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t We abstra
t a denotational tra
e semanti
s for an impera-tive language into a 
ompositional and fo
ussed wat
hpoint semanti
s.Every abstra
tion of its 
omputational domain indu
es an abstra
t, still
ompositional and fo
ussed wat
hpoint semanti
s. We des
ribe its im-plementation and instantiation with a domain of signs. It shows that itsspa
e and time 
osts are proportional to the number of wat
hpoints andthat abstra
t 
ompilation redu
es those 
osts signi�
antly.1 Introdu
tionA 
ompositional analysis of a 
omplex statement is de�ned in terms of that of its
omponents. Then the analysis of a pro
edure depends only on that of the pro-
edures it 
alls and the analysis of a huge program 
an be easily kept up-to-date.This is important if a lo
al 
hange is applied to the program, during debuggingor as a 
onsequen
e of program transformation. A fo
ussed or demand-drivenanalysis is dire
ted to a given set of program points, 
alled wat
hpoints, and hasa 
ost (in spa
e and time) proportional to their number. This is important ifonly those points are relevant. For instan
e, zero information is typi
ally usefulonly before a division. Class information for obje
t-oriented programs is typi
allyuseful only before a method 
all. During debugging the programmer wants toanalyse a program in very few points, with a 
ost proportional to their number.Our �rst 
ontribution here is the de�nition of a 
ompositional and fo
ussedwat
hpoint semanti
s, as an abstra
t interpretation (AI) [6℄ spe
i�ed by thewat
hpoints of interest of a more 
on
rete tra
e semanti
s. An optimality result(Equation (4)) states that no pre
ision is lost by this abstra
tion w.r.t. theinformation at the wat
hpoints. The 
omputational domain is identi�ed as a datastru
ture with some operations. The se
ond 
ontribution states that every AI ofthe 
omputational domain indu
es an abstra
tion of the wat
hpoint semanti
s.This redu
es the problem of stati
 analysis to that of the development of abstra
tdomains. The third 
ontribution is the des
ription of our implementation of thewat
hpoint semanti
s instantiated for sign analysis. It shows that the spa
e andtime 
osts of the analysis are proportional to the number of wat
hpoints. The�nal 
ontribution is to show that abstra
t 
ompilation [11℄ leads to a signi�
antimprovement in the time and spa
e 
osts of the analysis.



1.1 Related WorksTraditionally, 
ompositionality is synonym with denotational semanti
s. But theusual denotational semanti
s [16℄ provides an input/output 
hara
terisation ofpro
edures whi
h is too abstra
t to observe their internal behaviour. This hasbeen re
ognised in [5℄, where Cousot models information at internal programpoints through a more 
on
rete, denotational tra
e semanti
s. Here, a pro
edureis denoted by a map from an initial state to a tra
e of states representing itsexe
ution from the initial state. Our tra
e semanti
s is a instan
e of the maxi-mal tra
e semanti
s of [5℄. Even [4℄ observes that tra
es 
ontain more informa-tion than a traditional input/output denotation w.r.t. software pipelining, loop-invariant removal and data alias dete
tion. That framework is however basedon an operational de�nition. In [15℄ an operational tra
e semanti
s is de�nedand abstra
ted through AI into an abstra
t tra
e semanti
s. The abstra
tion ofa tra
e is a (regular) tree, be
ause of the non-deterministi
 nature of the ab-stra
t semanti
s. Information at program points (what they 
all the 
olle
tingsemanti
s) is extra
ted from those trees after the �xpoint of the semanti
s isrea
hed. Thus, their analysis is not fo
ussed, sin
e the whole tra
e semanti
s(the abstra
t trees) must be 
omputed and then proje
ted on program points.This is justi�ed by the fa
t that they are interested in properties of tra
es, likethose 
onsidered in the 
ontext of model-
he
king. However, for properties ofstates, like in sign, interval, 
lass and se
urity 
ontext analysis of variables (and,more generally, in all those analyses 
alled �rst-order in [12℄, page 210), treesare not needed and 
an be safely abstra
ted into sets of states.Abstra
t denotational semanti
s need a representation of the abstra
t in-put/output behaviour of a pro
edure. Sin
e abstra
t inputs 
an partially over-lap, the meaning or, in abstra
t interpretation words, the 
on
retisation of anabstra
t denotation is not so easily devisable. In Se
tion 6 we show a solutionwhen the abstra
t domain elements 
an be written in terms of union-irredu
ibleelements. For the general 
ase, we rely on the fun
tional partinioning te
hniquede�ned in [1℄.Fo
ussed or demand-driven frameworks for analysis have been developed inthe past. In [2℄ ba
kward propagation of assertions was applied to the debuggingof a high-order imperative language. In [8,9,13℄ ba
kward data
ow analysis froma given query is de�ned and shown more eÆ
ient than an exhaustive, unfo
ussedanalysis. The analyses in [8,9℄ are provably as pre
ise as the 
orresponding un-fo
ussed versions for distributive �nite data
ow problems, while our optimalityresult (Equation (4)) holds for every abstra
t domain. Queries 
an be 
he
kedto hold in a given program point, but 
annot be 
omputed by the analysis. Itis not shown how those analyses s
ale w.r.t. the number of queries. No notionof 
omputational domain is de�ned, whi
h makes harder the de�nition of newabstra
t analyses. Abstra
t 
ompilation 
annot be applied be
ause those anal-yses are not 
ompositional. In [1℄ it is studied a very general and abstra
t wayof looking at the problem of lo
alised analyses in a given set of program points.However, its a
tual appli
ation to a real programming language is not ta
kledthere.



Abstra
t 
ompilation (AC) was born and applied only in the 
ontext of theanalysis of logi
 programs [3,11℄. It is an optimised 
omputation of the �xpoint ofan abstra
t semanti
s where at the i-th iteration part of the analysis is 
ompiledwhen it be
omes 
lear that it will not 
hange at the (i+ 1)-th iteration.Our work has been heavily in
uen
ed by the systemati
 
