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Image retrieval by shape and texture
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Abstract

Effective image retrieval by content from database requires that visual image properties are used instead of textual
labels to recover pictorial data. Retrieval by image similarity given a template image is particularly challenging. The
difficulty is to derive a similarity measure that combines shape, grey level patterns and texture in a way that closely
conforms to human perception. In this paper a system is presented which supports retrieval by image similarity based on
elastic template matching. The template can be both a 1D template modeling the contour of an object, and a 2D template
modeling a part of an image with a significant grey level pattern. The retrieval process is obtained as a continuous
interaction by which the original query of the user can be refined or changed on the basis of the results provided by the
system. ( 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The recent emergence of multimedia digital libraries
makes image retrieval an interesting and challenging
problem. Image databases are now currently employed in
an eclectic range of different areas such as entertainment,
art history, advertising, medicine and industry among
others. In all these contexts, the key problem to be solved
is the development of algorithms and techniques which
are able to efficiently describe image content.

The effectiveness of textual description to represent
visual data is limited to very narrow contexts, and in
general, items retrieved through a textual query could
not be relevant at all for user’s expectation. Iconic in-
dexes have been proposed in Ref. [1] to effectively sup-
port image retrieval by content. Iconic indexes are in the

*Corresponding author.

form of symbolic descriptions of pictorial data or pictor-
ial data relationships but may also include the actual
values of object features, or be in the form of abstract
images taking the salient features of the original image.
The use of iconic indexes naturally fits with the accom-
plishment of image retrieval according to visual querying
by-example. Visual queries by-example for pictorial data
exploit human natural capabilities in picture analysis and
interpretation and largely reduce the cognitive effort of
the user in accessing the database. A number of tech-
niques have appeared in the literature which deal with
iconic indexing and visual querying by example of single
images; different approaches depend on what facets of
pictorial data are taken into account. Indexing and
querying based on spatial relationships have been pro-
posed in Ref. [2—4].

Indexing and querying based on shape similarity have
also been proposed. The traditional approach to shape
description is to extract a suitable number of features
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from the shape, and represent it as a point in a multi-
dimensional feature space. Moment invariants have been
used as a set of features representing shape attributes
which are invariant under translation, rotation, and scale
[5—7]. Boundary features such as chain codes of contour
segments or high—curvature points, whose saliency is
demonstrated in Refs. [8] and [9], have been used as well
[10—13]. In recent works [14,15], elastic approaches have
been used to provide an effective measure of perceptual
similarity between shapes, avoiding the need to evaluate
shape features.

Indexing and querying based on picture color distribu-
tion have also been proposed. In Ref. [16], image content
is described through a global color histogram and que-
ries are expressed by means of example images. Retrieval
is performed by evaluating the similarity between the
global color histograms of user provided examples and
stored images. The QBIC database system [7] allows
user composed queries, but still evaluates similarity in
terms of global properties of color histograms. The dis-
tance measure considers a weighted cross correlation be-
tween histogram bins. In Ref. [17], both color and shape
features are used for retrieval. In this system
the query is formulated through an example image and
retrieval is accomplished by a similarity measure com-
puted on the basis of global color histogram and image
edges.

It is almost impossible to express textures in words,
and it is also difficult to sketch it. Therefore, the only way
to specify a texture in a query by content is to use sample
texture models. These can either be extracted from im-
ages that have been answered in a previous query, or
selected from a set of predefined texture samples.

The Candid system [20], developed by P.M. Kelly and
M.T. Cannon supports image retrieval through global
signatures of textures about the entire image. Texture
features are first computed at every pixel in the image,
and then a probability density function is derived that
describes the distribution of these features.

The QBIC system [7] supports texture based
retrieval using the Tamura, Mori, and Yamawaki’s de-
composition [18]. Features of coarseness, contrast and
directionality are computed on gray scale images after
conversion from original color images. Queries are ex-
pressed visually, by taking a model from a texture picker.
Image comparison is carried out by evaluating the
weighted Euclidean distance in the three-dimensional
space of texture features.

