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Abstract We abstract a denotational trace semantics for an impera-
tive language into a compositional and focussed watchpoint semantics.
Every abstraction of its computational domain induces an abstract, still
compositional and focussed watchpoint semantics. We describe its im-
plementation and instantiation with a domain of signs. It shows that its
space and time costs are proportional to the number of watchpoints and
that abstract compilation reduces those costs significantly.

1 Introduction

A compositional analysis of a complex statement is defined in terms of that of its
components. Then the analysis of a procedure depends only on that of the pro-
cedures it calls and the analysis of a huge program can be easily kept up-to-date.
This is important if a local change is applied to the program, during debugging
or as a consequence of program transformation. A focussed or demand-driven
analysis is directed to a given set of program points, called watchpoints, and has
a cost (in space and time) proportional to their number. This is important if
only those points are relevant. For instance, zero information is typically useful
only before a division. Class information for object-oriented programs is typically
useful only before a method call. During debugging the programmer wants to
analyse a program in very few points, with a cost proportional to their number.

Our first contribution here is the definition of a compositional and focussed
watchpoint semantics, as an abstract interpretation (AI) [6] specified by the
watchpoints of interest of a more concrete trace semantics. An optimality result
(Equation (4)) states that no precision is lost by this abstraction w.r.t. the
information at the watchpoints. The computational domain is identified as a data
structure with some operations. The second contribution states that every AT of
the computational domain induces an abstraction of the watchpoint semantics.
This reduces the problem of static analysis to that of the development of abstract
domains. The third contribution is the description of our implementation of the
watchpoint semantics instantiated for sign analysis. It shows that the space and
time costs of the analysis are proportional to the number of watchpoints. The
final contribution is to show that abstract compilation [11] leads to a significant
improvement in the time and space costs of the analysis.



1.1 Related Works

Traditionally, compositionality is synonym with denotational semantics. But the
usual denotational semantics [16] provides an input/output characterisation of
procedures which is too abstract to observe their internal behaviour. This has
been recognised in [5], where Cousot models information at internal program
points through a more concrete, denotational trace semantics. Here, a procedure
is denoted by a map from an initial state to a trace of states representing its
execution from the initial state. Our trace semantics is a instance of the maxi-
mal trace semantics of [5]. Even [4] observes that traces contain more informa-
tion than a traditional input/output denotation w.r.t. software pipelining, loop-
invariant removal and data alias detection. That framework is however based
on an operational definition. In [15] an operational trace semantics is defined
and abstracted through AT into an abstract trace semantics. The abstraction of
a trace is a (regular) tree, because of the non-deterministic nature of the ab-
stract semantics. Information at program points (what they call the collecting
semantics) is extracted from those trees after the fixpoint of the semantics is
reached. Thus, their analysis is not focussed, since the whole trace semantics
(the abstract trees) must be computed and then projected on program points.
This is justified by the fact that they are interested in properties of traces, like
those considered in the context of model-checking. However, for properties of
states, like in sign, interval, class and security context analysis of variables (and,
more generally, in all those analyses called first-order in [12], page 210), trees
are not needed and can be safely abstracted into sets of states.

Abstract denotational semantics need a representation of the abstract in-
put/output behaviour of a procedure. Since abstract inputs can partially over-
lap, the meaning or, in abstract interpretation words, the concretisation of an
abstract denotation is not so easily devisable. In Section 6 we show a solution
when the abstract domain elements can be written in terms of union-irreducible
elements. For the general case, we rely on the functional partinioning technique
defined in [1].

Focussed or demand-driven frameworks for analysis have been developed in
the past. In [2] backward propagation of assertions was applied to the debugging
of a high-order imperative language. In [8,9,13] backward dataflow analysis from
a given query is defined and shown more efficient than an ezhaustive, unfocussed
analysis. The analyses in [8,9] are provably as precise as the corresponding un-
focussed versions for distributive finite dataflow problems, while our optimality
result (Equation (4)) holds for every abstract domain. Queries can be checked
to hold in a given program point, but cannot be computed by the analysis. It
is not shown how those analyses scale w.r.t. the number of queries. No notion
of computational domain is defined, which makes harder the definition of new
abstract analyses. Abstract compilation cannot be applied because those anal-
yses are not compositional. In [1] it is studied a very general and abstract way
of looking at the problem of localised analyses in a given set of program points.
However, its actual application to a real programming language is not tackled
there.



Abstract compilation (AC) was born and applied only in the context of the
analysis of logic programs [3,11]. It is an optimised computation of the fixpoint of
an abstract semantics where at the i-th iteration part of the analysis is compiled
when it becomes clear that it will not change at the (i 4+ 1)-th iteration.

Our work has been heavily influenced by the systematic construction of se-
mantics for logic programming from the observable property of interest [10].
There, semantics for resultants, call patterns and computed answers of logic pro-
grams are derived through Al of the very concrete semantics of SLD-derivations.
In particular, the call pattern semantics collects the information in some program
points only.

1.2 Plan of the Paper

Section 2 introduces some preliminary notations. Section 3 defines the simple
imperative language used in the paper. Section 4 defines the concrete trace se-
mantics which is then abstracted into our watchpoint semantics of Section 5
and its collecting version. Section 6 shows how every abstract interpretation of
the concrete computational domain induces an abstract watchpoint semantics.
Section 7 describes our implementation of the watchpoint semantics instantiated
for sign analysis. Section 8 concludes. Proofs are omitted.

2 Preliminaries

A sequence of elements from a set S is denoted by seq(.S). The cardinality of a
set S is denoted by #S. A definition like S=(a, b), with a and b meta-variables,
silently defines the selectors s.a and s.b for s € S. For instance, Definition 8
defines t.w and t.s for t € 7. An element z € X will often stand for the
singleton {z} C X.

