
Wathpoint Semantis: A Toolfor Compositional and Foussed Stati AnalysesFausto SpotoDipartimento Sienti�o e TenologioStrada Le Grazie, 15, Ca' Vignal, 37134 Verona, Italyspoto�si.univr.itAbstrat We abstrat a denotational trae semantis for an impera-tive language into a ompositional and foussed wathpoint semantis.Every abstration of its omputational domain indues an abstrat, stillompositional and foussed wathpoint semantis. We desribe its im-plementation and instantiation with a domain of signs. It shows that itsspae and time osts are proportional to the number of wathpoints andthat abstrat ompilation redues those osts signi�antly.1 IntrodutionA ompositional analysis of a omplex statement is de�ned in terms of that of itsomponents. Then the analysis of a proedure depends only on that of the pro-edures it alls and the analysis of a huge program an be easily kept up-to-date.This is important if a loal hange is applied to the program, during debuggingor as a onsequene of program transformation. A foussed or demand-drivenanalysis is direted to a given set of program points, alled wathpoints, and hasa ost (in spae and time) proportional to their number. This is important ifonly those points are relevant. For instane, zero information is typially usefulonly before a division. Class information for objet-oriented programs is typiallyuseful only before a method all. During debugging the programmer wants toanalyse a program in very few points, with a ost proportional to their number.Our �rst ontribution here is the de�nition of a ompositional and foussedwathpoint semantis, as an abstrat interpretation (AI) [6℄ spei�ed by thewathpoints of interest of a more onrete trae semantis. An optimality result(Equation (4)) states that no preision is lost by this abstration w.r.t. theinformation at the wathpoints. The omputational domain is identi�ed as a datastruture with some operations. The seond ontribution states that every AI ofthe omputational domain indues an abstration of the wathpoint semantis.This redues the problem of stati analysis to that of the development of abstratdomains. The third ontribution is the desription of our implementation of thewathpoint semantis instantiated for sign analysis. It shows that the spae andtime osts of the analysis are proportional to the number of wathpoints. The�nal ontribution is to show that abstrat ompilation [11℄ leads to a signi�antimprovement in the time and spae osts of the analysis.

1.1 Related WorksTraditionally, ompositionality is synonym with denotational semantis. But theusual denotational semantis [16℄ provides an input/output haraterisation ofproedures whih is too abstrat to observe their internal behaviour. This hasbeen reognised in [5℄, where Cousot models information at internal programpoints through a more onrete, denotational trae semantis. Here, a proedureis denoted by a map from an initial state to a trae of states representing itsexeution from the initial state. Our trae semantis is a instane of the maxi-mal trae semantis of [5℄. Even [4℄ observes that traes ontain more informa-tion than a traditional input/output denotation w.r.t. software pipelining, loop-invariant removal and data alias detetion. That framework is however basedon an operational de�nition. In [15℄ an operational trae semantis is de�nedand abstrated through AI into an abstrat trae semantis. The abstration ofa trae is a (regular) tree, beause of the non-deterministi nature of the ab-strat semantis. Information at program points (what they all the olletingsemantis) is extrated from those trees after the �xpoint of the semantis isreahed. Thus, their analysis is not foussed, sine the whole trae semantis(the abstrat trees) must be omputed and then projeted on program points.This is justi�ed by the fat that they are interested in properties of traes, likethose onsidered in the ontext of model-heking. However, for properties ofstates, like in sign, interval, lass and seurity ontext analysis of variables (and,more generally, in all those analyses alled �rst-order in [12℄, page 210), treesare not needed and an be safely abstrated into sets of states.Abstrat denotational semantis need a representation of the abstrat in-put/output behaviour of a proedure. Sine abstrat inputs an partially over-lap, the meaning or, in abstrat interpretation words, the onretisation of anabstrat denotation is not so easily devisable. In Setion 6 we show a solutionwhen the abstrat domain elements an be written in terms of union-irreduibleelements. For the general ase, we rely on the funtional partinioning tehniquede�ned in [1℄.Foussed or demand-driven frameworks for analysis have been developed inthe past. In [2℄ bakward propagation of assertions was applied to the debuggingof a high-order imperative language. In [8,9,13℄ bakward dataow analysis froma given query is de�ned and shown more eÆient than an exhaustive, unfoussedanalysis. The analyses in [8,9℄ are provably as preise as the orresponding un-foussed versions for distributive �nite dataow problems, while our optimalityresult (Equation (4)) holds for every abstrat domain. Queries an be hekedto hold in a given program point, but annot be omputed by the analysis. Itis not shown how those analyses sale w.r.t. the number of queries. No notionof omputational domain is de�ned, whih makes harder the de�nition of newabstrat analyses. Abstrat ompilation annot be applied beause those anal-yses are not ompositional. In [1℄ it is studied a very general and abstrat wayof looking at the problem of loalised analyses in a given set of program points.However, its atual appliation to a real programming language is not takledthere.

Abstrat ompilation (AC) was born and applied only in the ontext of theanalysis of logi programs [3,11℄. It is an optimised omputation of the �xpoint ofan abstrat semantis where at the i-th iteration part of the analysis is ompiledwhen it beomes lear that it will not hange at the (i+ 1)-th iteration.Our work has been heavily inuened by the systemati onstrution of se-mantis for logi programming from the observable property of interest [10℄.There, semantis for resultants, all patterns and omputed answers of logi pro-grams are derived through AI of the very onrete semantis of SLD-derivations.In partiular, the all pattern semantis ollets the information in some programpoints only.1.2 Plan of the PaperSetion 2 introdues some preliminary notations. Setion 3 de�nes the simpleimperative language used in the paper. Setion 4 de�nes the onrete trae se-mantis whih is then abstrated into our wathpoint semantis of Setion 5and its olleting version. Setion 6 shows how every abstrat interpretation ofthe onrete omputational domain indues an abstrat wathpoint semantis.Setion 7 desribes our implementation of the wathpoint semantis instantiatedfor sign analysis. Setion 8 onludes. Proofs are omitted.2 PreliminariesA sequene of elements from a set S is denoted by seq(S). The ardinality of aset S is denoted by #S. A de�nition like S=ha; bi, with a and b meta-variables,silently de�nes the seletors s:a and s:b for s 2 S. For instane, De�nition 8de�nes t:w and t:s for t 2 T w� . An element x 2 X will often stand for thesingleton fxg � X .The domain (odomain) of a funtion f is dom(f) (d(f)). A total (partial)funtion is denoted by 7! (!). We denote by [v1 7! t1; : : : ; vn 7! tn℄ a funtionf whose domain is fv1; : : : ; vng and suh that f(vi) = ti for i = 1; : : : ; n. Itsupdate is f [d1=w1; : : : ; dm=wm℄, where the domain an be potentially enlarged.By f js (f j�s) we denote the restrition of f to s � dom(f) (to dom(f) n s).A pair (C ; �) is a poset if � is reexive, transitive and antisymmetri on C.A poset is a omplete lattie when least upper bounds (lub) and greatest lowerbounds (glb) always exist, a omplete partial order (CPO) when lubs exist forthe non-empty hains (totally ordered subsets). A CPO is pointed when it has abottom element. A map is additive when it preserves all lubs. If f(x) = x thenx is a �xpoint of f . If a least �xpoint exists, it is denoted by lfp(f).Let (C ; �) and (A; �) be two posets (the onrete and the abstrat domain).A Galois onnetion [6,7℄ is a pair of monotoni maps � : C 7! A and : A 7! Csuh that � is extensive and � is redutive. It is a Galois insertion when �is the identity map, i.e., when the abstrat domain does not ontain uselesselements. This is equivalent to � being onto, or one-to-one. The abstration �

