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ABSTRACT

any defaults, so the computational cost required to obtain
accurate credit risk estimates can be very large. This is par-

Simulation is widely used to estimate losses due to default ticularly true for accurate estimation of small but important

and other credit events in financial portfolios. The challenge probabilities of large losses, which are usually the focus of
in doing this efficiently results from (i) rare-event aspects of risk measurement. Importance sampling (IS) is a natural
large losses and (ii) complex dependence between defaultstechnique to consider for rare event simulation; however,
of multiple obligors. We discuss importance sampling tech- complex dependence between defaults of multiple obligors
nigues to address this problem in two portfolio credit risk complicates the application IS. Capturing dependence be-

models developed in the financial industry, with particular

emphasis on a mixed Poisson model. We give conditions
for asymptotic optimality of the estimators as the portfolio

size grows.

1 INTRODUCTION

Developments in risk management have led financial institu-
tions to make greater use of probabilistic models to quantify
their risks. Two main components of financial risk are mar-
ket risk and credit risk. Whereas market risk results from
changes in prices, credit risk refers to losses resulting from
the failure of an obligor (a party under a legal obligation)
to make a contractual payment. Credit risk includes, for
example, the possibility that a company will fail to repay a

tween defaults is at the heart of a portfolio view of credit
risk, so this issue is fundamental.

In most models of credit risk, dependence is intro-
duced through a set of “risk factors” and defaults become
independent conditional on the risk factors. This suggests
a general approach to IS based on applying a change of
distribution to the factors and a change of distribution to
the default indicators conditional on the factors. This is
the approach we follow. We have used this approach in
Glasserman and Li (2003) for the “normal copula” model of
Gupton et al. (1997). Here we show that a similar strategy
can be used very conveniently in the mixed Poisson model
of CreditRisk” (CSFP 1997). Indeed, the mixed Pois-
son model is sufficiently tractable that it is usually solved
through numerical transform inversion, without simulation.

loan or a bond issuer will miss a coupon payment. Increased Nevertheless, it provides an interesting illustration of a more

interest in the modeling and management of credit risk has
led to the development of various commercial models, now
in widespread use. These include CreditMetrics, originally
developed by JP Morgan, and CreditRiskdeveloped by
Credit Suisse Financial Products. For an overview, see
Crouhy, Galai, and Mark (2001). These models are de-
signed for the credit risk banks face from other companies
and differ from those used for consumer credit.

Given a credit risk model, the rapid and accurate con-
struction of the portfolio loss distribution is at the heart
of credit risk management. Monte Carlo simulation is
frequently used to estimate this distribution. Each replica-
tion of such a simulation usually consists of determining
which obligors default and the losses given default. For
high-quality portfolios, most replications produce few if

267

general approach to IS for credit risk.

Section 2 reviews the normal copula and mixed Poisson
models. In Section 3, we discuss IS for the normal copula
model, based on Glasserman and Li (2003). In Section 4,
we propose an IS method for the mixed Poisson model. We
establish the asymptotic optimality of this method under
alternative limiting regimes. Numerical examples illustrate
the effectiveness of the method. Section 5 concludes the
paper.

2 CREDIT RISK MODELS
We consider a portfolio withm obligors. LetY; denote

the default indicator of theth obligor for some fixed time
horizon (e.g., one year). Thug, = 1 if this obligor defaults
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within the horizon andY; = 0 otherwise. Letc; denote
the loss resulting from default of théh obligor. These are
sometimes modeled as random variables, but for simplicity
we take them to be (positive) constants. The portfolio loss
over the horizon is

1)

m
L:Z)m.
i=1

Our goal is to measure the tail of the loss distribution
P(L > x), particularly at large values of.

The marginal default probabilities = P(Y; = 1) are
usually assumed known (e.g., from published credit ratings).
Different credit risk models differ in the mechanisms they
use to capture dependence amongYheHere we give a
brief description of two models.