onstru
tion of se-manti
s for logi
 programming from the observable property of interest [10℄.There, semanti
s for resultants, 
all patterns and 
omputed answers of logi
 pro-grams are derived through AI of the very 
on
rete semanti
s of SLD-derivations.In parti
ular, the 
all pattern semanti
s 
olle
ts the information in some programpoints only.1.2 Plan of the PaperSe
tion 2 introdu
es some preliminary notations. Se
tion 3 de�nes the simpleimperative language used in the paper. Se
tion 4 de�nes the 
on
rete tra
e se-manti
s whi
h is then abstra
ted into our wat
hpoint semanti
s of Se
tion 5and its 
olle
ting version. Se
tion 6 shows how every abstra
t interpretation ofthe 
on
rete 
omputational domain indu
es an abstra
t wat
hpoint semanti
s.Se
tion 7 des
ribes our implementation of the wat
hpoint semanti
s instantiatedfor sign analysis. Se
tion 8 
on
ludes. Proofs are omitted.2 PreliminariesA sequen
e of elements from a set S is denoted by seq(S). The 
ardinality of aset S is denoted by #S. A de�nition like S=ha; bi, with a and b meta-variables,silently de�nes the sele
tors s:a and s:b for s 2 S. For instan
e, De�nition 8de�nes t:w and t:s for t 2 T w� . An element x 2 X will often stand for thesingleton fxg � X .The domain (
odomain) of a fun
tion f is dom(f) (
d(f)). A total (partial)fun
tion is denoted by 7! (!). We denote by [v1 7! t1; : : : ; vn 7! tn℄ a fun
tionf whose domain is fv1; : : : ; vng and su
h that f(vi) = ti for i = 1; : : : ; n. Itsupdate is f [d1=w1; : : : ; dm=wm℄, where the domain 
an be potentially enlarged.By f js (f j�s) we denote the restri
tion of f to s � dom(f) (to dom(f) n s).A pair (C ; �) is a poset if � is re
exive, transitive and antisymmetri
 on C.A poset is a 
omplete latti
e when least upper bounds (lub) and greatest lowerbounds (glb) always exist, a 
omplete partial order (CPO) when lubs exist forthe non-empty 
hains (totally ordered subsets). A CPO is pointed when it has abottom element. A map is additive when it preserves all lubs. If f(x) = x thenx is a �xpoint of f . If a least �xpoint exists, it is denoted by lfp(f).Let (C ; �) and (A; �) be two posets (the 
on
rete and the abstra
t domain).A Galois 
onne
tion [6,7℄ is a pair of monotoni
 maps � : C 7! A and 
 : A 7! Csu
h that 
� is extensive and �
 is redu
tive. It is a Galois insertion when �
is the identity map, i.e., when the abstra
t domain does not 
ontain uselesselements. This is equivalent to � being onto, or 
 one-to-one. The abstra
tion �



and the 
on
retisation 
 determine ea
h other. If C and A are 
omplete latti
esand � is additive, it is the abstra
tion map of a Galois 
onne
tion.An abstra
t operator f̂ : An ! A is 
orre
t w.r.t. f : Cn ! C if �f
 � f̂ .For ea
h operator f , there exists an optimal (most pre
ise) 
orre
t abstra
toperator f̂ de�ned as f̂ = �f
. If f̂� = �f , we say that f̂ is �-optimal w.r.t. f ,i.e., f̂ 
omputes the same abstra
t information as f .In AI, the semanti
s of a program is the �xpoint of some f : C 7! C , whereC is the 
omputational domain [5℄. Its 
olle
ting version [6℄ works over propertiesof C , i.e., over }(C ) and is the �xpoint of the powerset extension of f . If f isde�ned through suboperations, their powerset extensions and [ (whi
h mergesthe semanti
s of the bran
hes of a 
onditional) indu
e the extension of f .3 A Simple LanguageOur language is left expandable at the pri
e of some redundan
y in the de�ni-tions. Integers are its only basi
 type, with two operations (= and +). Booleansare implemented as integers (false is represented by a negative integer and trueby any other integer). We do not have pro
edures but only fun
tions. Thoselimitations are just meant to simplify the presentation. Our framework 
an beextended to 
ope with those missing items.De�nition 1. Let Id be a set of identi�ers and F � Id a �nite set of fun
tionsymbols. Expressions E and 
ommands C are de�ned by the grammare ::= i j v j f(v1; : : : ; vn) j e = e j e+ e
 ::= (v := e) j 
; 
 j let v :t in 
 j if e then 
 else 
 j while e do 
with Type = fintg, Int = Z, t 2 Type, i 2 Int, f 2 F and v; v1; : : : ; vn 2 Id.A typing gives types to a �nite set of variables. The map Pars binds everyfun
tion to the typing (its signature) and the list of its parameters. This listprovides the order of the variables in the de�nition of the fun
tion. The fun
tionCode binds a fun
tion symbol to its (synta
ti
ally 
orre
t and type-
he
ked)
ode. Lo
al variables are always introdu
ed by a let 
onstru
t.De�nition 2. We de�ne Typing = f� : Id! Type j dom(�) is �niteg, Code =(F 7! C) and Pars = (F 7! seq(Id) � Typing). If p 2 Pars and f 2 F , thenp(f) = hs; �i, where f 2 s and dom(�) = s. The variable f holds the return valueof the fun
tion, like in Pas
al.A program is spe
i�ed by F and two elements in Code and Pars. In thefollowing, we assume that we have a program P = hF ; 
; pi.Expressions have a type in a typing. In our 
ase, type� (e) = int for e 2 E .Example 1. Figure 10(a) gives a representation of the program for 
omputingthe n-th Fibona

i number (lines introdu
ed by % are 
omments and will bedis
ussed later). Note that the name fib of the (only) fun
tion in the programis used to hold its result value. Moreover, it is des
ribed by the Pars map p ofthe program.



nop� : �� 7! ��get inti� : �� 7! ��[int=res℄ with res 62 dom(�); i 2 Intget varv� : �� 7! ��[�(v)=res℄ with v 2 dom(�); res 62 dom(�)put varv� : �� 7! ��j�res with res 2 dom(�); v 2 dom(�); v 6= res; �(v) = �(res)=� ;+� : �� 7! (�� 7! �� ) with res 2 dom(�); �(res) = ints
opef;v1;:::;v#p(f):s�1� : �� 7! �p(f):�j�fwith p(f):s n f = h�1; : : : ; �ni and fv1; : : : ; v#p(f):s�1g � dom(�)uns
opef� : �� 7! (�p(f):�jf ! ��[p(f):�(f)=res℄) with res 62 dom(�)restri
tvs� : �� 7! ��j�vs with vs � dom(�)expandv:t� : �� 7! ��[t=v℄ with v 62 dom(�); t 2 Typeis true� ;is false � }(�� ) with �(res) = int :nop� (�) = � get inti� (�) = �[i=res℄get varv� (�) = �[�(v)=res℄ put varv� (�) = �[�(res)=v℄j�res+� (�1)(�2) = �2[�1(res) + �2(res)=res℄ =� (�1)(�2) = (�2[1=res℄ if �1(res) = �2(res)�2[�1=res℄ if �1(res) 6= �2(res)s
opef;v1;:::;vn� (�) = [�1 7! �(v1); : : : ;�n 7! �(vn)℄ where h�1; : : : ; �ni = p(f):s n funs
opef� (�1)(�2) = �1[�2(f)=res℄ restri
tvs� (�) = �j�vs expandv:t� (�) = �[init(t)=v℄is true� (�) if and only if �(res) � 0 is false� (�) if and only if �(res) < 0init(int) = 0 :Figure 1. The signature and implementation of the operations over the states.4 Tra
e Semanti
sThe 
omputational domain of states des
ribed here is used below to de�ne a tra
esemanti
s for our language. Ea
h of its abstra
tions will indu
e an abstra
tion ofthat semanti
s (Se
tion 6), as usual in AI (see for instan
e [14℄). More 
omplexnotions of states 
ould be used here, maybe dealing with lo
ations and memory.De�nition 3. Let V alue = Int and � = [�2Typing�� where, for � 2 Typing,states � 2 �� map variables to values 
onsistent with their de
lared type, i.e.,�� = �� ����� 2 dom(�) 7! V alue andfor every v 2 dom(�) if �(v) = int then �(v) 2 Int � :States are endowed with the operations shown in Figure 1.In the operations of Figure 1, the variable res holds intermediate results. Thenop operation does nothing. The get int (get varv) operation loads an integer(the value of v) in res . The put varv operation 
opies the value of res in v. Thereis no result, then res is removed. For every binary operation like = and +, thereis an operation on states. The operations s
ope and uns
ope are used before andafter a 
all to a fun
tion f , respe
tively. The former 
reates a new state in whi
h