and the onretisation determine eah other. If C and A are omplete lattiesand � is additive, it is the abstration map of a Galois onnetion.An abstrat operator f̂ : An ! A is orret w.r.t. f : Cn ! C if �f � f̂ .For eah operator f , there exists an optimal (most preise) orret abstratoperator f̂ de�ned as f̂ = �f. If f̂� = �f , we say that f̂ is �-optimal w.r.t. f ,i.e., f̂ omputes the same abstrat information as f .In AI, the semantis of a program is the �xpoint of some f : C 7! C , whereC is the omputational domain [5℄. Its olleting version [6℄ works over propertiesof C , i.e., over }(C) and is the �xpoint of the powerset extension of f . If f isde�ned through suboperations, their powerset extensions and [(whih mergesthe semantis of the branhes of a onditional) indue the extension of f .3 A Simple LanguageOur language is left expandable at the prie of some redundany in the de�ni-tions. Integers are its only basi type, with two operations (= and +). Booleansare implemented as integers (false is represented by a negative integer and trueby any other integer). We do not have proedures but only funtions. Thoselimitations are just meant to simplify the presentation. Our framework an beextended to ope with those missing items.De�nition 1. Let Id be a set of identi�ers and F � Id a �nite set of funtionsymbols. Expressions E and ommands C are de�ned by the grammare ::= i j v j f(v1; : : : ; vn) j e = e j e+ e ::= (v := e) j ; j let v :t in j if e then else j while e do with Type = fintg, Int = Z, t 2 Type, i 2 Int, f 2 F and v; v1; : : : ; vn 2 Id.A typing gives types to a �nite set of variables. The map Pars binds everyfuntion to the typing (its signature) and the list of its parameters. This listprovides the order of the variables in the de�nition of the funtion. The funtionCode binds a funtion symbol to its (syntatially orret and type-heked)ode. Loal variables are always introdued by a let onstrut.De�nition 2. We de�ne Typing = f� : Id! Type j dom(�) is �niteg, Code =(F 7! C) and Pars = (F 7! seq(Id) � Typing). If p 2 Pars and f 2 F , thenp(f) = hs; �i, where f 2 s and dom(�) = s. The variable f holds the return valueof the funtion, like in Pasal.A program is spei�ed by F and two elements in Code and Pars. In thefollowing, we assume that we have a program P = hF ; ; pi.Expressions have a type in a typing. In our ase, type� (e) = int for e 2 E .Example 1. Figure 10(a) gives a representation of the program for omputingthe n-th Fibonai number (lines introdued by % are omments and will bedisussed later). Note that the name fib of the (only) funtion in the programis used to hold its result value. Moreover, it is desribed by the Pars map p ofthe program.

nop� : �� 7! ��get inti� : �� 7! ��[int=res℄ with res 62 dom(�); i 2 Intget varv� : �� 7! ��[�(v)=res℄ with v 2 dom(�); res 62 dom(�)put varv� : �� 7! ��j�res with res 2 dom(�); v 2 dom(�); v 6= res; �(v) = �(res)=� ;+� : �� 7! (�� 7! ��) with res 2 dom(�); �(res) = intsopef;v1;:::;v#p(f):s�1� : �� 7! �p(f):�j�fwith p(f):s n f = h�1; : : : ; �ni and fv1; : : : ; v#p(f):s�1g � dom(�)unsopef� : �� 7! (�p(f):�jf ! ��[p(f):�(f)=res℄) with res 62 dom(�)restritvs� : �� 7! ��j�vs with vs � dom(�)expandv:t� : �� 7! ��[t=v℄ with v 62 dom(�); t 2 Typeis true� ;is false � }(��) with �(res) = int :nop� (�) = � get inti� (�) = �[i=res℄get varv� (�) = �[�(v)=res℄ put varv� (�) = �[�(res)=v℄j�res+� (�1)(�2) = �2[�1(res) + �2(res)=res℄ =� (�1)(�2) = (�2[1=res℄ if �1(res) = �2(res)�2[�1=res℄ if �1(res) 6= �2(res)sopef;v1;:::;vn� (�) = [�1 7! �(v1); : : : ;�n 7! �(vn)℄ where h�1; : : : ; �ni = p(f):s n funsopef� (�1)(�2) = �1[�2(f)=res℄ restritvs� (�) = �j�vs expandv:t� (�) = �[init(t)=v℄is true� (�) if and only if �(res) � 0 is false� (�) if and only if �(res) < 0init(int) = 0 :Figure 1. The signature and implementation of the operations over the states.4 Trae SemantisThe omputational domain of states desribed here is used below to de�ne a traesemantis for our language. Eah of its abstrations will indue an abstration ofthat semantis (Setion 6), as usual in AI (see for instane [14℄). More omplexnotions of states ould be used here, maybe dealing with loations and memory.De�nition 3. Let V alue = Int and � = [�2Typing�� where, for � 2 Typing,states � 2 �� map variables to values onsistent with their delared type, i.e.,�� = �� ����� 2 dom(�) 7! V alue andfor every v 2 dom(�) if �(v) = int then �(v) 2 Int � :States are endowed with the operations shown in Figure 1.In the operations of Figure 1, the variable res holds intermediate results. Thenop operation does nothing. The get int (get varv) operation loads an integer(the value of v) in res . The put varv operation opies the value of res in v. Thereis no result, then res is removed. For every binary operation like = and +, thereis an operation on states. The operations sope and unsope are used before andafter a all to a funtion f , respetively. The former reates a new state in whih