The domain (codomain) of a function f is dom(f) (cd(f)). A total (partial)
function is denoted by — (—). We denote by [v1 +— t1,...,v, — t,] a function
f whose domain is {vy,...,v,} and such that f(v;) = ¢; for i = 1,...,n. Its
update is f[d; /w1, ..., dm /wy], where the domain can be potentially enlarged.
By f|s (f|—s) we denote the restriction of f to s C dom(f) (to dom(f)\ s).

A pair (C, <) is a poset if < is reflexive, transitive and antisymmetric on C.
A poset is a complete lattice when least upper bounds (lub) and greatest lower
bounds (glb) always exist, a complete partial order (CPO) when lubs exist for
the non-empty chains (totally ordered subsets). A CPO is pointed when it has a
bottom element. A map is additive when it preserves all lubs. If f(z) = x then
x is a fizpoint of f. If a least fixpoint exists, it is denoted by Ifp(f).

Let (C, <) and (A, <) be two posets (the concrete and the abstract domain).
A Galois connection [6,7] is a pair of monotonic mapsa: C — Aandy: A~ C
such that ya is extensive and a-y is reductive. It is a Galois insertion when a-y
is the identity map, i.e., when the abstract domain does not contain useless
elements. This is equivalent to « being onto, or 7y one-to-one. The abstraction a



and the concretisation y determine each other. If C' and A are complete lattices
and «a is additive, it is the abstraction map of a Galois connection.

An abstract operator f : A" — Ais correct wrt. f 2 C" — Cif afy < f
For each operator f, there exists an optimal (most precise) correct abstract
operator f defined as f =afy. If fa = af, we say that f is a-optimal w.r.t. f,
ie., f computes the same abstract information as f.

In Al the semantics of a program is the fixpoint of some f: C' — C, where
C is the computational domain [5]. Its collecting version [6] works over properties
of C, i.e., over p(C) and is the fixpoint of the powerset extension of f. If f is
defined through suboperations, their powerset extensions and U (which merges
the semantics of the branches of a conditional) induce the extension of f.

3 A Simple Language

Our language is left expandable at the price of some redundancy in the defini-
tions. Integers are its only basic type, with two operations (= and +). Booleans
are implemented as integers ( false is represented by a negative integer and true
by any other integer). We do not have procedures but only functions. Those
limitations are just meant to simplify the presentation. Our framework can be
extended to cope with those missing items.

Definition 1. Let Id be a set of identifiers and F C Id a finite set of function
symbols. Expressions £ and commands C are defined by the grammar

ex=ilv|f(v,...,on)|e=ele+e

c:=(v:=e€)|c¢c|letv:t in ¢ | if e then ¢ else ¢ | while e do ¢

with Type = {int}, Int =7, t € Type, i € Int, f € F and v,v1,...,v, € Id.

A typing gives types to a finite set of variables. The map Pars binds every
function to the typing (its signature) and the list of its parameters. This list
provides the order of the variables in the definition of the function. The function
Code binds a function symbol to its (syntactically correct and type-checked)
code. Local variables are always introduced by a let construct.

Definition 2. We define Typing = {7 : Id — Type | dom(7) is finite}, Code =
(F — C) and Pars = (F — seq(Id) x Typing). If p € Pars and f € F, then
p(f) = (s,7), where f € s and dom(1) = s. The variable f holds the return value
of the function, like in Pascal.

A program is specified by F and two elements in Code and Pars. In the
following, we assume that we have a program P = (F, ¢, p).
Expressions have a type in a typing. In our case, type,(e) = int for e € £.

Ezample 1. Figure 10(a) gives a representation of the program for computing
the n-th Fibonacci number (lines introduced by % are comments and will be
discussed later). Note that the name fib of the (only) function in the program
is used to hold its result value. Moreover, it is described by the Pars map p of
the program.



nop, : X, — X,
getint’ : Xo = T ins/mes] with res ¢ dom(7), i € Int
getvar) 1 X = X (y)/res] with v € dom(7), res & dom(t)
putvar : X = X with res € dom(7), v € dom(7), v # res, 7(v) = 7(res)

=r s X (Yo X)) with res € dom(7), 7(res) = int

Frotaes 'u _
scope;. | #p()s=1 . 5y Tty

with p(f).s\ f = (t1,...,tn) and {v1,. .., vu,(5).s—1}1 C dom(7)
unscopef ED DY (Ep(f)"’"f — Z.,.[p(f)_,_(f)/m,s]) with res ¢ dom('r)

restrict’” : ¥ — X with vs C dom(T)

Tl—ws
expand::t X X with v & dom(7), t € Type

is_true, ,is_false C p(X,) with 7(res) = int .

nop. (o) =o get_inti(a) = oli/res]
get_var. (o) = o[o(v)/res] putvar’ (o) = olo(res)/v]|—res
+-(01)(02) = o2[o1(res) + oa(res)/res] =-(01)(02) = {Zjl/]r/e:is] :i Z: E::z; ; Zz E:Zz;
scopef'“1 """ "n(o)=[t1 = a(v1),...ytn > 0(vs)] where (t1,...,tn) =p(f).s\ f
unscopel (01)(o2) = o1 [o2(f)/res] restrict.’ (o) = o|_ys expand”’ (o) = olinit(¢) /v]
is_true, (o) if and only if o(res) > 0 is_false- (o) if and only if o(res) < 0
init(int) = 0 .

Figure 1. The signature and implementation of the operations over the states.

4 Trace Semantics

The computational domain of states described here is used below to define a trace
semantics for our language. Each of its abstractions will induce an abstraction of
that semantics (Section 6), as usual in Al (see for instance [14]). More complex
notions of states could be used here, maybe dealing with locations and memory.