2.1 Normal Copula Model

In the CreditMetrics model of Gupton et al. (1997) (see
also Li (2000)) the default indicators are modeled as
Yi =1{Xj > xi}, i=1,...,m, (2)

where (X1, ..., Xm) are correlatedN(0, 1) random vari-
ables. Each thresholg is chosen to match the marginal
default probability p; for the ith obligor; thus,x =
®1(1 — p), with ® the cumulative normal distribution.
This construction transfers correlations among ¥eto
dependence among th. This is an instance of a nor-
mal copula construction of dependent random variables, or
what Cario and Nelson (1997) call “normal to anything.”
In the credit risk context, th&; are often given a financial
interpretation.

Correlations among th¥; are usually specified through
a factor model of the form

Xi = ajoei + 121+ -+ agZd, i=1...,m,

= 3)
with ¢ and Z4, ..., Zq independentN(0, 1) random vari-
ables anda? + --- + a2 + a% = 1. Eache represents
risk affecting only theith obligor, whereas th&; repre-
sent common risk factors affecting multiple obligors. For
example, eactZ; may be associated with an industry, a
geographic region, or a market-wide risk factor.

Normal copula models rely on simulation for the calcu-
lation of the portfolio loss distribution. In each replication,
every X; is generated from independent(0, 1) random
variablese; and Zy, ..., Zyq according to the model speci-
fication (3), and the portfolio loss is evaluated from (2) and

(1).
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2.2 Mixed Poisson Model

An alternative way of introducing dependence uses a mixed
Poisson model, as in CSFP’s (1997) CreditRiskn this
setting, eacly; is (conditionally) Poisson distributed. This
may be viewed as a Poisson approximation to a Bernoulli
random variable (based on the fact that a Poisson random
variable with a very small mean has a very small probability
of taking a value other than 0 or 1); alternatively, it can
be viewed as a reinterpretation of (1) in whichndexes
groups of obligors with roughly equal exposwse rather
than individual obligors. In this reinterpretation, values of
Y; greater than 1 are meaningful.

The common risk factors in this model are independent
gamma random variabldy, ..., I'y. Conditional on these
random variables, eact{ has a Poisson distribution with
meanR;,

R =ao+ali+-- +adlq, (4)
for some positive coefficientsig, ..., ag. Thus, eachy;
may be viewed as a Poisson random variable with a random
mean — a mixed Poisson random variable. We normalize
I1,...,T'q to have mean 1 and variance$, . .., oZ.

Mixed Poisson models have long been used in many
applications; see Section 3.2 of Johnson et al. (1993). Using
gamma random variables for the mixing variables leads to
some tractability and allows calculation of the distribution of
L through numerical inversion of its probability generating
function (see CSFP 1997). The model nevertheless provides
an interesting setting for rare event simulation. Also, for the
IS method we develop the gamma random variables could
be replaced with any other positive random variables having
reasonably well-behaved moment generating functions.

Simulation without IS is straightforward. In each
replication, we first generate the common risk factors
I'j independently from the distributiorGammac;j, ;),
j=1,...,d, with

1 2
O
j
This givesI'; mean 1 and variance?. Then we generate
Y; from Poissor{R;) with the R calculated as in (4). From
theY; we evaluate the portfolio loss (1).

3 IS FOR THE NORMAL COPULA MODEL

3.1 IS Estimator
In this section, we review an IS technigue proposed in

Glasserman and Li (2003) for the normal copula model.
We begin by considering the simpler case of independent
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obligors in whichYy,..., Yy are independent Bernoulli
random variables with parameteps, ..., pm.