f an exeute. Its typing p(f):� j�f desribes the input parameters (the variablef is not among them). The latter opies in the variable res of the state beforethe all, i.e., its �rst argument, the result of f , i.e., the variable f of its seondargument. The operation expand (restrit) adds (removes) variables from a state.The is true (is false) prediate heks whether res ontains true (false).Sine res plays a major role, we introdue the following abbreviations.De�nition 4. For � 2 Typing, � 2 �� and e 2 E, let �e = � [type� (e)=res℄ andx�y� = restritres� (�) (� will be always omitted).We de�ne now an instane of the maximal trae semantis of [5℄.De�nition 5. A trae t 2 T is a non-empty sequene in �. A onvergent trae�1 ! � � � ! �n represents a terminated omputation, a �nite divergent trae�1 ! � � � ! ~�n a yet non-terminated omputation and an in�nite divergenttrae �1 ! � � � ! �n ! � � � a divergent omputation. Arrows are given labelsl 2 Label, like in !l, meaning that the interpreter was then in a wathpointlabelled with l (see Setion 5). We assume ! is given a hidden mark 62 Label.The �rst state of t 2 T is fst(t). The prediate div(t) means that t is divergent.If : div(t), the last state of t is lst(t). For l 2 Label and � 2 �, we let � 2l tmean that � ours in t before an arrow !l.The v ordering on traes (extension of �nite divergent traes) is the minimalrelation suh that t1 v t2 if t1 = t2 or (t1 is �nite divergent and t2 = t1 !l t0for some t0 2 T and l 2 Label [f g), where t1 is t1 deprived of the tilde sign.Expressions and ommands are denoted by a map from an initial state to atrae t. In the �rst ase, if : div(t) then lst(t)(res) is the value of the expression.Proposition 1. Given �; � 0 2 Typing, we expand the v ordering on traes toC�;� 0 = f 2 �� 7! T� 0 j for every � 2 �� we have fst((�)) = �g : (1)The pair hC�;� 0 ;vi is a pointed CPO whose bottom is ?C�;�0 = �� 2 �� :~�.Interpretations denote every f 2F with an element of Cp(f):� j�f ;p(f):� jf . In-deed, its input variables are p(f):s n f and its output variable is named f .Example 2. The program of Figure 10(a) is denoted by an interpretation whihdenotes fib with an element of C[n7!int℄;[fib7!int℄.De�nition 6. The interpretations I are maps I : F 7! (� ! T) suh thatI(f) 2 Cp(f):� j�f ;p(f):� jf for f 2 F . The v ordering is point-wise extended to I.Proposition 2. The semanti operations on denotations of Figure 2 (the sub-sripts will be usually omitted) are monotoni w.r.t. v.The operation [op℄ applies an operation op from Figure 1. The operation ? joinsthe denotation E of an expression with that of one of two ommands, dependingon is true and is false on the �nal states of E. Sine ommands do not reeivea partial result in res, we restrit those states through xy. The operations

[op℄ : C�;�0 ; with �; � 0 2 Typing; op : �� ! ��0?� : C�;�[int=res℄ � C2�;� 7! C�;� ; with � 2 Typing; res 62 dom(�)
�;�0;�00 : (C�;�0 � C�0;�00) 7! C�;�00 ; with �; � 0; � 00 2 Typing
bop;� : C�;�[t1=res℄ � C�;�[t2=res℄ 7! C�;�0with �; � 0 2 Typing; res 62 dom(�); t1; t2 2 Type;and bop�[t1=res℄ : ��[t1=res℄ 7! (��[t2=res℄ ! ��0)./� (f(v1; : : : ; v#p(f)�1)) : I 7! C�;� ; with � 2 Typing; fv1; : : : ; v#p(f)�1g � dom(�)[op℄�;�0 (�) = (� ! op(�) if op(�) is de�ned� ! ~� otherwise?� (E;S1; S2)(�) = 8>>>>><>>>>>:E(�) if div(E(�))E(�) ! S1(xlst(E(�))y)if : div(E(�)) and is true�[int=res℄(lst(E(�)))E(�) ! S2(xlst(E(�))y)if : div(E(�)) and is false�[int=res℄(lst(E(�)))(S1
�;�0;�00 S2)(�) = (S1(�) if div(S1(�))S1(�) ! S2(lst(S1(�))) otherwise.(S1
bop;� S2)(�) = 8>>>>>>><>>>>>>>:S1(�) if div(S1(�))S1(�) ! S2(xl1y) if : div(S1(�)) and div(S2(xl1y))S1(�) ! S2(xl1y)! ~l2if : div(S1(�)), : div(S2(xl1y))and bop�[t1=res℄(l1)(l2) is unde�nedS1(�) ! S2(xl1y)! bop�[t1=res℄(l1)(l2) otherwise.where l1 = lst(S1(�)) and l2 = lst(S2(xl1y))./� (f(v1; : : : ; vn))(I)(�) = (� ! i if div(i)� ! i! unsopef� (�)(lst(i)) otherwisewhere i = I(f)(sopef;v1;:::;vn� (�)).Figure 2. The signature and the implementation of the semanti operations.and
bop join two denotations S1 and S2. Divergent traes in S1 are not joined,sine they represent an inomplete omputation. Moreover,
bop applies a binaryoperation bop to the �nal states of S1 and S2 (xy removes res from the �nal statesof S1). The operation ./ alls a funtion by using an interpretation.Example 3. Assume that � is suh that �� ontains exatly three distint states�1, �2 and �3. Consider S1; S2 2 C�;� suh thatS1(�1) = �1 ! �2 !l1 �3 S2(�1) = �1 ! ~�2S1(�2) = �2 !l2 ~�1 S2(�2) = �2 !l3 �3 !l2 ~�1S1(�3) = �3 !l2 �1 !l3 �3 S2(�3) = �3 !l1 ~�1 :Let S = S1
 S2. We haveS(�1) = �1 ! �2 !l1 �3 ! �3 !l1 ~�1 S(�2) = �2 !l2 ~�1S(�3) = �3 !l2 �1 !l3 �3 ! �3 !l1 ~�1 :