f 
an exe
ute. Its typing p(f):� j�f des
ribes the input parameters (the variablef is not among them). The latter 
opies in the variable res of the state beforethe 
all, i.e., its �rst argument, the result of f , i.e., the variable f of its se
ondargument. The operation expand (restri
t) adds (removes) variables from a state.The is true (is false) predi
ate 
he
ks whether res 
ontains true (false).Sin
e res plays a major role, we introdu
e the following abbreviations.De�nition 4. For � 2 Typing, � 2 �� and e 2 E, let �e = � [type� (e)=res℄ andx�y� = restri
tres� (�) (� will be always omitted).We de�ne now an instan
e of the maximal tra
e semanti
s of [5℄.De�nition 5. A tra
e t 2 T is a non-empty sequen
e in �. A 
onvergent tra
e�1 ! � � � ! �n represents a terminated 
omputation, a �nite divergent tra
e�1 ! � � � ! ~�n a yet non-terminated 
omputation and an in�nite divergenttra
e �1 ! � � � ! �n ! � � � a divergent 
omputation. Arrows are given labelsl 2 Label, like in !l, meaning that the interpreter was then in a wat
hpointlabelled with l (see Se
tion 5). We assume ! is given a hidden mark 62 Label.The �rst state of t 2 T is fst(t). The predi
ate div(t) means that t is divergent.If : div(t), the last state of t is lst(t). For l 2 Label and � 2 �, we let � 2l tmean that � o

urs in t before an arrow !l.The v ordering on tra
es (extension of �nite divergent tra
es) is the minimalrelation su
h that t1 v t2 if t1 = t2 or (t1 is �nite divergent and t2 = t1 !l t0for some t0 2 T and l 2 Label [ f g), where t1 is t1 deprived of the tilde sign.Expressions and 
ommands are denoted by a map from an initial state to atra
e t. In the �rst 
ase, if : div(t) then lst(t)(res) is the value of the expression.Proposition 1. Given �; � 0 2 Typing, we expand the v ordering on tra
es toC�;� 0 = f
 2 �� 7! T� 0 j for every � 2 �� we have fst(
(�)) = �g : (1)The pair hC�;� 0 ;vi is a pointed CPO whose bottom is ?C�;�0 = �� 2 �� :~�.Interpretations denote every f 2F with an element of Cp(f):� j�f ;p(f):� jf . In-deed, its input variables are p(f):s n f and its output variable is named f .Example 2. The program of Figure 10(a) is denoted by an interpretation whi
hdenotes fib with an element of C[n7!int℄;[fib7!int℄.De�nition 6. The interpretations I are maps I : F 7! (� ! T ) su
h thatI(f) 2 Cp(f):� j�f ;p(f):� jf for f 2 F . The v ordering is point-wise extended to I.Proposition 2. The semanti
 operations on denotations of Figure 2 (the sub-s
ripts will be usually omitted) are monotoni
 w.r.t. v.The operation [op℄ applies an operation op from Figure 1. The operation ? joinsthe denotation E of an expression with that of one of two 
ommands, dependingon is true and is false on the �nal states of E. Sin
e 
ommands do not re
eivea partial result in res, we restri
t those states through xy. The operations 




[op℄ : C�;�0 ; with �; � 0 2 Typing; op : �� ! ��0?� : C�;�[int=res℄ � C2�;� 7! C�;� ; with � 2 Typing; res 62 dom(�)
�;�0;�00 : (C�;�0 � C�0;�00 ) 7! C�;�00 ; with �; � 0; � 00 2 Typing
bop;� : C�;�[t1=res℄ � C�;�[t2=res℄ 7! C�;�0with �; � 0 2 Typing; res 62 dom(�); t1; t2 2 Type;and bop�[t1=res℄ : ��[t1=res℄ 7! (��[t2=res℄ ! ��0 )./� (f(v1; : : : ; v#p(f)�1)) : I 7! C�;� ; with � 2 Typing; fv1; : : : ; v#p(f)�1g � dom(�)[op℄�;�0 (�) = (� ! op(�) if op(�) is de�ned� ! ~� otherwise?� (E;S1; S2)(�) = 8>>>>><>>>>>:E(�) if div(E(�))E(�) ! S1(xlst(E(�))y)if : div(E(�)) and is true�[int=res℄(lst(E(�)))E(�) ! S2(xlst(E(�))y)if : div(E(�)) and is false�[int=res℄(lst(E(�)))(S1 
�;�0;�00 S2)(�) = (S1(�) if div(S1(�))S1(�) ! S2(lst(S1(�))) otherwise.(S1 
bop;� S2)(�) = 8>>>>>>><>>>>>>>:S1(�) if div(S1(�))S1(�) ! S2(xl1y) if : div(S1(�)) and div(S2(xl1y))S1(�) ! S2(xl1y)! ~l2if : div(S1(�)), : div(S2(xl1y))and bop�[t1=res℄(l1)(l2) is unde�nedS1(�) ! S2(xl1y)! bop�[t1=res℄(l1)(l2) otherwise.where l1 = lst(S1(�)) and l2 = lst(S2(xl1y))./� (f(v1; : : : ; vn))(I)(�) = (� ! i if div(i)� ! i! uns
opef� (�)(lst(i)) otherwisewhere i = I(f)(s
opef;v1;:::;vn� (�)).Figure 2. The signature and the implementation of the semanti
 operations.and 
bop join two denotations S1 and S2. Divergent tra
es in S1 are not joined,sin
e they represent an in
omplete 
omputation. Moreover,
bop applies a binaryoperation bop to the �nal states of S1 and S2 (xy removes res from the �nal statesof S1). The operation ./ 
alls a fun
tion by using an interpretation.Example 3. Assume that � is su
h that �� 
ontains exa
tly three distin
t states�1, �2 and �3. Consider S1; S2 2 C�;� su
h thatS1(�1) = �1 ! �2 !l1 �3 S2(�1) = �1 ! ~�2S1(�2) = �2 !l2 ~�1 S2(�2) = �2 !l3 �3 !l2 ~�1S1(�3) = �3 !l2 �1 !l3 �3 S2(�3) = �3 !l1 ~�1 :Let S = S1 
 S2. We haveS(�1) = �1 ! �2 !l1 �3 ! �3 !l1 ~�1 S(�2) = �2 !l2 ~�1S(�3) = �3 !l2 �1 !l3 �3 ! �3 !l1 ~�1 :