In the Photobook system [21], texture description is
carried out according to the Wold texture model, which
describes textures in terms of periodic, oriented, and
random components [19]. Features are compared using
one out of a library of matching algorithms. These in-
clude Euclidean, Mahalanobis, divergence, vector space,
histogram, Fourier peak, and wavelet tree distances, as
well as any linear combination of these.

Search by matching portions of images is a very natu-
ral way to pose a query in interactive image databases.
Consider the following scenario: you have just entered
a query using some method, and the answer just popped
out on your screen. Some of these images will be con-
sidered ‘‘good’’ answers, while others will be probably
completely off the point. You might want to refine the
query that is, you might try to get more ‘‘meaningful’’
images and less ‘‘meaningless’’ one. Instead of drawing
another contour, or making another kind of query,
a natural way to do it is to pick the image you like the
best, and use it as the new query, effectively saying
something like ‘‘Here: get me some more of these.’’

This type of query-by-example requires a good and
robust way to determine the similarity between images.
Image similarity in presence of textures is commonly
measured using either feature-based or statistical
methods:

f Feature-based methods extract a limited number of
features from the two images to be compared, and then
use some suitable metric in the feature space F as
a measure of similarity.

f Statistical methods consider the pixels as a realization
of a particular multivariate stochastic process, usually
described by a Gibbs distribution of the form
P(I)"exp (!E(I)), and try to determine the probabil-
ity that the same parameters of the energy function
E gave rise to the two images [22].

Both these methods suffers from serious drawbacks
when applied to image databases:

f Feature-based methods can compare images only as
long as the comparison criterion is captured
by the features. For instance, similarity or dis-
similarity in color cannot be captured is there are no
color features. Given the generality of possible queries,
this is a major problem, although can be solved by
concepts like the adaptive ‘‘society of models’’ [23].

f Statistical methods are tractable only if certain locality
assumptions are made on the random process that
generates the images. Because of this, it is impossible to
model accurately long-range effects like geometric dis-
tortions. Statistical methods are good at recovering
from pointwise noise, for which the information con-
tained in the local structure is sufficient. When images
are actually different, and not different noisy versions
of the same image, long-range effects come into the
picture, and Statistical methods are no longer so
useful.

In this paper, we present an elastic based approach to
measure image similarity. Given two images (namely
a template and a target image) that we want to compare,
one of the two (e.g. the template) is considered as an
elastic body. The template is stretched in order to achieve
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Fig. 1. The function u"(u
1
(x

1
, x

2
), u

1
(x

1
, x

2
)) provides the new coordinates of the point (x

1
, x

2
) after the deformation.

the best match with the target in terms of difference in
grey level of corresponding pixels. The measure of match
and the amount of energy used to warp the template are
used to derive a similarity measure between the two
images.

The paper is organized as follows: in Section 2 the
elastic approach to image matching is introduced and
expounded. In Section 3 retrieval examples for a
prototype system are presented and discussed.

2. Image matching: 2D elastic models

Consider the case in which you are asked to match two
images as well as possible, with one of the two images
being painted on a transparent rubber foil. You can
superimpose the rubber foil to the other image, and start
deforming the foil, pulling it here and there, trying to
match the two images as well as possible. During this
process, you are not allowed to rip the rubber, or to
compress it so much that a region of finite area disap-
pears. If you obtain a good match without deforming too
much—i.e. keeping the elastic deformation energy
low—you can say that the two images were pretty similar
to begin with, while if you have to spend a lot of energy
in the deformation, or you just cannot get a good
match, then you can say that the two images were not
similar.

Mathematically, this is equivalent to the solution of an
elastic deformation problem in which one of the two
images—which is considered as an elastic body—is
deformed under the action of a force field generated by
the difference between the two images, and its own elastic
reaction to deformation. When equilibrium is reached
between the two forces, we have the optimal deformation.