E� [[i℄℄I = [get inti� ℄ E� [[e1 = e2℄℄I = E� [[e1℄℄I
= E� [[e2℄℄IE� [[v℄℄I = [get varv� ℄ E� [[e1 + e2℄℄I = E� [[e1℄℄I
+ E� [[e2℄℄IE� [[f(v1; : : : ; vn)℄℄I = ./� (f(v1; : : : ; vn))(I) :C� [[v := e℄℄I = E� [[e℄℄I
 [put varv�e ℄ C� [[1; 2℄℄I = C� [[1℄℄I
 C� [[2℄℄IC� [[let v : t in ℄℄I = [expandv:t� ℄
 C� [t=v℄[[℄℄I
 [restritv� [t=v℄℄C� [[if e then 1 else 2℄℄I = ?(E� [[e℄℄I; C� [[1℄℄I; C� [[2℄℄I)C� [[while e do ℄℄I = lfpC�;� �fix:?(E� [[e℄℄I; C� [[℄℄I
 fix; [nop� ℄) :Figure 3. The rules of our denotational trae semantis.By using the above operations, we build a denotational semantis for ourlanguage. The map E� [[e℄℄ : I 7! C�;�e is shown in Figure 3 (for �e, see De�nition4). The basi ases of the denotation of an expression are immediate. For aseslike e1 bop e2, the denotations of the two expressions are joined through
bop.For funtion all, we use ./. The map C� [[℄℄ : C � I 7! C�;� is shown in Figure 3.The denotation of an assignment applies put var to the �nal environments of thedenotation of the right hand side. The introdution of a loal variable v evaluatesthe ode in a state expanded with v. Conditionals are modelled through the ?operation. A while ommand is denoted by a least �xpoint over a onditional[16℄. It is well-de�ned sine both C[[℄℄ and E[[℄℄ are monotoni (Proposition 2), andbeause of Proposition 1. It is the least upper bound of an asending trans�nitehain whih starts from ?C�;� .The semantis of a program is a least �xpoint de�ned through C[[℄℄ [16℄.Namely, for every f 2 F we initialise (expand) the variable f , we omputethe denotation of its ode and we remove all the variables exept f .De�nition 7. By Props. 1 and 2, the semantis of P = hF ; ; pi is de�ned asSP = Fo IoP where, letting � = p(f):� , f 2 F , i �nite ordinal and l limit ordinal,I0P (f)=?C�j�f ;�jf ; Ii+1P (f)=[expandf:�(f)�j�f ℄
C� [[(f)℄℄IiP
[restritdom(�)nf� ℄; IlP (f)=Fm<l ImP (f) :5 Wathpoint SemantisWe speify a program point of interest (a wathpoint) through the ommandwathpoint(l), with l 2 Label. We expand the rules in Figure 3 withC� [[wathpoint(l)℄℄I = [wath℄�;l :For � 2 Typing and l 2 Label, [wath℄�;l 2 C�;� reates a !l transition, i.e.,[wath℄�;l(�) = � !l � : (2)Note that the typing �l in a wathpoint l is statially known.

Assume we are not interested in the states before an unnamed transition, butonly in those before !l with l 2 Label, whih an be seleted through a mapw : T 7! (Label 7! }(�))(for its expliit de�nition, see De�nition 9) pointwise extended to denotations(Eq. (1)) and interpretations (Def. 6). Instead of omputing w(SP) (Def. 7),we want to push w inside the semantis, i.e., ompute the abstrat wathpointsemantis indued by the abstration w.5.1 Why a New SemantisGiven t 2 T , by de�nition w(t) is more abstrat than t, and requires less spae(memory) to be stored. Let &(x) be the spae needed to store x. Sine we arepartiularly interested in the ase when the program to be analysed is huge andthe number of wathpoints is relatively small, we an assume that&(w(t)) � &(t) (3)for t 2 T . Assume we want to ompute w(t) where t is a trae for the ommand1; 2, i.e., the onatenation of a trae t1 generated by 1 and a trae t2 generatedby 2 from lst(t1). We an ompute t1, abstrat it in w(t1), ompute t2, abstratit in w(t2) and merge w(t1) and w(t2) into w(t). For this we need at mostm1 = maxf&(t1)+&(w(t1)); &(w(t1))+&(w(t2))+&(t2)g spae (we never hold botht1 and t2 in memory at the same time). Instead, if we ompute t and then w(t),we need at least m2 = &(t) + &(w(t)) = &(t1) + &(t2) + &(w(t1)) + &(w(t2)) spae.Sine m1 � m2, pushing w inside the semantis indues a lighter alulation.This laim does not work for the time of the analysis, sine a state dependson its predeessors in a trae. Hene all states must be onsidered during theomputation of the semantis, not just those before a !l transition. But thewathpoint semantis redues the ost in time of the analysis for other reasons.1. A more abstrat �xpoint omputation might require fewer iterations, andhene less spae and time. Setion 7 shows that this is very often the ase.2. Consider while e do , where ontains some wathpoints, is denoted by dand e by d0. If we unfold d after d0 until the �xpoint (Fig. 3), we then need tosan a trae looking for the !l transitions. If, instead, we had a denotationw(d) suh that w(d)(�) = w(d(�)), we ould just merge, during the �xpointalulation, the states for the same wathpoints, without sanning any trae.3. Dealing with smaller data strutures (as shown before) leads in general tofaster analyses. From Equation (3), this ould mean sometimes that virtualmemory is not needed by the analyser, i.e., swapping is avoided.4. Analyses based on a trae semantis use widening to avoid dealing with in�-nite traes. For instane, [4℄ and [15℄ use regular trees, whih add omplexityto the analyser. A wathpoint semantis does not need suh a widening.Consider how the analysis sales with the number of wathpoints. Of ourse,fewer wathpoints means lighter data strutures, i.e., less spae requirements.

W.r.t. time, fewer wathpoints means faster analysis for points 1 and 3 above.Finally sine, for every wathpoint l, we need to ompute the union (join) of thestates before a !l transition, it even means fewer joins, i.e., a faster analysis.These onsiderations have been experimentally veri�ed in Setion 7.5.2 The SemantisWe de�ne here in detail the wathpoint semantis. To observe the states in thewathpoints, we an abstrat the traes in sets of states, one for eah wathpoint.But this abstration indues too oarse optimal abstrat operations, sine the
operation (Figure 2) joins the traes through their last state. Thus, for betterpreision, we abstrat the traes in wathpoint traes, i.e., a set of states for everywathpoint, olleted into an element of Ww, and a set for the �nal states.De�nition 8. LetWw = fw 2 Label 7! }(�) j given l 2 Label we have w(l) 2 }(��l)g :A w 2 Ww is �nite if w(l) is �nite for every l 2 Label. The setWw is a ompletelattie ordered w.r.t. the pointwise extension of �. Lub and glb are (pointwise)[and \, its bottom is ? = �l 2 Label:;.The set of wathpoint traes is T w = [�2TypingT w� where, for � 2 Typing,T w� = fhw; si j w 2 Ww; s 2 �� [f�g and if s 6= � then w is �niteg :They are ordered as hw; si vw hw; si and hw;�i vw hw0; si if and only if w � w0.Elements ofWw are extentionally represented as [l1 7! �1; : : : ; ln 7! �n℄, mean-ing that the label li is mapped to the set of states �i for i = 1; : : : ; n. If a labelis not ontained in that enumeration, it is assumed that it is mapped to ;.Example 4. We haveh[l1 7! f�3g; l3 7! f�2g℄;�i vw h[l1 7! f�1; �3g; l2 7! f�2g; ℄l3 7! f�2; �3g℄; �1i :A wathpoint trae hw; si with s 6= � represents all onvergent traes whihend with s and ontain exatly the wathpoints in w. If s = �, instead, itrepresents all divergent traes whih ontain exatly the wathpoints in w.De�nition 9. Given t 2 T , we de�ne w(t) 2 Ww and �w : T 7! T w asw(t)(l) = f� j � 2l tg for every l 2 Label.�w(t) = (hw(t);�i if div(t)hw(t); lst(t)i otherwise.Example 5. Let Label = fl1; l2g. Then�w(�1 ! �2 !l1 �3 ! �4 !l2 �5 !l1 �6) = h[l1 7! f�2; �5g; l2 7! f�4g℄; �6i�w(�1 ! �2 !l1 �3 ! �4 !l2 �5 !l1 ~�6) = h[l1 7! f�2; �5g; l2 7! f�4g℄;�i :