Definition 3. Let Value = Int and X = Urcryping X~ where, for T € Typing,
states o € X map variables to values consistent with their declared type, i.e.,

ET:{U

States are endowed with the operations shown in Figure 1.

o € dom(7) — Value and
for every v € dom(7) if 7(v) = int then o(v) € Int |~

In the operations of Figure 1, the variable res holds intermediate results. The
nop operation does nothing. The get.int (get_var’) operation loads an integer
(the value of v) in res. The put_var” operation copies the value of res in v. There
is no result, then res is removed. For every binary operation like = and +, there
is an operation on states. The operations scope and unscope are used before and
after a call to a function f, respectively. The former creates a new state in which



f can execute. Its typing p(f).7|—; describes the input parameters (the variable
f is not among them). The latter copies in the variable res of the state before
the call, i.e., its first argument, the result of f, i.e., the variable f of its second
argument. The operation expand (restrict) adds (removes) variables from a state.
The is_true (is_false) predicate checks whether res contains true (false).

Since res plays a major role, we introduce the following abbreviations.

Definition 4. For T € Typing, 0 € X, and e € £, let 7 = T[type, (e)/res] and
Lo, = restrict’®*(o) (7 will be always omitted).

T

We define now an instance of the maximal trace semantics of [5].

Definition 5. A trace t € T is a non-empty sequence in Y. A convergent trace

o1 — -+ = o, represents a terminated computation, a finite divergent trace
oy — -+ = 0, a yet non-terminated computation and an infinite divergent
trace o1 — -+ = o, — -+ a divergent computation. Arrows are given labels

I € Label, like in —', meaning that the interpreter was then in a watchpoint
labelled with | (see Section 5). We assume — is given a hidden mark _ ¢ Label.

The first state of t € T is fst(t). The predicate div(t) means that t is divergent.
If = div(t), the last state of t is Ist(t). For | € Label and o € X, we let 0 €, t
mean that o occurs in t before an arrow —'.

The C ordering on traces (extension of finite divergent traces) is the minimal
relation such that t, T ty if ty =ty or (ty is finite divergent and ty = t; b
for some t' € T and | € Label U {_}), where t, is t, deprived of the tilde sign.

Expressions and commands are denoted by a map from an initial state to a
trace t. In the first case, if = div(t) then Ist(¢)(res) is the value of the expression.

Proposition 1. Given 7,7 € Typing, we expand the T ordering on traces to
Crr={ce X, — Tu | for every o € X, we have fst(c(o)) =o} . (1)

The pair (C, ,C) is a pointed CPO whose bottom is le ., =X€ X, 0.

Interpretations denote every f € F with an element of Cps).7|_; p(s).r|,- In-

deed, its input variables are p(f).s \ f and its output variable is named f.

Ezample 2. The program of Figure 10(a) is denoted by an interpretation which
denotes £ib with an element of Clyying [gibsint]-

Definition 6. The interpretations Z are maps I : F — (X — T) such that
I(f) € Cpiyrl_sp(s).71; for f € F. The T ordering is point-wise extended to T.

Proposition 2. The semantic operations on denotations of Figure 2 (the sub-
scripts will be usually omitted) are monotonic w.r.t. C.

The operation [op] applies an operation op from Figure 1. The operation ? joins
the denotation F of an expression with that of one of two commands, depending
on is_true and is_false on the final states of E. Since commands do not receive
a partial result in res, we restrict those states through .. The operations ®



[op] : C

Jrrt with 7,7’ € Typing, op: X, — X,
?r 1 Cr rlint/res] X C,z_,,,_ — Cr -, with 7 € Typing, res ¢ dom(r)
®r ot 2 (Crpr X Crot i) = Cp Liry with T, ', 7" € Typing
®bop,r + Cr rlty /res] X Cr rltg/res) > Cr 11
with 7,7’ € Typing, res & dom(t), t1,ts € Type,
and bopriiy frest * Zriey frest = (Zrtrg/rest = Epr)

> (f(v1,. . Vpry—1)) : T = Cr o, with 7 € Typing, {v1,...,vu,(5)—1} C dom(7)

o — op(o) if op(o) is defined
o—a otherwise

[op]. 1 (o) = {

E(o) if div(E(a))
E(o) — Si(LIst(E(0))2)
?-(E,S1,S2)(0) = if ~div(E(c)) and is_true,[;nt/res](ISt(E(a)))
E(o) — Sa(LlIst(E(0))a)
if = div(FE(o)) and isfalse [ins/res (Ist(FE(0)))

[ Si(0) if div(S:(0))
(S1®, 1 .1 S2)(o) = {51 (6) — Sa(Ist(S1(c))) otherwise.
Si(o)  if div(Si(a))
Si(o) = Sa(clia) if = div(S1(0)) and div(Sa(Ll1 1))

S] (0’) — SQ(Ll] _1) — [2
if =div(Si(0)), ~div(Sa(Lli2))
and bop.(s; /res1(11)(l2) is undefined
S1 ((T) — Sz(LllJ) — bopf[tl/rﬁs](ll)(lz) otherwise.

where 11 = |St(51 ((T)) and Iy = |St(S2(LllJ))

(S1 ®bop,r S2)(0) =

o i if div(i)

o — i — unscopef (o) (Ist(i)) otherwise

Xr (f(vi,...,vn))I)(0) = {

where i = I(f)(scopel"1"" ().

Figure 2. The signature and the implementation of the semantic operations.

and ®jep join two denotations S; and Sy. Divergent traces in S; are not joined,
since they represent an incomplete computation. Moreover, ®y,, applies a binary
operation bop to the final states of S; and Sy (L1 removes res from the final states
of S1). The operation > calls a function by using an interpretation.