The theory behind the approach has been worked out
in several places, under different assumptions [24]. Call
template (¹) the image we use to make the query, and
target image (I) the image we want to compare the tem-
plate against. Suppose the comparison is done by de-
forming the template and that the deformation in the
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discover similarity between the template and the target
image, we must set some constraint on deformation. In
our approach the optimal deformation is obtained as
a compromise between two opposite requirements. As
first, we want to maximize the match between the de-
formed template and the target image. That is we want to
minimize the distance between the two images:
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As second, we want to minimize the deformation energy
of the template image. For a function f :R2PR the total
amount of bending of the surface (x
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The deformation energy of the template image is there-
fore measured as
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Fig. 2. Elastic deformation of a bottle image over different bottles. In the first three cases, the bottle grey level pattern is similar to that
exhibited by the template bottle. In the last case the two grey level patterns are different. The deformation of a regular grid is show on the
right part of the figure. In the first three cases the deformation of the grid keeps smooth whereas in the last case it is subjected to
a considerable change.

A compromise between these two opposite requirements
is thus achieved by minimizing the compound functional:

F"k(J(u
1
)#J(u

2
))#D(¹, I, u), (2)

where k is a parameter that determines the ‘‘stiffness’’ of
the template. The higher k the less the template will warp.

2.1. Numerical solution

We approximate the deformation u through a linear
combination of radial functions defined on a regular
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The minimization of the functional F(C), obtained
substituting Eq. (3) in Eq. (2), with respect to the variables
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2
) is achieved through a gradient de-

scent technique. Variables are determined iteratively
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Fig. 3. Elastic deformation of a bottle image over images representing the same bottle rotated by 5, 10, 15, 20°, respectively. For each
deformation the displacement filed induced by the elastic deformation is also shown.
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That is, by taking the summations out of the integrals:
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Fig. 4. Differences in term of grey level distance are shown between the template image (not rotated) and the target images (rotated by
5, 10, 15, 20°, respectively). For each rotation angle, values of grey level differences are shown before (on the left) and after (on the right)
the deformation process.
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The first term of Eqs. (6) and (7) depends on k and models
the elasticity of the template, that is the behavior of every
point of the template to move in the same direction as its
neighbors. The higher k, the less the template can warp.

The value of k is initially low and is increased during the
deformation process. In this way at the beginning of the
deformation process a precise adaptation is achieved
essentially for those parts which are similar in both the
template and the image, while approximate adaptation is
determined for those which are not equally represented
in the two. In the second stage, the increased value of
k compels the template to regularize its deformation
without loss of match.

At the end of the deformation process, the value of
F provides a measure of the similarity between the
template and the target image.

As an example in Fig. 2 they are shown the deforma-
tions of a template image representing a bottle with
a particular grey level pattern, over images of bottles. The
grey level pattern of the template image exhibit a remark-
able vertical striature which is present, even if with
different significance, in some other bottles. For each
deformation the template and the target images as
shown, with the deformation subjected by a regular grid
of points (on the right). It can be noticed that the
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Fig. 5. User-drawn sketch representing the shape of a rounded-body bottle.

Fig. 6. Retrieved images with highest similarity ranks with respect to the sketch of Fig. 5.
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Fig. 7. (a) Image with similarity score 0.908 output by the system is used as a new query by image. Editing allows to eliminate details in
the image that are not significant for elastic matching. (b) Edited image used for the query by image. Images are searched with similar
image patterns in the same relative positions.

deformation keeps low values in the first three cases,
showing the fact that even if the grey levels of the target
and the template image are different, nevertheless the
elastic approach permits to capture the similar grey level

pattern of the two images. Differently, in the fourth case,
the template is subjected to a considerable deformation,
highlighting a structural difference between the grey level
pattern of the template and target images.
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Fig. 8. Result of the query by image. Retrieved images are ranked according to pattern similarity.

2.2. Rotation invariance

From a theoretical point of view, rotation invariance is
a direct consequence of the definition of the functional
(1). If this functional is rotation invariant, then a rotation
of the template image will not contribute to the deforma-
tion energy and therefore will not be penalized. Of
course, this is true only if the method used to minimize
Eq. (2) succeeds to find the global minimum. Since
the gradient descent technique does not guarantee such
condition, our approach is not rotation invariant, and
minimization of Eq. (2) is expected to stop in local
minima.