E� [[i℄℄I = [get inti� ℄ E� [[e1 = e2℄℄I = E� [[e1℄℄I 
= E� [[e2℄℄IE� [[v℄℄I = [get varv� ℄ E� [[e1 + e2℄℄I = E� [[e1℄℄I 
+ E� [[e2℄℄IE� [[f(v1; : : : ; vn)℄℄I = ./� (f(v1; : : : ; vn))(I) :C� [[v := e℄℄I = E� [[e℄℄I 
 [put varv�e ℄ C� [[
1; 
2℄℄I = C� [[
1℄℄I 
 C� [[
2℄℄IC� [[let v : t in 
℄℄I = [expandv:t� ℄
 C� [t=v℄[[
℄℄I 
 [restri
tv� [t=v℄℄C� [[if e then 
1 else 
2℄℄I = ?(E� [[e℄℄I; C� [[
1℄℄I; C� [[
2℄℄I)C� [[while e do 
℄℄I = lfpC�;� �fix:?(E� [[e℄℄I; C� [[
℄℄I 
 fix; [nop� ℄) :Figure 3. The rules of our denotational tra
e semanti
s.By using the above operations, we build a denotational semanti
s for ourlanguage. The map E� [[e℄℄ : I 7! C�;�e is shown in Figure 3 (for �e, see De�nition4). The basi
 
ases of the denotation of an expression are immediate. For 
aseslike e1 bop e2, the denotations of the two expressions are joined through 
bop.For fun
tion 
all, we use ./. The map C� [[℄℄ : C � I 7! C�;� is shown in Figure 3.The denotation of an assignment applies put var to the �nal environments of thedenotation of the right hand side. The introdu
tion of a lo
al variable v evaluatesthe 
ode in a state expanded with v. Conditionals are modelled through the ?operation. A while 
ommand is denoted by a least �xpoint over a 
onditional[16℄. It is well-de�ned sin
e both C[[℄℄ and E[[℄℄ are monotoni
 (Proposition 2), andbe
ause of Proposition 1. It is the least upper bound of an as
ending trans�nite
hain whi
h starts from ?C�;� .The semanti
s of a program is a least �xpoint de�ned through C[[℄℄ [16℄.Namely, for every f 2 F we initialise (expand) the variable f , we 
omputethe denotation of its 
ode and we remove all the variables ex
ept f .De�nition 7. By Props. 1 and 2, the semanti
s of P = hF ; 
; pi is de�ned asSP = Fo IoP where, letting � = p(f):� , f 2 F , i �nite ordinal and l limit ordinal,I0P (f)=?C�j�f ;�jf ; Ii+1P (f)=[expandf:�(f)�j�f ℄
C� [[
(f)℄℄IiP
[restri
tdom(�)nf� ℄; IlP (f)=Fm<l ImP (f) :5 Wat
hpoint Semanti
sWe spe
ify a program point of interest (a wat
hpoint) through the 
ommandwat
hpoint(l), with l 2 Label. We expand the rules in Figure 3 withC� [[wat
hpoint(l)℄℄I = [wat
h℄�;l :For � 2 Typing and l 2 Label, [wat
h℄�;l 2 C�;� 
reates a !l transition, i.e.,[wat
h℄�;l(�) = � !l � : (2)Note that the typing �l in a wat
hpoint l is stati
ally known.



Assume we are not interested in the states before an unnamed transition, butonly in those before !l with l 2 Label, whi
h 
an be sele
ted through a mapw : T 7! (Label 7! }(�))(for its expli
it de�nition, see De�nition 9) pointwise extended to denotations(Eq. (1)) and interpretations (Def. 6). Instead of 
omputing w(SP ) (Def. 7),we want to push w inside the semanti
s, i.e., 
ompute the abstra
t wat
hpointsemanti
s indu
ed by the abstra
tion w.5.1 Why a New Semanti
sGiven t 2 T , by de�nition w(t) is more abstra
t than t, and requires less spa
e(memory) to be stored. Let &(x) be the spa
e needed to store x. Sin
e we areparti
ularly interested in the 
ase when the program to be analysed is huge andthe number of wat
hpoints is relatively small, we 
an assume that&(w(t)) � &(t) (3)for t 2 T . Assume we want to 
ompute w(t) where t is a tra
e for the 
ommand
1; 
2, i.e., the 
on
atenation of a tra
e t1 generated by 
1 and a tra
e t2 generatedby 
2 from lst(t1). We 
an 
ompute t1, abstra
t it in w(t1), 
ompute t2, abstra
tit in w(t2) and merge w(t1) and w(t2) into w(t). For this we need at mostm1 = maxf&(t1)+&(w(t1)); &(w(t1))+&(w(t2))+&(t2)g spa
e (we never hold botht1 and t2 in memory at the same time). Instead, if we 
ompute t and then w(t),we need at least m2 = &(t) + &(w(t)) = &(t1) + &(t2) + &(w(t1)) + &(w(t2)) spa
e.Sin
e m1 � m2, pushing w inside the semanti
s indu
es a lighter 
al
ulation.This 
laim does not work for the time of the analysis, sin
e a state dependson its prede
essors in a tra
e. Hen
e all states must be 
onsidered during the
omputation of the semanti
s, not just those before a !l transition. But thewat
hpoint semanti
s redu
es the 
ost in time of the analysis for other reasons.1. A more abstra
t �xpoint 
omputation might require fewer iterations, andhen
e less spa
e and time. Se
tion 7 shows that this is very often the 
ase.2. Consider while e do 
, where 
 
ontains some wat
hpoints, 
 is denoted by dand e by d0. If we unfold d after d0 until the �xpoint (Fig. 3), we then need tos
an a tra
e looking for the !l transitions. If, instead, we had a denotationw(d) su
h that w(d)(�) = w(d(�)), we 
ould just merge, during the �xpoint
al
ulation, the states for the same wat
hpoints, without s
anning any tra
e.3. Dealing with smaller data stru
tures (as shown before) leads in general tofaster analyses. From Equation (3), this 
ould mean sometimes that virtualmemory is not needed by the analyser, i.e., swapping is avoided.4. Analyses based on a tra
e semanti
s use widening to avoid dealing with in�-nite tra
es. For instan
e, [4℄ and [15℄ use regular trees, whi
h add 
omplexityto the analyser. A wat
hpoint semanti
s does not need su
h a widening.Consider how the analysis s
ales with the number of wat
hpoints. Of 
ourse,fewer wat
hpoints means lighter data stru
tures, i.e., less spa
e requirements.