Example 8. Assume that 7 is such that X, contains exactly three distinct states
o1, 02 and o3. Consider Sy, Se € C; ; such that

S](O’]):U] — 09 —)h o3 SQ(O’]):U] — 09
Si(02) = 02 —l2 o1 Sy(o2) = 09 —ls o3 —ke 0
Si(os) = 03 =" 01 > 03 Sy(o3) =03 =1 4y .

Let S =51 ® Sy. We have

S(o1) =01 = 09 —h 03 — 03 -l g S(02) = 02 Sl2 5

S((Tf;) = 03 —)l2 01 —)lg g3 — 03 —)ll 6’1 .



E-[i]T = [get_int’] E-ler = e2]I = E-[er]] ®= Er[e2]I
E- V]I = [get_var?] E-ler +ex]I = E-[er ]I ®+ Ere2]]
ENf(vrs e yvn)]L =< (f(v1, ... 50n))(T) .

Crlv:=e]l = & [e]I & [putvar’.] Crler;ea]I =Crlen[I @ Crle2]I
C-[let v:t in ]I = [expand”’] & C.p/m[c]I ® [restrict} /1]
C-[if e then c; else 3] = ?(E-[e]l,C-[ei]l, Cre2])
C-[while e do ]I = Ifp__ Afiz.?(E-[e]I,C-[c]I ® fiz,[nop.]) .

Figure 3. The rules of our denotational trace semantics.

By using the above operations, we build a denotational semantics for our
language. The map & [e] : I = C; ;- is shown in Figure 3 (for 7¢, see Definition
4). The basic cases of the denotation of an expression are immediate. For cases
like e; bop es, the denotations of the two expressions are joined through ®p,p.
For function call, we use 1. The map C.[] : C x Z — C. ; is shown in Figure 3.
The denotation of an assignment applies put_var to the final environments of the
denotation of the right hand side. The introduction of a local variable v evaluates
the code in a state expanded with v. Conditionals are modelled through the 7
operation. A while command is denoted by a least fixpoint over a conditional
[16]. It is well-defined since both C[] and £[] are monotonic (Proposition 2), and
because of Proposition 1. It is the least upper bound of an ascending transfinite
chain which starts from 1c, .

The semantics of a program is a least fixpoint defined through C[] [16].
Namely, for every f € F we initialise (expand) the variable f, we compute
the denotation of its code and we remove all the variables except f.

Definition 7. By Props. 1 and 2, the semantics of P = (F,¢,p) is defined as
Sp =, Ip where, letting 7 = p(f).7, f € F, i finite ordinal and | limit ordinal,

13(f)="Lec 15 (1) =lexpand! " D@, [e(N)1Tp @lrestrictse™ N, T ()=, o, T (f) -

T|_ i -r\f

5 Watchpoint Semantics

We specify a program point of interest (a watchpoint) through the command
watchpoint(l), with [ € Label. We expand the rules in Figure 3 with

C;[watchpoint(l)]I = [watch],,
For 7 € Typing and | € Label, [watch],; € C. . creates a —! transition, i.e.,
[watch], (o) =0 =' o . (2)

Note that the typing 7, in a watchpoint [ is statically known.



Assume we are not interested in the states before an unnamed transition, but
only in those before —! with I € Label, which can be selected through a map

w: T — (Label — p(X))

(for its explicit definition, see Definition 9) pointwise extended to denotations
(Eq. (1)) and interpretations (Def. 6). Instead of computing w(Sp) (Def. 7),
we want to push w inside the semantics, i.e., compute the abstract watchpoint
semantics induced by the abstraction w.

5.1 Why a New Semantics

Given t € T, by definition w(t) is more abstract than ¢, and requires less space
(memory) to be stored. Let ¢(x) be the space needed to store z. Since we are
particularly interested in the case when the program to be analysed is huge and
the number of watchpoints is relatively small, we can assume that

s(w(t)) <<(#) (3)

for t € T. Assume we want to compute w(t) where ¢ is a trace for the command
c1; ¢a, i.e., the concatenation of a trace ¢; generated by ¢; and a trace ¢, generated
by ¢o from Ist(t;). We can compute #1, abstract it in w(#; ), compute o, abstract
it in w(ty) and merge w(t;) and w(ts) into w(t). For this we need at most
my = max{s(t1)+s(w(t1)),s(w(t1))+s(w(ta))+s(t2)} space (we never hold both
t; and ¢2 in memory at the same time). Instead, if we compute ¢ and then w(t),
we need at least ma = <(t) +c(w(t)) = <(t1) +<(t2) + c(w(t1)) + ¢(w(t2)) space.
Since my < mes, pushing w inside the semantics induces a lighter calculation.
This claim does not work for the time of the analysis, since a state depends
on its predecessors in a trace. Hence all states must be considered during the
computation of the semantics, not just those before a —! transition. But the
watchpoint semantics reduces the cost in time of the analysis for other reasons.

1. A more abstract fixpoint computation might require fewer iterations, and
hence less space and time. Section 7 shows that this is very often the case.

2. Consider while e do ¢, where ¢ contains some watchpoints, ¢ is denoted by d
and e by d'. If we unfold d after d' until the fixpoint (Fig. 3), we then need to
scan a trace looking for the —! transitions. If, instead, we had a denotation
w(d) such that w(d)(o) = w(d(o)), we could just merge, during the fixpoint
calculation, the states for the same watchpoints, without scanning any trace.

3. Dealing with smaller data structures (as shown before) leads in general to
faster analyses. From Equation (3), this could mean sometimes that virtual
memory is not needed by the analyser, i.e., swapping is avoided.

4. Analyses based on a trace semantics use widening to avoid dealing with infi-
nite traces. For instance, [4] and [15] use regular trees, which add complexity
to the analyser. A watchpoint semantics does not need such a widening.

Consider how the analysis scales with the number of watchpoints. Of course,
fewer watchpoints means lighter data structures, i.e., less space requirements.