[op℄w(�) = (h?; op(�)i if op(�) is de�nedh?;�i otherwise, [wath℄wl (�) = h?[f�g=l℄; �i?w(E;S1; S2)(�) = 8>>>>><>>>>>:E(�) if E(�):s = �hE(�):w [S1(xE(�):sy):w;S1(xE(�):sy):siif E(�):s 6= � and is true�[int=res℄(E(�):s)hE(�):w [S2(xE(�):sy):w;S2(xE(�):sy):siif E(�):s 6= � and is false�[int=res℄(E(�):s)(S1
w S2)(�) = (S1(�) if S1(�):s = �hS1(�):w [S2(S1(�):s):w; S2(S1(�):s):si otherwise.(S1
wbop S2)(�) = 8>>><>>>:S1(�) if S1(�):s = �hS1(�):w [S2(xS1(�):sy):w;�iif S1(�):s 6= � and (S2(xS1(�):sy):s = � or b is unde�ned)hS1(�):w [S2(xS1(�):sy):w; bi otherwise,with b = bop�[t1=res℄(S1(�):s)(S2(xS1(�):sy):s)./w (f(v1; : : : ; vn))(I)(�) = (hi:w;�i if i:s = �hi:w; unsopef (�)(i:s)i otherwise, i = I(f)(sopef;v1;:::;vn (�)) :Figure 4. The operations on wathpoint traes.We de�ne now the abstrat ounterpart of the set C�;� 0 of Equation (1).Proposition 3. Let �; � 0 2 Typing and W�;� 0 = �� 7! T w� 0 . The vw order (�w)is pointwise extended to W�;� 0 (C�;� 0). The pair hW�;� 0 ;vwi is a pointed CPOwith bottom �� 2 �� :h?;�i, and �w is well-de�ned, onto, strit and additive.Proposition 4. The operations in Fig.4, whose signatures are the �w-abstrationof those in Fig. 2, are monotoni and �w-optimal w.r.t. those in Fig. 2.Example 6. Consider the onrete denotations of Example 3. Let Sw1 = �w(S1),Sw2 = �w(S2) and Sw = �w(S). We haveSw1 (�1) = h[l1 7! f�2g℄; �3i Sw2 (�1) = h?;�iSw1 (�2) = h[l2 7! f�2g℄;�i Sw2 (�2) = h[l2 7! f�3g; l3 7! f�2g℄;�iSw1 (�3) = h[l2 7! f�3g; l3 7! f�1g℄; �3i Sw2 (�3) = h[l1 7! f�3g℄;�i :Moreover, we have that Sw isSw(�1) = h[l1 7! f�2; �3g℄;�i Sw(�2) = h[l2 7! f�2g℄;�iSw(�3) = h[l1 7! f�3g; l2 7! f�3g; l3 7! f�1g℄;�i ;whih is exatly Sw1
w Sw2 .Like in Setion 4, we de�ne a wathpoint semantis SwP . By Propositions 3 and4, it omputes the same information about wathpoints as our trae semantis,i.e., �w(SP) = SwP : (4)

[op℄o(�) = h?; op(�)i [wath℄ol (�) = h?[�=l℄; �i?o(E;S1; S2)(�) = hE(�):w [S1(x�ty):w [S2(x�fy):w;S1(x�ty):� [S2(x�fy):�iwhere �t = is true�[int=res℄(E(�):�) and �f = is false�[int=res℄(E(�):�)(S1
o S2)(�) = hS1(�):w [S2(S1(�):�):w;S2(S1(�):�):�i(S1
obop S2)(�) = hS1(�):w [S2(xS1(�):�y):w; bop�[t1=res℄(S1(�):�)(S2(xS1(�):�y):�)i./o (f(v1; : : : ; vn))(I)(�) = hi:w; unsopef (�)(i:�)i; where i = I(f)(sopef;v1;:::;vn (�)).Figure 5. The operations on olleting wathpoint traes.The olleting or stati semantis [6℄ S}(w)P is the powerset lifting of SwP . Itworks over }(W�;� 0), i.e., it models properties of wathpoint denotations. Sinewe are interested in properties of states, we de�ne below a semantis SoP whihworks over wathpoint traes of sets of states. It is an AI of S}(w)P and will bealled olleting though, stritly speaking, the real olleting semantis is S}(w)P .De�nition 10. The set of olleting wathpoint traes T o = [�2TypingT o�where, letting � 2 Typing and Wo = Ww (De�nition 8) T o� = fhw; �i j w 2Wo and � 2 }(��)g, is ordered as hw1; �1ivo hw2; �2i i� w1�w2 and �1��2.Denotations are identi�ed by their values on singleton sets. Denotations withmore than one argument will be useful at the end of this setion. This is for-malised below.Proposition 5. Let n � 1 and �1; : : : ; �n; � 0 2 Typing. Let CO�1;:::;�n;� 0 be� o 2 }(��1) 7! � � �� � � 7! }(��n) 7! T o�0 ���� o(�1) � � � (�n) = hS�12�1;:::;�n2�n o(f�1g) � � � (f�ng):w;S�12�1;:::;�n2�n o(f�1g) � � � (f�ng):�i � : (5)The vo order of De�nition 10 is pointwise extended to denotations CO. Thepair hCO�1;:::;�n;� 0 ;voi is a omplete lattie with bottom ��1 � � ���n:h?; ;i.A olleting wathpoint trae represents a set of wathpoint traes. Thisabstration indues optimal abstrat ounterparts of the operations in Figure 4.Proposition 6. Let �o : }(T w) 7! T o be �o(S) = h[t2St:w; ft:s j t 2S and t:s 6= �gi. Its extension �o : }(W�;� 0) 7! CO�;� 0 , for �; � 0 2 Typing,given by (�o(W))(�) = �o(fw(�) j w 2 W and � 2 �g) for � 2 }(��), is well-de�ned, onto, strit and additive (hene, the abstration of a Galois insertion).Proposition 7. The operations in Figure 5 are monotoni and �o-optimalw.r.t. the pointwise extension of those in Figure 4.We de�ne a olleting wathpoint semantis SoP . We have SoP = �o(S}(w)P).The operations in Figure 5 use objets in }(�) (like S1(�):� in
o), Wo(like S1(�):w in
o) and CO (like S1 in
o). To simplify the abstration ofSetion 6, we ompile them in terms of smaller operations over CO only, givenin Figure 6. The ompilation is shown in Figure 7.Proposition 8. The operations in Figure 5 and those in Figure 7 are the same.