W.r.t. time, fewer wat
hpoints means faster analysis for points 1 and 3 above.Finally sin
e, for every wat
hpoint l, we need to 
ompute the union (join) of thestates before a !l transition, it even means fewer joins, i.e., a faster analysis.These 
onsiderations have been experimentally veri�ed in Se
tion 7.5.2 The Semanti
sWe de�ne here in detail the wat
hpoint semanti
s. To observe the states in thewat
hpoints, we 
an abstra
t the tra
es in sets of states, one for ea
h wat
hpoint.But this abstra
tion indu
es too 
oarse optimal abstra
t operations, sin
e the 
operation (Figure 2) joins the tra
es through their last state. Thus, for betterpre
ision, we abstra
t the tra
es in wat
hpoint tra
es, i.e., a set of states for everywat
hpoint, 
olle
ted into an element of Ww, and a set for the �nal states.De�nition 8. LetWw = fw 2 Label 7! }(�) j given l 2 Label we have w(l) 2 }(��l)g :A w 2 Ww is �nite if w(l) is �nite for every l 2 Label. The setWw is a 
ompletelatti
e ordered w.r.t. the pointwise extension of �. Lub and glb are (pointwise)[ and \, its bottom is ? = �l 2 Label:;.The set of wat
hpoint tra
es is T w = [�2TypingT w� where, for � 2 Typing,T w� = fhw; si j w 2 Ww; s 2 �� [ f�g and if s 6= � then w is �niteg :They are ordered as hw; si vw hw; si and hw;�i vw hw0; si if and only if w � w0.Elements ofWw are extentionally represented as [l1 7! �1; : : : ; ln 7! �n℄, mean-ing that the label li is mapped to the set of states �i for i = 1; : : : ; n. If a labelis not 
ontained in that enumeration, it is assumed that it is mapped to ;.Example 4. We haveh[l1 7! f�3g; l3 7! f�2g℄;�i vw h[l1 7! f�1; �3g; l2 7! f�2g; ℄l3 7! f�2; �3g℄; �1i :A wat
hpoint tra
e hw; si with s 6= � represents all 
onvergent tra
es whi
hend with s and 
ontain exa
tly the wat
hpoints in w. If s = �, instead, itrepresents all divergent tra
es whi
h 
ontain exa
tly the wat
hpoints in w.De�nition 9. Given t 2 T , we de�ne w(t) 2 Ww and �w : T 7! T w asw(t)(l) = f� j � 2l tg for every l 2 Label.�w(t) = (hw(t);�i if div(t)hw(t); lst(t)i otherwise.Example 5. Let Label = fl1; l2g. Then�w(�1 ! �2 !l1 �3 ! �4 !l2 �5 !l1 �6) = h[l1 7! f�2; �5g; l2 7! f�4g℄; �6i�w(�1 ! �2 !l1 �3 ! �4 !l2 �5 !l1 ~�6) = h[l1 7! f�2; �5g; l2 7! f�4g℄;�i :



[op℄w(�) = (h?; op(�)i if op(�) is de�nedh?;�i otherwise, [wat
h℄wl (�) = h?[f�g=l℄; �i?w(E;S1; S2)(�) = 8>>>>><>>>>>:E(�) if E(�):s = �hE(�):w [ S1(xE(�):sy):w;S1(xE(�):sy):siif E(�):s 6= � and is true�[int=res℄(E(�):s)hE(�):w [ S2(xE(�):sy):w;S2(xE(�):sy):siif E(�):s 6= � and is false�[int=res℄(E(�):s)(S1 
w S2)(�) = (S1(�) if S1(�):s = �hS1(�):w [ S2(S1(�):s):w; S2(S1(�):s):si otherwise.(S1 
wbop S2)(�) = 8>>><>>>:S1(�) if S1(�):s = �hS1(�):w [ S2(xS1(�):sy):w;�iif S1(�):s 6= � and (S2(xS1(�):sy):s = � or b is unde�ned)hS1(�):w [ S2(xS1(�):sy):w; bi otherwise,with b = bop�[t1=res℄(S1(�):s)(S2(xS1(�):sy):s)./w (f(v1; : : : ; vn))(I)(�) = (hi:w;�i if i:s = �hi:w; uns
opef (�)(i:s)i otherwise, i = I(f)(s
opef;v1;:::;vn (�)) :Figure 4. The operations on wat
hpoint tra
es.We de�ne now the abstra
t 
ounterpart of the set C�;� 0 of Equation (1).Proposition 3. Let �; � 0 2 Typing and W�;� 0 = �� 7! T w� 0 . The vw order (�w)is pointwise extended to W�;� 0 (C�;� 0). The pair hW�;� 0 ;vwi is a pointed CPOwith bottom �� 2 �� :h?;�i, and �w is well-de�ned, onto, stri
t and additive.Proposition 4. The operations in Fig.4, whose signatures are the �w-abstra
tionof those in Fig. 2, are monotoni
 and �w-optimal w.r.t. those in Fig. 2.Example 6. Consider the 
on
rete denotations of Example 3. Let Sw1 = �w(S1),Sw2 = �w(S2) and Sw = �w(S). We haveSw1 (�1) = h[l1 7! f�2g℄; �3i Sw2 (�1) = h?;�iSw1 (�2) = h[l2 7! f�2g℄;�i Sw2 (�2) = h[l2 7! f�3g; l3 7! f�2g℄;�iSw1 (�3) = h[l2 7! f�3g; l3 7! f�1g℄; �3i Sw2 (�3) = h[l1 7! f�3g℄;�i :Moreover, we have that Sw isSw(�1) = h[l1 7! f�2; �3g℄;�i Sw(�2) = h[l2 7! f�2g℄;�iSw(�3) = h[l1 7! f�3g; l2 7! f�3g; l3 7! f�1g℄;�i ;whi
h is exat
ly Sw1 
w Sw2 .Like in Se
tion 4, we de�ne a wat
hpoint semanti
s SwP . By Propositions 3 and4, it 
omputes the same information about wat
hpoints as our tra
e semanti
s,i.e., �w(SP ) = SwP : (4)