In order to generate large losses more often, it is natural
to consider IS based on increasing each default probability
pi to some larger valugj. The associated estimator of
P(L > x) is the product of the indicatdr{L > x} and the

For the new probabilities, it turns out to be convenient to
restrict attention to a one-parameter family of the form

pie’®
pie’s + (1—pi)’

m

[

i=1

pi(0) =

By choosingé > 0, we increase each default probability
and we do so in a way that takes account of the original
pi and also the loss magnitudes

With this choice of default probabilities, some algebra
shows that the likelihood ratio can be rewritten as(exql +
YL (0)), where

m
wL ®) = |Og E[eX[XQ L)] = Z |og(1 + pi (eCi0 _ 1))
i=1

is the cumulant generating function &f Thus, using the
probabilitiesp; (6) is equivalent teexponentially twisting.,
a standard technique in IS. To sample under the twisted dis-
tribution, we simply replace the original default probability
pi with pj(6).

It remains to choose the parameferFor this we look
at the second moment of the estimator, which is given by

Ee[e—29L+21//|_(9)1{L - X}]
exp(—20% + 2y (9)).

Ma(X, 0)

< ()

The subscript on the expectation indicates thatit is calculated
under the IS distribution for parameter While finding the
value of & minimizing Mz(x, ) is difficult, it is a simple
matter to minimize the upper bound in (5). The minimizer
0y is the unique solution to

YL (%) = X. (6)

The expectation of. under this changed measure is

m
Emuzaiihw

i=1

:| = I///|_(9x) = X.
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Thus, to estimateP(L > x) for large values ofx, we
increase the individual default probabilities to make¢he
expected loss.

We now turn to the more interesting case in which
theY; are dependent. We consider dependence introduced
through a normal copula as discussed in Section 2.1. We
apply IS as in the independent case, but we do so conditional
on the common factorg = (Z1, ..., Zqg)".

Observe that, giverz, theY; are indeed independent
with conditional default probabilities

From these we can calculate the conditional cumulant gen-
erating function

a1Z1+ -+ adZd — X
ao

azpmzna=¢<

m
YLiz(0) =log E[12] = ) "log(1+ pi(¢"% — 1))
i—1

and solve for the parametéy,

I/f/|_\z(9~x) =X.

We can then define new conditional default probabilities

pi €7xC

T 1...
i +1— P

pi (éx) = I =

, M.

The IS procedure now generates default indicators
Y1, ..., Ym independently (givenZ) with Y; taking the
value 1 with probabilityp (6x).

SettingL equal to the sum of th¢ ¢; yields the one-step
IS estimator

eféxLthﬂuz(éx)l{L > X} (7)
this is the conditional counterpart of the IS estimator in the
independent case. Its conditional expectatidd(s > x|Z)
and its unconditional expectation is therefd?éL > x).

To further reduce variance, we can apply a second
step of importance sampling td, viewing P(L > x|Z)
as a function ofZ and the calculation oP(L > x) as a
problem of integrating over the distribution &f. For this
we consider shifting the mean @&ffrom the origin to some
point . The likelihood ratio for this change of measure is

1
exp(—uTZ + EMTM) .

When multiplied by (7) this yields the two-step IS estimator

T 1 4 5 5
exp(—u Z+§u u—9xL+1/sz(9x)> L > x}
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in which Z is sampled fromN (i, 1) and thenL is sampled IS estimator is effective only if the underlying correlations
from the 6y-twisted distribution conditional oiZ. are nottoo large. Atlarger correlations, it becomes essential
It remains to specify the new meanfor the common to apply IS to the common risk factors as well.
factorsZ. The approach of Glasserman, Heidelberger, and To state a precise result, we limit ourselves to the case
Shahabuddin (1999) suggests choosgingy solving ¢ =1, pi = p, and a single common facta, and all X;
of the form
_1,T,
u_argzmaxP(L>x|Z_z)e 2% 4, X; =pZ+\/l——pZEi.