[op℄ : CO�1;��� ;�n;�0 ; if op : ��1 7! � � ���n 7!��0 [wath℄l : CO�;�:w : CO�;�0 7! CO�;�0Æ : CO�1;:::;�n;�0 � CO�;�1 � � � � CO�;�n 7! CO�;�0 [: CO2�;�0 7! CO�;�0[op℄ = ��1 : : : ��n:h?; op(�1; � � � ; �n)i [wath℄l = ��:h?[�=l℄; �iT:w = ��:hT (�):w; ;i T Æ (T1; : : : ; Tn) = ��:T (T1(�):�) � � � (Tn(�):�)T1 [T2 = ��:�T1(�):w [T2(�):w;T1(�):� [T2(�):� � :Figure 6. A minimal set of operations over CO.xTy = [restritres℄ Æ T ; [op℄o = [op℄ ; [wath℄ol = [wath℄l?o(E;S1; S2) = E:w [(S1 Æ xTty) [(S2 Æ xTfy)where Tt = [is true�[int=res℄℄ Æ E and Tf = [is false�[int=res℄℄ Æ ES1
o S2 = S1:w [(S2 Æ S1)S1
obop S2 = S1:w [(S2 Æ xS1y):w [[bop�[t1=res℄℄ Æ (S1; S2 Æ xS1y)./o (f(v1; : : : ; vn))(I) = Ti:w [[unsopef ℄ Æ ([nop℄; Ti) where Ti = I(f) Æ [sopef;v1;:::;vn ℄.Figure 7. The operations in Figure 5 in terms of those in Figure 6.6 From Abstrat Domains to Abstrat SemantisWe show here how every abstration of the domain of states (De�nition 3) in-dues an abstration of the denotations CO (Equation (5)) and of their opera-tions (Figure 6) and hene of the olleting wathpoint semantis of last setion.This redues the de�nition of a stati analysis to the de�nition of abstrat states.Every abstrat denotational semantis works over abstrat denotations whihare maps from abstrat inputs to abstrat outputs. In our wathpoint semantis,the abstrat outputs are atually abstrat traes. The problem here is how tode�ne the onretisation of suh abstrat denotations. If a onrete state belongsto two abstrat inputs, how should it behave in the onretisation? We do notonsider this problem in details here, sine it has already been studied in a moregeneral setting. Consider for instane the funtional partitioning tehnique in[1℄. Instead, we assume here that in the lattie of abstrat states there exists aset of union-irreduible states in terms of whih all other abstrat states an beexpressed. This ondition holds for the ase of sign analysis shown in Setion 7.For � 2 Typing, let hD� ;vi be a omplete lattie and �D� and D� theabstration and onretisation maps of a Galois insertion from h}(��);�i tohD� ;vi (typings will be often omitted).De�nition 11. Let Wa = fw2Label 7!D j for l 2 Label we have w(l) 2 D�lg.The set of abstrat wathpoint traes is T a = [�2TypingT a� whereT a� = fhw; di j w 2 Wa and d 2 D�g for every � 2 Typing,

[op℄a = �d1 : : : �dn:h?; �D(op(D(d1); : : : ; D(dn)))i [wath℄al = �d:h?[d=l℄; diT:wa = �d:hT (d):w;;iT Æa (T1; : : : ; Tn) = �d: tad02S T (T1(d0)) � � � (Tn(d0)) ; with S 2 �(d)T1 [a T2 = �d:�T1(d):w [D T2(d):w;T1(d):d [D T2(d):d � [D is the best approximation of [over D.Figure 8. The generi abstrat ounterparts of the operations of Figure 6.ordered as hw1; d1i va hw2; d2i if and only if w1 va w2 (pointwise) and d1 va d2.The map �D is expanded to T o� as �D(hw; �i) = h�l:�D�l (w(l)); �D� (�)i.De�nition 12. Let � 2 Typing. The union-redutions of d 2 D� are�(d) = fS 2 }(D�) j D(d) = [d02SD(d0) and #�(d0) = 1 for every d0 2 Sg :If #�(d) = 1 (i.e., �(d) = ffdgg) we say that d is union-irreduible. If everyd 2 D� is suh that �(d) 6= ;, we say that D� is union-reduible.Proposition 9. Assume that D� is union-reduible for every � 2 Typing. Givenn � 1 and �1; : : : ; �n; � 0 2 Typing, let A�1;:::;�n;� 0 be�a 2 D�1 7! � � �D�n 7! D� 0 ���� a is monotoni and given 1 � i � n and S 2 �(di)a(d1) � � � (di) � � � (dn) = FD�0d02S a(d1) � � � (d0) � � � (dn) � ; (6)i.e., denotations in A�1;:::;�n;� 0 are identi�ed by the union-irreduible elements.Let �a : CO�1;:::;�n;� 0 7! A�1;:::;�n;� 0 be �a(o) = �DoD. The set A�1;:::;�n;� 0is a omplete lattie with bottom �d1 : : : �dn:h?;?D�0 i and �a is well-de�ned,onto, strit and additive (hene, the abstration map of a Galois insertion).Proposition 10. Assume that D� is union-reduible for every � 2 Typing. Theoperations in Figure 8 are the best approximations over A of those in Figure 6(note that Æa is not the omposition of funtions).In onlusion, given a union-reduible abstration D� of }(��) for every� 2 Typing, and the best approximations overD of the powerset extension of theoperations of Figure 1 (used in [op℄a) and of [, we obtain an abstrat wathpointsemantis, orret w.r.t. the olleting wathpoint semantis of Subsetion 5.2.As said before, similar results an be obtained in the more general ase of non-union-reduible latties by using the funtional partitioning tehnique of [1℄.7 ImplementationWe desribe here our implementation in Prolog of the wathpoint semantisof Setions 5 and 6 instantiated with sign analysis. It an be downloaded fromhttp://www.si.univr.it/�spoto/wath.tar.gz.We have hosen Prolog forfast prototyping, and sign analysis beause it is a well-known, simple analysis.