W.r.t. time, fewer watchpoints means faster analysis for points 1 and 3 above.

Finally since, for every watchpoint I, we need to compute the union (join) of the

states before a —! transition, it even means fewer joins, i.e., a faster analysis.
These considerations have been experimentally verified in Section 7.

5.2 The Semantics

We define here in detail the watchpoint semantics. To observe the states in the
watchpoints, we can abstract the traces in sets of states, one for each watchpoint.
But this abstraction induces too coarse optimal abstract operations, since the ®
operation (Figure 2) joins the traces through their last state. Thus, for better
precision, we abstract the traces in watchpoint traces, i.e., a set of states for every
watchpoint, collected into an element of YW", and a set for the final states.

Definition 8. Let
WY = {w € Label — p(X) | given I € Label we have w(l) € p(X;,)} .

A w e WY is finite if w(l) is finite for every l € Label. The set W*™ is a complete
lattice ordered w.r.t. the pointwise extension of C. Lub and glb are (pointwise)
U and N, its bottom is L. = Al € Label.)).

The set of watchpoint traces is T = UreTyping T~ where, for 7 € T'yping,

TY ={{w,s) |we WY se X U{~} and if s # ~ then w is finite} .
They are ordered as (w, s) C* (w, s) and (w,~) C* (w', s) if and only if w C w'.

Elements of WY are extentionally represented as [l; — Xy,... 1, — X,], mean-
ing that the label /; is mapped to the set of states X; for+ = 1,...,n. If a label
is not contained in that enumeration, it is assumed that it is mapped to 0.

Ezample 4. We have
([h = {os} s = {o2}].~) Y ([li = {01, 03}, 1o = {02}, ]l = {02,03}],01) -

A watchpoint trace (w, s) with s # ~ represents all convergent traces which
end with s and contain exactly the watchpoints in w. If s = ~, instead, it
represents all divergent traces which contain exactly the watchpoints in w.

Definition 9. Given t € T, we define w(t) € W and o : T = T" as
w(t)(l) ={o| o€ t} for every | € Label.
o (1) = {<w<t), ~)ifdivio)

(w(t),Ist(t)) otherwise.
Ezample 5. Let Label = {l1,1>}. Then

CM“](U] — 09 —)ll O3 — 04 —)lz 05 —)ll 0'6) = ([l] — {0’2,0’5},l2 — {0’4}],0’6>

04“](0'1 — 09 —)ll g3 — 04 —)12 (o1 —)ll 5’6) = <[ll — {0’2,0’5},l2 — {0’4}],'\4) .



(L op if op(o) is defined w o
[on]” { e [watchl}' () = (L{a}/l], )
(7) if BE(0).s =~
(o) wUS1 (O')S)UJS](I_F( ).s81).8)
(E, Sy, 1f E(0).s # ~ and is_true [int/res] (F(0).5)
(o) wU,Sg E(0).s1).w, S2(LE(0).s1).s)
1f E(0).s # ~ and isfalse |;n/res] (E(0).5)
_ if S1(0).s =~
(518" S2)(0) = { U Sa(S1(a).8).w, Sa(S1(0).s).s) otherwise.

if S1(0).s =~
<S‘1( ) w U Sa(LS1(0).s1).w, ~)
if S1(0).s # ~ and (S2(.S1(0).51).8 = ~ or b is undefined)
(S1(0).w U Sa(LS1(0).51).w,b) otherwise,

with b = bop-(1; /res)(S1(0).5)(S2(LS1(0).52).5)

(i.w, ~) ifi.s=nr~
(i.w, unscope (o) (i.s)) otherwise,

(81 ®y,p, S2)(0) =

Figure 4. The operations on watchpoint traces.

We define now the abstract counterpart of the set C ;+ of Equation (1).

Proposition 3. Let 7,7 € Typing and W, . = X, — T. The C" order (o)
is pointwise extended to Wy .+ (C: ;). The pair (W; -,C") is a pointed CPO
with bottom Ao € X..(L,~), and v is well-defined, onto, strict and additive.

w

Proposition 4. The operations in Fig. 4, whose signatures are the a”abstraction
of those in Fig. 2, are monotonic and " -optimal w.r.t. those in Fig. 2.

Ezample 6. Consider the concrete denotations of Example 3. Let S{* = o™ (S}),
S¥ = a¥(Sy) and S¥ = a*(S). We have

Si'(o1) = ([li = {02}],03) S“)(Ul) =(L,~)
51 (02) = ([l2 = {02}],~) 53 (02) = ([la = {03}, 13 = {02}]. ~)
S (03) = ([l = {03}, 13 = {o1}],03)  S3(03) = ([l1 = {o3}],~) .

Moreover, we have that SY is

S (o1) = ([lh = {o2,03}],~) S§"(a2) = ([la = {o2}],~)
S§¥(o3) =([lh = {o3},lo = {os},l5 = {o1 }],~) ,

which is ezatcly S;* @ Sy.

Like in Section 4, we define a watchpoint semantics Sp. By Propositions 3 and
4, it computes the same information about watchpoints as our trace semantics,
ie.,

" (Sp) = Sp . (4)



(06 (n) = (L,op(n))  [watehls*(n) = (L[n/i], n)
?°°(E, S1,S82)(n) = (E(n).wU S1(Lni).w U Sa(Lnga).w, S1(Lne2).n U Sa(Lnyso).n)
where 1y = is_true,[;n¢/res] (E(1).1) and ny = isfalse [ins/res) (E(0).7)
(81 ®% S2)(n) = (S1(n).w U S2(S1(n).n).w, S2(S1(n).n).n)
(S1 ®pop S2) (1) = (S1(n).w U S2(LS1(n).12).w, bop-1s; /res (S1(1).7) (S2(-S1(n).12).1))

< (f(v1, ..., v2))(I)(n) = (i.w,unscope’ (n)(i.n)), where i = I(f)(scope’"1~~"" (n)).