However, the presence of local minima is reduced in
the case of small rotations, and in these cases the pro-
posed approach is able to manage the deformation. As an
example, in Fig. 3 a template image representing a bottle
is warped over a set of images representing the same
bottle rotated by an angle of 5, 10, 15, 20°, respectively.
Also shown are plots of the displacement fields induced
by the deformation process. Plots highlight the rotation
of the template image during the deformation. In Fig. 4
they are shown the plots of the grey level distance be-
tween the template and the target images before (on the
left) and after (on the right) the deformation process. It
can be noticed how these values keep low in the case of
small rotations and increase with increasing values of the
rotation angle.

3. Image retrieval system

The elastic based approach to image similarity has
been coupled with a system which supports content-
based image retrieval by shape and spatial relationships
[14] into a unified framework, to provide retrieval mo-
dalities based both on shapes, spatial relationships, and
image patterns. At database population time, in the im-
ages of the database, rectangular areas corresponding to
interesting regions of the image are selected. A region can
be interesting both for the presence of a particular image

pattern or for the presence of an interesting object. For
each rectangular area, the raw image is processed to
extract the contours of the object eventually included: in
the present implementation, it is passed through a Canny
edge extraction processing. A symbolic description of
spatial relationships among rectangular areas is also
computed and stored in an image signature file.
Queries by sketch and image patterns are matched with
edge images and raw images respectively. Signature files
are used as an index to prune out uninteresting images
according to spatial relationships and positions.

The system interface allows the user to select the pre-
ferred type of search. To draw a contour the user has
simply to enter a curve. In the case of 2D search the user
picks an image from the database eventually selecting it
from a set of images which were retrieved by the system
in a preceding search. The user can select just a portion of
an image, bounding with a rectangle the area of interest.
He can interactively clean the selected region from those
details which he is not interested in. In this way, the
search process takes into account only those parts of the
region which the user feels as the most interesting. In
Fig. 7 it is shown an example of the interactive editing of
a selected image.

An example of shape based retrieval of pictures with
query refinement by image pattern is shown in Figs. 5—8.
The database includes images from a Morandi’s cata-
logue representing bottles with other still life objects of
different aspect and in different combinations. Fig. 5
shows the sketch drawn by the user, roughly representing
the contour of a rounded body bottle. Results of the
similarity retrieval through 1D elastic matching are
shown in Fig. 6. Rounded bottles are ranked in the first
places; also different sized and shaped bottles but with
a certain roundness in their shape are extracted from the
database.

Query refinement is shown in Figs. 6—8. Among the
retrieved images the user is now interested in selecting
those images which include a rounded bottle, like that
depicted in the first ranked image (top left image), in the
same position in the picture, and with a similar grey level
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pattern. Interactive editing of this image is shown in
Fig. 7a and b. The rubber tool is used to wipe out
uninteresting grey level patterns and details. Results of
querying by image patterns through 2D elastic matching
are shown in Fig. 8.

The prototype system is presently engineered to be
included and used for the electronic cataloging of paint-
ings and sculptures of museums and galleries in the area
of central Italy, and for the development of multimedia
systems to access these databases. The elastic-based re-
trieval by-content system is intended as a special part of
a multimedia system, especially oriented to support
specialists and researchers to discover similarities among
pictures or, more generally, relationships between differ-
ent paintings which are not explicitly expressed or
known. Retrieval by similarity and relative positions
supports the critic in the analysis of the artists’ periods, as
well as of the influences and commonalities between
different paintings.

4. Conclusions

Effective image retrieval by content from database
requires that visual image properties are used instead of
textual labels to recover pictorial data. Shape has proven
to be a significant clue to represent image contents,
however, there are cases in which there is no natural
specification of a portion of an image in terms of con-
tours. In this paper, 2D elastic models have been used
to provide an effective measure of similarity between
two grey level patterns. According to this approach, in
order to compare two images, one is considered as an
elastic body, and is warped to adapt as much as possible
to the target image. The amount of deformation and the
match achieved are used to compute the similarity be-
tween the two images. Based on this approach, a proto-
type system has been developed which provides access by
content to a database of images based both on shapes
and grey-level patterns of objects represented in the
images.
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