nops� (&) = & (get inti�)s(&) = (&[+=res℄ if i � 0&[�=res℄ if i < 0(get varv�)s(&) = &[&(v)=res℄ (put varv�)s(&) = &[&(res)=v℄j�res=s� (&1)(&2)=8>>><>>>:&2[�=res℄ if &1(res) = �and &2(res) = +or vie versa&2[u=res℄ otherwise +s� (&1)(&2) = 8><>:&2[+=res℄ if &1(res) = &2(res) = +&2[�=res℄ if &1(res) = &2(res) = �&2[u=res℄ otherwise(sopef;v1;:::;vn�)s(&) = [�1 7! &(v1); : : : ;�n 7! &(vn)℄ where h�1; : : : ; �ni = p(f):s n f(unsopef�)s(&1)(&2) = &1[&2(f)=res℄ (restritvs�)s(&) = &j�vs (expandv:t�)s(&) = &[+=v℄is trues� (&) = (empty if &(res) = �&[+=res℄ otherwise is falses� (&) = (empty if &(res) = +&[�=res℄ otherwise[s� (empty)(x) = [s� (x)(empty) = x [s� (&1)(&2) = �v 2 dom(�):(&1(v) if &1(v) = &2(v)u otherwise.Figure 9. The abstrat operations over the domain of signs.The module analyser.pl implements the �xpoint alulation (Figure 3 andDe�nition 7) by using the semanti operations (Figures 7 and 8) implementedin the module semanti.pl. The module typing.pl manipulates typings. Themodule domain.pl implements the abstrat ounterparts of the operations ofFigure 1. Only this module depends from the domain of analysis.Our domain for sign analysis is similar to that in [6℄.De�nition 13. For every � 2 Typing, let S� = femptyg [f& : dom(�) 7!f+;�; ugg. The abstration map � : }(��) 7! S� is suh that, for X 6= ; andv 2 dom(�),�(;) = empty �(X)(v) = 8><>:+ if �(v) � 0 for every � 2 X� if �(v) < 0 for every � 2 Xu otherwise.Let � be reexive and let + � u and � � u. The set S� is ordered as empty vs sfor every s 2 S� and &1 vs &2 if and only if &1(v) � &2(v) for every v 2 dom(�).The optimal ounterparts over S of the powerset extension of the operations inFig. 1 are (all but [s) strit on empty. Otherwise, they are given in Figure 9.Given � 2 Typing, the union-irreduible elements of S� are empty and those& 2 S� suh that &(v) 6= u for every v 2 dom(�). If &(v) = u for some v 2dom(�), instead, the onretisation of & an be shown to be the union of theonretisations of & [+=v℄ and & [�=v℄. Therefore, we have�(empty) = femptyg �(&) = �& 0 ���� for all v 2 dom(�) we have & 0(v) 6= uand if &(v) 6= u then &(v) = & 0(v) � :By the results of Setion 6, the abstrat denotations are maps whose domain ismade of empty and of all & whih never bind a variable to u. The values for theother elements of S� are indued.

F = ffibgp(fib) = hhfib; ni; [fib 7! int; n 7! int℄i(fib) = if (n =< 1) then%wathpoint(p1);fib := 1else%wathpoint(p2);let n1 : int in let n2 : int in%wathpoint(p3);n1 := n� 1;%wathpoint(p4);n2 := n� 2;%wathpoint(p5);fib := fib(n1) + fib(n2);%wathpoint(p6)
j ?� interpret:Analysing [fib℄ : iteration 1Analysing [fib℄ : iteration 2fixpoint reahedProedure : fibInput : empty Output : emptyWathpoints : p3 : emptyInput : [+℄ Output : [+℄Wathpoints : p3 : [+;+;+;+℄Input : [�℄ Output : [+℄Wathpoints : p3 : empty(a) (b)Figure 10. The Fibonai proedure and one of its possible analyses.Elements of S� are implemented as the term empty or lists of +, - and u,ordered alphabetially w.r.t. the names in dom(�). For instane, if � = [a 7!int; 7! int; b 7! int℄ then & = [a 7! +; 7! �; b 7! u℄ is implemented as[+,u,-℄. We are aware of leverer implementations, but in this paper we fouson the semantis.The input of the analyser is a Prolog term whih represents the abstrat syn-tax of a program. Figure 10(a) shows a program for the n-th Fibonai number,with six possible wathpoints. The �le fib.pl ontains its abstrat syntax. Wedownload it with [fib℄. and we analyse it with interpret. Figure 10(b) showsthe result when only wathpoint p3 is not ommented. The input of fib is thevalue of n, its output is the value of the variable fib at its end. As you an see,if we start with an empty set of states we never reah wathpoint p3. If we startwith a state where n is positive, the output is positive and we reah wathpointp3 with a state where fib, n, n1 and n2 are positive. Indeed the initial valueof a variable is 0 and in the else branh we have n > 1. Finally, if we startwith a state where n is negative, the output is positive and wathpoint p3 isnever reahed. Indeed, if n < 0 the then branh is exeuted. If we start withan unknown value for n we would obtain the least upper bound of the last twoases.7.1 The Costs in Spae and in Time of the AnalysisTo estimate the spae used by our analyser independently from its implemen-tation, we ount the number of Prolog atoms ontained in the denotations itomputes (weight). Fig. 11 gives the weight for the analysis of fib (Fig. 10(a))and pi (a Monte Carlo algorithm omputing �), as a funtion of the number ofative wathpoints. For now, onsider only the lines marked with Abstrat In-terpretation. Horizontally, an integer like 3 means that only wathpoints p1, p2and p3 were ative. As you an see, the weight grows with the number of ativewathpoints. When passing from 0 wathpoints to 1 wathpoint in Fig. 11(a)

125,000

150,000

175,000

200,000

225,000

250,000

275,000

300,000

325,000

350,000

Abstract Interpretation (AI)

Abstract Compilation (AC)

0ws 1 2 3 4 5 6

weight weight

400,000
500,000
600,000
700,000
800,000
900,000

1,000,000
1,100,000
1,200,000
1,300,000
1,400,000
1,500,000
1,600,000
1,700,000
1,800,000
1,900,000
2,000,000
2,100,000
2,200,000

Abstract Interpretation (AI)

Abstract Compilation (AC)

0ws 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18(a) fib (b) piFigure 11. The ost in spae of the analysis w.r.t. the number of ative wathpoints.