Figure 5. The operations on collecting watchpoint traces.

The collecting or static semantics [6] S5 is the powerset lifting of S¥. It
works over p(W; /), i.e., it models properties of watchpoint denotations. Since

we are interested in properties of states, we define below a semantics S’ which

w)

works over watchpoint traces of sets of states. It is an AT of Sg( and will be

called collecting though, strictly speaking, the real collecting semantics is Sﬁ(“’).

Definition 10. The set of collecting watchpoint traces T = Ureryping T’
where, letting T € Typing and W = WY (Definition 8) T° = {{w,n) | w €
W and n € p(X;)}, is ordered as (wy,m)C (wa, n2) iff w1 Cwa and n Cno.

Denotations are identified by their values on singleton sets. Denotations with
more than one argument will be useful at the end of this section. This is for-
malised below.

Proposition 5. Letn > 1 and v,...,7,, 7 € Typing. Let CO, . . be

co € p(Xr) - co(m) -+ (mn) = <Ua1 €Nty on€nn co({o1}) -+ ({on})w, (5)
s p(Er) o TE U oo mn oot ({on b)) '

The C° order of Definition 10 is pointwise extended to denotations CO. The
pair (COr, _ r. +,C) is a complete lattice with bottom Amy - - Any,. (L, 0).

A collecting watchpoint trace represents a set of watchpoint traces. This
abstraction induces optimal abstract counterparts of the operations in Figure 4.

Proposition 6. Let a® : o(T"Y) = T be a®(S) = (Usestw,{t.s | t €
S and t.s # ~}). Its extension a® : p(W: ) = CO. 1, for 7,7" € Typing,
given by (a®®(W))(n) = a®°({w(o) |w € W and o € n}) for n € p(X;), is well-
defined, onto, strict and additive (hence, the abstraction of a Galois insertion,).

Proposition 7. The operations in Figure 5 are monotonic and ac’-optimal
w.r.t. the pointwise extension of those in Figure 4.

We define a collecting watchpoint semantics S5’. We have S’ = ac"(Sﬁ’,(w)).

The operations in Figure 5 use objects in p(X) (like S;(n).n in ®<), W
(like Si(n).w in ®°) and CO (like S; in ®°°). To simplify the abstraction of
Section 6, we compile them in terms of smaller operations over CO only, given
in Figure 6. The compilation is shown in Figure 7.

Proposition 8. The operations in Figure 5 and those in Figure 7 are the same.



[op] : (7(),,_1’___ s fopr X X X, [wateh]; : CO~ +

LW Oo‘r,rl =4 Oo‘r,rl

0:CO., 0 X COzpy o+ X COz 7 = CO_ U:CO2 _, = CO, .
lop] = An1 ... Ann (L,op(N1, - ,Mn)) [wateh]; = An.(L[n/l], n)
T.w = An.(T(n).w,0) To(Th,...,Tn)=An.T(Ti(n).m) - (Tu(n).n)

_ Ti(n).w U Ta(n).w,
T UTQ*)‘"‘< Ti(n).nUTe(n)m /-

Figure 6. A minimal set of operations over CO.

LTy = [restrict"**] o T, [op]®° = [op] , [watch];® = [watch],
2°°(H, 81, 82) = B.w U (81 0 LTy 1) U (Sa 0 LTy )
where Ty = [is_true [int/res)] © E and Ty = [isfalse,[int/res)] © E

S1®°“ Se = S1.w U (S208571)
S1 ®;Zp Sy = S1.w U (S2 008113).w U [bop,(z; rest] © (S1,S2 01.S11)

< (f(v1, ..., va))(I) = Ti.w U [unscope’ ] o ([nop], T;) where T; = I(§) o [scopel?1"n].

Figure 7. The operations in Figure 5 in terms of those in Figure 6.

6 From Abstract Domains to Abstract Semantics

We show here how every abstraction of the domain of states (Definition 3) in-
duces an abstraction of the denotations CO (Equation (5)) and of their opera-
tions (Figure 6) and hence of the collecting watchpoint semantics of last section.
This reduces the definition of a static analysis to the definition of abstract states.

Every abstract denotational semantics works over abstract denotations which
are maps from abstract inputs to abstract outputs. In our watchpoint semantics,
the abstract outputs are actually abstract traces. The problem here is how to
define the concretisation of such abstract denotations. If a concrete state belongs
to two abstract inputs, how should it behave in the concretisation? We do not
consider this problem in details here, since it has already been studied in a more
general setting. Consider for instance the functional partitioning technique in
[1]. Instead, we assume here that in the lattice of abstract states there exists a
set, of union-irreducible states in terms of which all other abstract states can be
expressed. This condition holds for the case of sign analysis shown in Section 7.

For 7 € Typing, let (D;,C) be a complete lattice and a” and y”~ the
abstraction and concretisation maps of a Galois insertion from (p(X;),C) to
(D,,C) (typings will be often omitted).

Definition 11. Let W* = {w € Label— D | for | € Label we have w(l) € D, }.
The set of abstract watchpoint traces is 7% = Urcryping T, where

T8 ={{w,d) |weW* andd € D,} for every T € T'yping,



lop]® = Adi1 ... Adn.(L,a” (op(v"(d1), ..., 7" (dn)))) [wateh]] = Ad.(L[d/1], d)
T.w” = XdAT(d).w, D)
To" (T1,....Tn) = Ad. Ujrcg T(Ti(d")) - - (Tn(d")) , with S € p(d)

Ty (d).w UP Ta(d).w, >

T (d).dUD To(d).d U” is the best approximation of U over D.