[op℄
o(�) = h?; op(�)i [wat
h℄
ol (�) = h?[�=l℄; �i?
o(E;S1; S2)(�) = hE(�):w [ S1(x�ty):w [ S2(x�fy):w;S1(x�ty):� [ S2(x�fy):�iwhere �t = is true�[int=res℄(E(�):�) and �f = is false�[int=res℄(E(�):�)(S1 

o S2)(�) = hS1(�):w [ S2(S1(�):�):w;S2(S1(�):�):�i(S1 

obop S2)(�) = hS1(�):w [ S2(xS1(�):�y):w; bop�[t1=res℄(S1(�):�)(S2(xS1(�):�y):�)i./
o (f(v1; : : : ; vn))(I)(�) = hi:w; uns
opef (�)(i:�)i; where i = I(f)(s
opef;v1;:::;vn (�)).Figure 5. The operations on 
olle
ting wat
hpoint tra
es.The 
olle
ting or stati
 semanti
s [6℄ S}(w)P is the powerset lifting of SwP . Itworks over }(W�;� 0), i.e., it models properties of wat
hpoint denotations. Sin
ewe are interested in properties of states, we de�ne below a semanti
s S
oP whi
hworks over wat
hpoint tra
es of sets of states. It is an AI of S}(w)P and will be
alled 
olle
ting though, stri
tly speaking, the real 
olle
ting semanti
s is S}(w)P .De�nition 10. The set of 
olle
ting wat
hpoint tra
es T 
o = [�2TypingT 
o�where, letting � 2 Typing and W
o = Ww (De�nition 8) T 
o� = fhw; �i j w 2W
o and � 2 }(�� )g, is ordered as hw1; �1iv
o hw2; �2i i� w1�w2 and �1��2.Denotations are identi�ed by their values on singleton sets. Denotations withmore than one argument will be useful at the end of this se
tion. This is for-malised below.Proposition 5. Let n � 1 and �1; : : : ; �n; � 0 2 Typing. Let CO�1;:::;�n;� 0 be� 
o 2 }(��1 ) 7! � � �� � � 7! }(��n ) 7! T 
o�0 ���� 
o(�1) � � � (�n) = hS�12�1;:::;�n2�n 
o(f�1g) � � � (f�ng):w;S�12�1;:::;�n2�n 
o(f�1g) � � � (f�ng):�i � : (5)The v
o order of De�nition 10 is pointwise extended to denotations CO. Thepair hCO�1;:::;�n;� 0 ;v
oi is a 
omplete latti
e with bottom ��1 � � ���n:h?; ;i.A 
olle
ting wat
hpoint tra
e represents a set of wat
hpoint tra
es. Thisabstra
tion indu
es optimal abstra
t 
ounterparts of the operations in Figure 4.Proposition 6. Let �
o : }(T w) 7! T 
o be �
o(S) = h[t2St:w; ft:s j t 2S and t:s 6= �gi. Its extension �
o : }(W�;� 0) 7! CO�;� 0 , for �; � 0 2 Typing,given by (�
o(W ))(�) = �
o(fw(�) j w 2 W and � 2 �g) for � 2 }(�� ), is well-de�ned, onto, stri
t and additive (hen
e, the abstra
tion of a Galois insertion).Proposition 7. The operations in Figure 5 are monotoni
 and �
o-optimalw.r.t. the pointwise extension of those in Figure 4.We de�ne a 
olle
ting wat
hpoint semanti
s S
oP . We have S
oP = �
o(S}(w)P ).The operations in Figure 5 use obje
ts in }(�) (like S1(�):� in 

o), W
o(like S1(�):w in 

o) and CO (like S1 in 

o). To simplify the abstra
tion ofSe
tion 6, we 
ompile them in terms of smaller operations over CO only, givenin Figure 6. The 
ompilation is shown in Figure 7.Proposition 8. The operations in Figure 5 and those in Figure 7 are the same.



[op℄ : CO�1;��� ;�n;�0 ; if op : ��1 7! � � ���n 7!��0 [wat
h℄l : CO�;�:w : CO�;�0 7! CO�;�0Æ : CO�1;:::;�n;�0 � CO�;�1 � � � � CO�;�n 7! CO�;�0 [ : CO2�;�0 7! CO�;�0[op℄ = ��1 : : : ��n:h?; op(�1; � � � ; �n)i [wat
h℄l = ��:h?[�=l℄; �iT:w = ��:hT (�):w; ;i T Æ (T1; : : : ; Tn) = ��:T (T1(�):�) � � � (Tn(�):�)T1 [ T2 = ��:�T1(�):w [ T2(�):w;T1(�):� [ T2(�):� � :Figure 6. A minimal set of operations over CO.xTy = [restri
tres℄ Æ T ; [op℄
o = [op℄ ; [wat
h℄
ol = [wat
h℄l?
o(E;S1; S2) = E:w [ (S1 Æ xTty) [ (S2 Æ xTfy)where Tt = [is true�[int=res℄℄ Æ E and Tf = [is false�[int=res℄℄ Æ ES1 

o S2 = S1:w [ (S2 Æ S1)S1 

obop S2 = S1:w [ (S2 Æ xS1y):w [ [bop�[t1=res℄℄ Æ (S1; S2 Æ xS1y)./
o (f(v1; : : : ; vn))(I) = Ti:w [ [uns
opef ℄ Æ ([nop℄; Ti) where Ti = I(f) Æ [s
opef;v1;:::;vn ℄.Figure 7. The operations in Figure 5 in terms of those in Figure 6.6 From Abstra
t Domains to Abstra
t Semanti
sWe show here how every abstra
tion of the domain of states (De�nition 3) in-du
es an abstra
tion of the denotations CO (Equation (5)) and of their opera-tions (Figure 6) and hen
e of the 
olle
ting wat
hpoint semanti
s of last se
tion.This redu
es the de�nition of a stati
 analysis to the de�nition of abstra
t states.Every abstra
t denotational semanti
s works over abstra
t denotations whi
hare maps from abstra
t inputs to abstra
t outputs. In our wat
hpoint semanti
s,the abstra
t outputs are a
tually abstra
t tra
es. The problem here is how tode�ne the 
on
retisation of su
h abstra
t denotations. If a 
on
rete state belongsto two abstra
t inputs, how should it behave in the 
on
retisation? We do not
onsider this problem in details here, sin
e it has already been studied in a moregeneral setting. Consider for instan
e the fun
tional partitioning te
hnique in[1℄. Instead, we assume here that in the latti
e of abstra
t states there exists aset of union-irredu
ible states in terms of whi
h all other abstra
t states 
an beexpressed. This 
ondition holds for the 
ase of sign analysis shown in Se
tion 7.For � 2 Typing, let hD� ;vi be a 
omplete latti
e and �D� and 
D� theabstra
tion and 
on
retisation maps of a Galois insertion from h}(�� );�i tohD� ;vi (typings will be often omitted).De�nition 11. Let Wa = fw2Label 7!D j for l 2 Label we have w(l) 2 D�lg.The set of abstra
t wat
hpoint tra
es is T a = [�2TypingT a� whereT a� = fhw; di j w 2 Wa and d 2 D�g for every � 2 Typing,



