it is updated for corresponding distances between the final GR and GA, is presented
as second from the right in Figure 6. Finally, the adversary encounters a trivial and only artis-
tically challenging task to edit his photograph so that the changes in the first order statistics
have visually realistic semantics as presented in the rightmost photo in Figure 6.

5Note that the quality of edits is poor on the example image.



7 Conclusion

In this manuscript, we propose FaceCerts, a system for creating and verifying secure identity
certificates. FaceCerts prevent tempering with the photograph or associated text by encoding
the cryptographic signature of the face and text in a compact barcode readable by ordinary
scanners.

Today, in a typical scenario, the verifier of the ID needs to connect to a remote database and
retrieve a stored photograph for the comparison with the ID. In our system, all the necessary data
for verification is securely stored on the ID itself, in a form of a barcode. The system does not
depend on face recognition technology, but rather on the much more reliable face compression.
We show that 100x66 pixel color face images can be compressed to about 1000 bits, while the
color barcodes can reliably carry two to three thousand bits. A potential issuer of FaceCerts,
such as a government agency, for example, may have a significantly larger database of facial
images to train even better compression systems, using one of the methods we described.
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