0ws 1 2 3 4 5 6

c=100

c=200

c=300

 time

5s

6

7

8

9

10

11

12

c=0

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

c=300

c=200

c=100

c=0

time

16s

0ws 0ws 1 2 3 4 5 6

c=0

c=100

c=200

c=300

4s

5

6

7

8

9

time

(a) fib (b) pi () fib with ACFigure 12. The ost in time of the analysis w.r.t. the number of ative wathpoints.and from 10 wathpoints to 11 in Fig. 11(b) one more iteration is needed toreah the �xpoint. Thus less wathpoints does mean less iterations (Subs. 5.1).We expet the time of the analysis to grow with the number of wathpoints,proportionally with the ost of the abstrat join (Subs. 5.1). Fig. 12 on�rmsthis. The onstant is a �titious ost added to the omputation of the join.Note that domains more realisti than signs usually feature omplex joins. Noteagain the jump when one more iteration is needed for the �xpoint alulation.The benhmark nested shows the same behaviour of Fig. 12. But if a benhmarkdoes not ontain reursive prediates nor onditionals nor iterative onstruts,then the time for its analysis is independent from the number of wathpoints,like for arith, whose abstrat exeution tree is atually a �nite trae.Note that [4℄, [5℄ and [15℄ do not provide a link to an implementation.

Benhmark Wathpoints AI/AC Iterations Time (seonds) Weight (atoms)fib ; AI 2 5.92 160795fib ; AC 2 4.03 142299fib fp1; : : : ; p6g AI 3 9.19 349631fib fp1; : : : ; p6g AC 3 5.28 305363pi ; AI 2 16.61 833419pi ; AC 2 8.91 463294pi fp1; : : : ; p18g AI 3 25.93 2107643pi fp1; : : : ; p18g AC 3 10.58 1287127arith ; AI 1 303.12 7049327arith ; AC 1 308.42 7049327nested ; AI 3 661.43 14253268nested ; AC 3 369.99 8419626Figure 13. A omparison of abstrat interpretation with abstrat ompilation.7.2 Abstrat CompilationIn Figure 10(a) we note that the denotation of the then branh is independentfrom the partial denotation omputed for fib. Thus, it does not need to be om-puted at every iteration, like, instead, that of the else branh, whih ontainstwo alls to fib. However, its �rst part, till the wathpoint p5, does not ontainreursive alls, and an be safely analysed only one. Those optimisations areexamples of abstrat ompilation (AC). Our analyser uses AC by invoking thegoal ompile. The result is like that in Figure 10(b), with smaller spae and timeosts, as Figures 11 and 12() show for weight (spae) and time, respetively.Moreover, Figure 12() shows that the time still depends from the number ofwathpoints and the ost of the join. Finally, Figure 13 shows that AC leads veryoften to major improvements, but is of no help with the at benhmark arith.8 ConlusionsWe have shown that, if we are interested in the analysis of a program in asmall set of wathpoints, it is worth abstrating a trae semantis in a lighter,ompositional and still as preise wathpoint semantis. We have shown throughan implementation that it is foussed, i.e., its omplexity grows with the numberof wathpoints, and that abstrat ompilation improves signi�antly the �xpointalulation.The analysis proess is de�ned as a �xpoint omputation. For better eÆ-ieny, if a set of all patterns is known for some funtions, this omputationan be done on demand, simulating a top-down analysis. This means that theabstrat denotations are enrihed at �xpoint omputation time whenever thebehaviour of a funtion for a new input is needed.Our results apply to the modular analysis of large programs and to theanalysis inside smart ards, where memory requirements must be kept small.Referenes1. F. Bourdonle. Abstrat Interpretation by Dynami Partitioning. Journal of Fun-tional Programming, 2(4):407{423, 1992.

2. F. Bourdonle. Abstrat Debugging of High-Order Imperative Languages. InProeedings of the 1993 SIGPLAN Conferene on Programming Language Designand Implementation, pages 46{55, Albuquerque, New Mexio, June 1993. ACMPress.3. M. Codish and B. Demoen. Deriving Polymorphi Type Dependenies for LogiPrograms Using Multiple Inarnations of Prop. In Pro. of the �rst InternationalSymposium on Stati Analysis, volume 864 of Leture Notes in Computer Siene,pages 281{296. Springer-Verlag, 1994.4. C. Colby and P. Lee. Trae-based Program Analysis. In Pro. of POPL'96, pages195{207, St. Petersburg, FLA, USA, January 1996. ACM Press.5. P. Cousot. Construtive Design of a Hierarhy of Semantis of a TransitionSystem by Abstrat Interpretation. In S. Brookes and M. Mislove, editors,Pro. of the 13th Conf. on Mathematial Foundations of Programming Seman-tis (MFPS XIII), volume 6 of Eletroni Notes on Theoretial Computer Si-ene, Pittsburgh, PA, USA, Marh 1997. Elsevier Siene Publishers. Available athttp://www.elsevier.nl/loate/ents/volume6.html.6. P. Cousot and R. Cousot. Abstrat Interpretation: A Uni�ed Lattie Model forStati Analysis of Programs by Constrution or Approximation of Fixpoints. InPro. of POPL'77, pages 238{252, 1977.7. P. Cousot and R. Cousot. Systemati Design of Program Analysis Frameworks. In6th ACM Symp. on Priniples of Programming Languages, pages 269{282, 1979.8. E. Duesterwald, R. Gupta, and M. So�a. Demand-Driven Computation of Inter-proedural Data Flow. In Proeedings of POPL'95, pages 37{48, San Franiso,CA, January 1995.9. E. Duesterwald, R. Gupta, and M. So�a. A Pratial Framework for Demand-Driven Interproedural Data Flow Analysis. TOPLAS, 19(6):992{1030, 1997.10. M. Gabbrielli, G. Levi, and M. C. Meo. Resultants Semantis for PROLOG.Journal of Logi and Computation, 6(4):491{521, 1995.11. M. Hermenegildo, W. Warren, and S.K. Debray. Global Flow Analysis as a Pra-tial Compilation Tool. Journal of Logi Programming, 13(2 & 3):349{366, 1992.12. F. Nielson, H. R. Nielson, and C. Hankin. Priniples of Program Analysis. Springer-Verlag, 1999.13. T. Reps, S. Horwitz, and M. Sagiv. Preise Interproedural Dataow Analysis viaGraph Reahability. In Proeedings of POPL'95, pages 49{61, San Franiso, CA,January 1995.14. M. Sagiv, T. Reps, and R.Wilhelm. Solving Shape-Analysis Problems in Languageswith Destrutive Updates. In Pro. of POPL'96, pages 16{31, St. Petersburg, FLA,USA, January 1996. ACM Press.15. D. A. Shmidt. Trae-based Abstrat Interpretation of Operational Semantis.Journal of LISP and Symboli Computation, 10(3):237{271, 1998.16. G. Winskel. The Formal Semantis of Programming Languages. The MIT Press,1993.