[op℄a = �d1 : : : �dn:h?; �D(op(
D(d1); : : : ; 
D(dn)))i [wat
h℄al = �d:h?[d=l℄; diT:wa = �d:hT (d):w;;iT Æa (T1; : : : ; Tn) = �d: tad02S T (T1(d0)) � � � (Tn(d0)) ; with S 2 �(d)T1 [a T2 = �d:�T1(d):w [D T2(d):w;T1(d):d [D T2(d):d � [D is the best approximation of [ over D.Figure 8. The generi
 abstra
t 
ounterparts of the operations of Figure 6.ordered as hw1; d1i va hw2; d2i if and only if w1 va w2 (pointwise) and d1 va d2.The map �D is expanded to T 
o� as �D(hw; �i) = h�l:�D�l (w(l)); �D� (�)i.De�nition 12. Let � 2 Typing. The union-redu
tions of d 2 D� are�(d) = fS 2 }(D� ) j 
D(d) = [d02S
D(d0) and #�(d0) = 1 for every d0 2 Sg :If #�(d) = 1 (i.e., �(d) = ffdgg) we say that d is union-irredu
ible. If everyd 2 D� is su
h that �(d) 6= ;, we say that D� is union-redu
ible.Proposition 9. Assume that D� is union-redu
ible for every � 2 Typing. Givenn � 1 and �1; : : : ; �n; � 0 2 Typing, let A�1;:::;�n;� 0 be�a 2 D�1 7! � � �D�n 7! D� 0 ���� a is monotoni
 and given 1 � i � n and S 2 �(di)a(d1) � � � (di) � � � (dn) = FD�0d02S a(d1) � � � (d0) � � � (dn) � ; (6)i.e., denotations in A�1;:::;�n;� 0 are identi�ed by the union-irredu
ible elements.Let �a : CO�1;:::;�n;� 0 7! A�1;:::;�n;� 0 be �a(
o) = �D
o
D. The set A�1;:::;�n;� 0is a 
omplete latti
e with bottom �d1 : : : �dn:h?;?D�0 i and �a is well-de�ned,onto, stri
t and additive (hen
e, the abstra
tion map of a Galois insertion).Proposition 10. Assume that D� is union-redu
ible for every � 2 Typing. Theoperations in Figure 8 are the best approximations over A of those in Figure 6(note that Æa is not the 
omposition of fun
tions).In 
on
lusion, given a union-redu
ible abstra
tion D� of }(�� ) for every� 2 Typing, and the best approximations overD of the powerset extension of theoperations of Figure 1 (used in [op℄a) and of [, we obtain an abstra
t wat
hpointsemanti
s, 
orre
t w.r.t. the 
olle
ting wat
hpoint semanti
s of Subse
tion 5.2.As said before, similar results 
an be obtained in the more general 
ase of non-union-redu
ible latti
es by using the fun
tional partitioning te
hnique of [1℄.7 ImplementationWe des
ribe here our implementation in Prolog of the wat
hpoint semanti
sof Se
tions 5 and 6 instantiated with sign analysis. It 
an be downloaded fromhttp://www.s
i.univr.it/�spoto/wat
h.tar.gz.We have 
hosen Prolog forfast prototyping, and sign analysis be
ause it is a well-known, simple analysis.



nops� (&) = & (get inti� )s(&) = (&[+=res℄ if i � 0&[�=res℄ if i < 0(get varv� )s(&) = &[&(v)=res℄ (put varv� )s(&) = &[&(res)=v℄j�res=s� (&1)(&2)=8>>><>>>:&2[�=res℄ if &1(res) = �and &2(res) = +or vi
e versa&2[u=res℄ otherwise +s� (&1)(&2) = 8><>:&2[+=res℄ if &1(res) = &2(res) = +&2[�=res℄ if &1(res) = &2(res) = �&2[u=res℄ otherwise(s
opef;v1;:::;vn� )s(&) = [�1 7! &(v1); : : : ;�n 7! &(vn)℄ where h�1; : : : ; �ni = p(f):s n f(uns
opef� )s(&1)(&2) = &1[&2(f)=res℄ (restri
tvs� )s(&) = &j�vs (expandv:t� )s(&) = &[+=v℄is trues� (&) = (empty if &(res) = �&[+=res℄ otherwise is falses� (&) = (empty if &(res) = +&[�=res℄ otherwise[s� (empty)(x) = [s� (x)(empty) = x [s� (&1)(&2) = �v 2 dom(�):(&1(v) if &1(v) = &2(v)u otherwise.Figure 9. The abstra
t operations over the domain of signs.The module analyser.pl implements the �xpoint 
al
ulation (Figure 3 andDe�nition 7) by using the semanti
 operations (Figures 7 and 8) implementedin the module semanti
.pl. The module typing.pl manipulates typings. Themodule domain.pl implements the abstra
t 
ounterparts of the operations ofFigure 1. Only this module depends from the domain of analysis.Our domain for sign analysis is similar to that in [6℄.De�nition 13. For every � 2 Typing, let S� = femptyg [ f& : dom(�) 7!f+;�; ugg. The abstra
tion map � : }(�� ) 7! S� is su
h that, for X 6= ; andv 2 dom(�),�(;) = empty �(X)(v) = 8><>:+ if �(v) � 0 for every � 2 X� if �(v) < 0 for every � 2 Xu otherwise.Let � be re
exive and let + � u and � � u. The set S� is ordered as empty vs sfor every s 2 S� and &1 vs &2 if and only if &1(v) � &2(v) for every v 2 dom(�).The optimal 
ounterparts over S of the powerset extension of the operations inFig. 1 are (all but [s) stri
t on empty. Otherwise, they are given in Figure 9.Given � 2 Typing, the union-irredu
ible elements of S� are empty and those& 2 S� su
h that &(v) 6= u for every v 2 dom(�). If &(v) = u for some v 2dom(�), instead, the 
on
retisation of & 
an be shown to be the union of the
on
retisations of & [+=v℄ and & [�=v℄. Therefore, we have�(empty) = femptyg �(&) = �& 0 ���� for all v 2 dom(�) we have & 0(v) 6= uand if &(v) 6= u then &(v) = & 0(v) � :By the results of Se
tion 6, the abstra
t denotations are maps whose domain ismade of empty and of all & whi
h never bind a variable to u. The values for theother elements of S� are indu
ed.