T U™ Ty = Ad.<

Figure 8. The generic abstract counterparts of the operations of Figure 6.

ordered as (w1, d1) C% {(wa,ds) if and only if wy T wy (pointwise) and di T d.
The map oP is expanded to T°° as oP ((w,n)) = (\.aP= (w(l)), P (n)).

Definition 12. Let 7 € Typing. The union-reductions of d € D, are
p(d) = {S € p(D+) | 7°(d) = Usesy”(d) and #p(d') = 1 for every d' € S} .

If #p(d) = 1 (i.e., p(d) = {{d}}) we say that d is union-irreducible. If every
d € D, is such that p(d) # (), we say that D, is union-reducible.

Proposition 9. Assume that D, is union-reducible for every 7 € Typing. Given
n>1andm,...,m, 7 € Typing, let A, . . . be

a is monotonic and given 1 < i< n and S € p(d;)
{(l € l).r1 — -..DT" — D, a(dy) -+ (di) -+ (dn) = UZTEIS a(dy) - (d') - (dn) } ) (6)

i.e., denotations in A, . . . are identified by the union-irreducible elements.
Let a® : COqy,. vt — Aryornr be a%(co) = aPcoyP. The set Arl o
is a complete lattice with bottom Ady ... \d,.(L, Lp_) and o is well-defined,
onto, strict and additive (hence, the abstraction map of a Galois insertion).

Proposition 10. Assume that D, is union-reducible for every T € Typing. The
operations in Figure 8 are the best approximations over A of those in Figure 6
(note that o® is not the composition of functions).

In conclusion, given a union-reducible abstraction D, of p(X,) for every
T € Typing, and the best approximations over D of the powerset extension of the
operations of Figure 1 (used in [op]®) and of U, we obtain an abstract watchpoint
semantics, correct w.r.t. the collecting watchpoint semantics of Subsection 5.2.
As said before, similar results can be obtained in the more general case of non-
union-reducible lattices by using the functional partitioning technique of [1].

7 Implementation

We describe here our implementation in Prolog of the watchpoint semantics
of Sections 5 and 6 instantiated with sign analysis. It can be downloaded from
http://www.sci.univr.it/~spoto/watch.tar.gz. We have chosen Prolog for
fast prototyping, and sign analysis because it is a well-known, simple analysis.



[+/res] ifi>0

nop” (<) = < (getint’)*(c) = {i[,/res] ifi <0

(getvar?)* () = s[s(v)/res]  (putwar})*(s) = s[s(res)/v]| - res
Ga[—/res] ii;;(re.(el;)f_ ) Ga[+/res] if ¢i(res) = ca(res) = +
=2(c1)(s2) = or vi?e versaﬁ +1(c1)(c2) = § s2[~/res] if Cl(re.s) = ca(res) = —
s2[u/res] otherwise 2lufres] otherwise
(scopel> "1 2"m ) (¢) = [11 = <(v1), .. n > <(vn)]  where (11,...,tn) = p(f).5\ f
(unscope])* (1) (s2) = calsa(f) /res]  (restrict}*)*(6) =|—vx  (expand?™*)*(s) = <[+/v]
sy Jempty ifc(res)=— s(oy = Jempy - ifc(res) =+
is-true; () = {g[+/res] otherwise is-falser (<) = {c[f/res] otherwise

s1(v) if 61(v) = c2(v)

Us (empty) (z) = UZ (z)(empty) = 2 U2 (¢1)(s2) = Av € dom(7). {u otherwise.

Figure 9. The abstract operations over the domain of signs.

The module analyser.pl implements the fixpoint calculation (Figure 3 and
Definition 7) by using the semantic operations (Figures 7 and 8) implemented
in the module semantic.pl. The module typing.pl manipulates typings. The
module domain.pl implements the abstract counterparts of the operations of
Figure 1. Only this module depends from the domain of analysis.

Our domain for sign analysis is similar to that in [6].

Definition 13. For every 7 € Typing, let S, = {empty} U {¢ : dom(r) —
{+,—,u}}. The abstraction map o : p(X;) — S; is such that, for X # 0 and
v € dom(T),

+ ifo(v) >0 for everyo € X
a() = empty a(X)(v) =49 — ifo(v) <0 for every o € X
u  otherwise.

Let < be reflexive and let + < u and — < u. The set S, is ordered as empty C° s
for every s € S; and ¢; C° ¢ if and only if ¢1(v) < 2 (v) for every v € dom(1).
The optimal counterparts over S of the powerset extension of the operations in
Fig. 1 are (all but U®) strict on empty. Otherwise, they are given in Figure 9.

Given 7 € Typing, the union-irreducible elements of S, are empty and those
¢ € S; such that ¢(v) # u for every v € dom(7). If ¢(v) = w for some v €
dom(7), instead, the concretisation of ¢ can be shown to be the union of the
concretisations of ¢[+/v] and ¢[—/v]. Therefore, we have

for all v € dom(7) we have ¢'(v) # u }

p(empty) = {empty} p() = {gl and if ¢(v) # u then ¢(v) = ¢'(v)

By the results of Section 6, the abstract denotations are maps whose domain is
made of empty and of all ¢ which never bind a variable to u. The values for the
other elements of S, are induced.



F = {fib}

| 7 — interpret.
p(fib) = ((fib,n), [fib — int,n — int]) Analysing [fib] : iteration 1
Analysing [fib] : iteration 2
¢(fib) = if (n =< 1) then fixpoint reached
Yowatchpoint(pl);
fib:=1 Procedure : fib
else
Ywatchpoint(p2); Input : empty Output : empty
let nl: int in let n2: int in Watchpoints : p3: empty
Ywatchpoint(p3);
nl:=n—1; Input : [+] Output : [+]
Yowatchpoint(p4); Watchpoints : p3: [+, +, +, +]
n2 :=n— 2;
Yowatchpoint(pb); Input : [—] Output : [+]
fib := fib(n1) + fib(n2); Watchpoints : p3: empty
Ywatchpoint (p6)

(a) (b)

Figure 10. The Fibonacci procedure and one of its possible analyses.