F = ffibgp(fib) = hhfib; ni; [fib 7! int; n 7! int℄i
(fib) = if (n =< 1) then%wat
hpoint(p1);fib := 1else%wat
hpoint(p2);let n1 : int in let n2 : int in%wat
hpoint(p3);n1 := n� 1;%wat
hpoint(p4);n2 := n� 2;%wat
hpoint(p5);fib := fib(n1) + fib(n2);%wat
hpoint(p6)
j ?� interpret:Analysing [fib℄ : iteration 1Analysing [fib℄ : iteration 2fixpoint rea
hedPro
edure : fibInput : empty Output : emptyWat
hpoints : p3 : emptyInput : [+℄ Output : [+℄Wat
hpoints : p3 : [+;+;+;+℄Input : [�℄ Output : [+℄Wat
hpoints : p3 : empty(a) (b)Figure 10. The Fibona

i pro
edure and one of its possible analyses.Elements of S� are implemented as the term empty or lists of +, - and u,ordered alphabeti
ally w.r.t. the names in dom(�). For instan
e, if � = [a 7!int; 
 7! int; b 7! int℄ then & = [a 7! +; 
 7! �; b 7! u℄ is implemented as[+,u,-℄. We are aware of 
leverer implementations, but in this paper we fo
uson the semanti
s.The input of the analyser is a Prolog term whi
h represents the abstra
t syn-tax of a program. Figure 10(a) shows a program for the n-th Fibona

i number,with six possible wat
hpoints. The �le fib.pl 
ontains its abstra
t syntax. Wedownload it with [fib℄. and we analyse it with interpret. Figure 10(b) showsthe result when only wat
hpoint p3 is not 
ommented. The input of fib is thevalue of n, its output is the value of the variable fib at its end. As you 
an see,if we start with an empty set of states we never rea
h wat
hpoint p3. If we startwith a state where n is positive, the output is positive and we rea
h wat
hpointp3 with a state where fib, n, n1 and n2 are positive. Indeed the initial valueof a variable is 0 and in the else bran
h we have n > 1. Finally, if we startwith a state where n is negative, the output is positive and wat
hpoint p3 isnever rea
hed. Indeed, if n < 0 the then bran
h is exe
uted. If we start withan unknown value for n we would obtain the least upper bound of the last two
ases.7.1 The Costs in Spa
e and in Time of the AnalysisTo estimate the spa
e used by our analyser independently from its implemen-tation, we 
ount the number of Prolog atoms 
ontained in the denotations it
omputes (weight). Fig. 11 gives the weight for the analysis of fib (Fig. 10(a))and pi (a Monte Carlo algorithm 
omputing �), as a fun
tion of the number ofa
tive wat
hpoints. For now, 
onsider only the lines marked with Abstra
t In-terpretation. Horizontally, an integer like 3 means that only wat
hpoints p1, p2and p3 were a
tive. As you 
an see, the weight grows with the number of a
tivewat
hpoints. When passing from 0 wat
hpoints to 1 wat
hpoint in Fig. 11(a)
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(a) fib (b) pi (
) fib with ACFigure 12. The 
ost in time of the analysis w.r.t. the number of a
tive wat
hpoints.and from 10 wat
hpoints to 11 in Fig. 11(b) one more iteration is needed torea
h the �xpoint. Thus less wat
hpoints does mean less iterations (Subs. 5.1).We expe
t the time of the analysis to grow with the number of wat
hpoints,proportionally with the 
ost of the abstra
t join (Subs. 5.1). Fig. 12 
on�rmsthis. The 
onstant 
 is a �
titious 
ost added to the 
omputation of the join.Note that domains more realisti
 than signs usually feature 
omplex joins. Noteagain the jump when one more iteration is needed for the �xpoint 
al
ulation.The ben
hmark nested shows the same behaviour of Fig. 12. But if a ben
hmarkdoes not 
ontain re
ursive predi
ates nor 
onditionals nor iterative 
onstru
ts,then the time for its analysis is independent from the number of wat
hpoints,like for arith, whose abstra
t exe
ution tree is a
tually a �nite tra
e.Note that [4℄, [5℄ and [15℄ do not provide a link to an implementation.



Ben
hmark Wat
hpoints AI/AC Iterations Time (se
onds) Weight (atoms)fib ; AI 2 5.92 160795fib ; AC 2 4.03 142299fib fp1; : : : ; p6g AI 3 9.19 349631fib fp1; : : : ; p6g AC 3 5.28 305363pi ; AI 2 16.61 833419pi ; AC 2 8.91 463294pi fp1; : : : ; p18g AI 3 25.93 2107643pi fp1; : : : ; p18g AC 3 10.58 1287127arith ; AI 1 303.12 7049327arith ; AC 1 308.42 7049327nested ; AI 3 661.43 14253268nested ; AC 3 369.99 8419626Figure 13. A 
omparison of abstra
t interpretation with abstra
t 
ompilation.7.2 Abstra
t CompilationIn Figure 10(a) we note that the denotation of the then bran
h is independentfrom the partial denotation 
omputed for fib. Thus, it does not need to be 
om-puted at every iteration, like, instead, that of the else bran
h, whi
h 
ontainstwo 
alls to fib. However, its �rst part, till the wat
hpoint p5, does not 
ontainre
ursive 
alls, and 
an be safely analysed only on
e. Those optimisations areexamples of abstra
t 
ompilation (AC). Our analyser uses AC by invoking thegoal 
ompile. The result is like that in Figure 10(b), with smaller spa
e and time
osts, as Figures 11 and 12(
) show for weight (spa
e) and time, respe
tively.Moreover, Figure 12(
) shows that the time still depends from the number ofwat
hpoints and the 
ost of the join. Finally, Figure 13 shows that AC leads veryoften to major improvements, but is of no help with the 
at ben
hmark arith.8 Con
lusionsWe have shown that, if we are interested in the analysis of a program in asmall set of wat
hpoints, it is worth abstra
ting a tra
e semanti
s in a lighter,
ompositional and still as pre
ise wat
hpoint semanti
s. We have shown throughan implementation that it is fo
ussed, i.e., its 
omplexity grows with the numberof wat
hpoints, and that abstra
t 
ompilation improves signi�
antly the �xpoint
al
ulation.The analysis pro
ess is de�ned as a �xpoint 
omputation. For better eÆ-
ien
y, if a set of 
all patterns is known for some fun
tions, this 
omputation
an be done on demand, simulating a top-down analysis. This means that theabstra
t denotations are enri
hed at �xpoint 
omputation time whenever thebehaviour of a fun
tion for a new input is needed.Our results apply to the modular analysis of large programs and to theanalysis inside smart 
ards, where memory requirements must be kept small.Referen
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