Elements of S, are implemented as the term empty or lists of +, - and u,
ordered alphabetically w.r.t. the names in dom(7). For instance, if 7 = [a —
int,c v int,b — int] then ¢ = [a = +,¢ = —,b — wu] is implemented as
[+,u,-]. We are aware of cleverer implementations, but in this paper we focus
on the semantics.

The input of the analyser is a Prolog term which represents the abstract syn-
tax of a program. Figure 10(a) shows a program for the n-th Fibonacci number,
with six possible watchpoints. The file fib.pl contains its abstract syntax. We
download it with [£fib] . and we analyse it with interpret. Figure 10(b) shows
the result when only watchpoint pz is not commented. The input of fib is the
value of n, its output is the value of the variable £ib at its end. As you can see,
if we start with an empty set of states we never reach watchpoint ps. If we start
with a state where n is positive, the output is positive and we reach watchpoint
p3 with a state where £fib, n, n1 and n2 are positive. Indeed the initial value
of a variable is 0 and in the else branch we have n > 1. Finally, if we start
with a state where n is negative, the output is positive and watchpoint ps is
never reached. Indeed, if n < 0 the then branch is executed. If we start with
an unknown value for n we would obtain the least upper bound of the last two
cases.

7.1 The Costs in Space and in Time of the Analysis

To estimate the space used by our analyser independently from its implemen-
tation, we count the number of Prolog atoms contained in the denotations it
computes (weight). Fig. 11 gives the weight for the analysis of fib (Fig. 10(a))
and pi (a Monte Carlo algorithm computing =), as a function of the number of
active watchpoints. For now, consider only the lines marked with Abstract In-
terpretation. Horizontally, an integer like 3 means that only watchpoints pq, ps
and p3 were active. As you can see, the weight grows with the number of active
watchpoints. When passing from 0 watchpoints to 1 watchpoint in Fig. 11(a)



weight weight

350,000

325,000

300,000 Abstract Interpretation (Al)

275,000
1,500,000 Abstract Interpretation (Al)

125,000 400,000

ows 1 2 3 4 5 6 ws1 2 3 4 5 6 7 8 9 10 11 12 13 M4 15 16 17 18

250,000
225,000
200,000 Abstract Compilation (AC) 1000000
175,000

150,000 Abstract Compilation (AC)

(a) £fib (b) pi

Figure 11. The cost in space of the analysis w.r.t. the number of active watchpoints.
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Figure 12. The cost in time of the analysis w.r.t. the number of active watchpoints.

and from 10 watchpoints to 11 in Fig. 11(b) one more iteration is needed to
reach the fixpoint. Thus less watchpoints does mean less iterations (Subs. 5.1).

We expect the time of the analysis to grow with the number of watchpoints,
proportionally with the cost of the abstract join (Subs. 5.1). Fig. 12 confirms
this. The constant ¢ is a fictitious cost added to the computation of the join.
Note that domains more realistic than signs usually feature complex joins. Note
again the jump when one more iteration is needed for the fixpoint calculation.
The benchmark nested shows the same behaviour of Fig. 12. But if a benchmark
does not contain recursive predicates nor conditionals nor iterative constructs,
then the time for its analysis is independent from the number of watchpoints,
like for arith, whose abstract execution tree is actually a finite trace.

Note that [4], [5] and [15] do not provide a link to an implementation.

3



Benchmark| Watchpoints [AT/AC][Iterations|[Time (seconds)|[Weight (atoms)
fib [} Al 2 5.92 160795
fib [ AC 2 4.03 142299
fib {p1.. . .ps}| Al 3 9.19 340631
fib {p1.....ps}| AC 3 5.28 305363
pi 0 Al 2 16.61 833419
pi 0 AC 2 8.91 463294
pi b1, pis)| AT 3 25.93 2107643
pi {p1,....pis}| AC 3 10.58 1287127

arith [ Al 1 303.12 7049327
arith 0 AC 1 308.42 7049327
nested 0 Al 3 661.43 14253268
nested 0 AC 3 369.99 8419626

Figure 13. A comparison of abstract interpretation with abstract compilation.

7.2 Abstract Compilation

In Figure 10(a) we note that the denotation of the then branch is independent
from the partial denotation computed for £ib. Thus, it does not need to be com-
puted at every iteration, like, instead, that of the else branch, which contains
two calls to fib. However, its first part, till the watchpoint ps, does not contain
recursive calls, and can be safely analysed only once. Those optimisations are
examples of abstract compilation (AC). Our analyser uses AC by invoking the
goal compile. The result is like that in Figure 10(b), with smaller space and time
costs, as Figures 11 and 12(c) show for weight (space) and time, respectively.
Moreover, Figure 12(c) shows that the time still depends from the number of
watchpoints and the cost of the join. Finally, Figure 13 shows that AC leads very
often to major improvements, but is of no help with the flat benchmark arith.

8 Conclusions

We have shown that, if we are interested in the analysis of a program in a
small set of watchpoints, it is worth abstracting a trace semantics in a lighter,
compositional and still as precise watchpoint semantics. We have shown through
an implementation that it is focussed, i.e., its complexity grows with the number
of watchpoints, and that abstract compilation improves significantly the fixpoint
calculation.

The analysis process is defined as a fixpoint computation. For better effi-
ciency, if a set of call patterns is known for some functions, this computation
can be done on demand, simulating a top-down analysis. This means that the
abstract denotations are enriched at fixpoint computation time whenever the
behaviour of a function for a new input is needed.

Our results apply to the modular analysis of large programs and to the
analysis inside smart cards, where memory requirements must be kept small.
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