The product on the right is (proportional to) the optimal We ta!<e,o to be of the forrra/m‘_*, for somea, @ > 0, .and
IS density, so this approach chooses the new mean at thefind different behavior depending on the valuefi.e.,
mode of the optimal density. This approach is investigated 9ePeénding on the speed at whiphdecreases.

in Glasserman and Li (2003). Define

3.2 Asymptotic Optimality of the One-Step IS Estimator G(p) = 'é’g(ifg)l_q(ap)q p<a,

p=aq;
In rare event simulation, one often tries to measure the
effectiveness of an estimator of a small probability by in- mG(p) is the likelihood ratio at. = mqfor the independent
vestigating its performance as the probability of the event case with marginal individual default probability. Also
vanishes. An estimator is said to be asymptotically optimal define
if its second moment decreases at twice the rate of the

_ -1
probability itself. By Jensen’s inequality, this is the fastest F(a.2) = G(®@z+ o (p).

possible rate of decrease for any unbiased estimator. The following theorem is proved in Glasserman and Li
To see what type of asymptotic optimality we might (2003):
look for in the credit risk setting, we again consider the Theorem 1 If p =a/m®, a > 0, then

independent case. Because the credit portfolios of financial (5) For ¢ > 1/2,
institutions can be very large, it is natural to consider

asymptotics asn — oo. In the independent case, the key lim mtlogP(L >mg = F(0,0)
condition we need is convergence of the functigngm m— 00

to a finite, convex functiony; this holds, for example, mIinOo m~*log M2(mg, fmg = 2F(0,0).
if the (pi,c) approach a limit as increases. In this

case, asymptotic optimality can be established through the (b) For o = 1/2,

argument in Sadowsky and Bucklew (1990). In more detail,

for all sufficiently largeq, we have m“—r>nc>0 mtlogP(L > mg)= mzax{p(a’ 7) — 72/2)

- -1 _ 2
m"m %Iog P(L > ma) = g mIinoom log M2(M@, Omg)= mzax{2F(a, 2) — 2°/2}.
— 00

and (c) For0O<a <1/2,

rT!i_r)nOo % log M2(md, 6mq) = 2yq, n!ﬂ)ﬂoo m~2*log P(L > mq)
; —2a
for someyq < 0. Thus, the second moment decreases at - mlinoom 109 M2(Mg, fma)
twice the exponential rate as the first moment. - _ 5/2,
Itturns out that we generally cannot hope to have a result
of quite this form once we introduce dependence through with z, = @ 1(q) — o L(p))/a.
either a normal copula or mixed Poisson model. Indeed, This result shows that we achieve asymptotic optimality
once we introduce dependentg,m will often converge to only in the caser > 1/2 (in which the correlations vanish
arandom limitand®(L > ma) may not vanish ag — oc: quite quickly), because only in this case does the second
there is too much dependence for this formulation to lead moment vanish at twice the rate of the first moment. At
to asymptotic optimality. a = 1/2, the second moment decreases faster than the first
We therefore consider a limit in which the dependence moment, but not twice as fast, so this is an intermediate
weakens am increases. Whether or not we achieve asymp- case. Witha < 1/2, the two decrease at the same rate,
totic optimality depends on how quickly it weakens. The which implies that one-step IS is (asymptotically) no more
practical implication of this formulation is that the one-step  effective than ordinary simulation in this case. The failure
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of asymptotic optimality in (b) and (c) results from the
impact of the common risk factaZ in the occurrence of

Here,—aj log(1—Bj ;) is the cumulant generating function
of T'j, which has aGammadq;j, 8j) distribution under the

a large number of defaults: at moderate or large values of original measure. We see from this thgt must be less

o, large losses occur primarily because of large moves in
Z. Capturing this effect requires applying IS B itself,
rather than just to thg; conditional onZ.

4 IS FOR THE MIXED POISSON MODEL
4.1 IS Estimator

We next consider the simulation problem for the mixed

Poisson model. Asinthe normal copula model, we can think
of applying IS in two steps — one step changes the default
probabilities conditional on the common factors, the other
applies a change of distribution to the factors themselves.

Because of the special structure of the mixed Poisson model,
these two steps can be combined in a convenientand effective

way.
In analogy with the discussion for the normal copula

model, we first assume the values of the common risk factors

I'1,..., g are given, so that thg are independent Poisson
random variables with parameteRs. Consider the effect
of exponentially twistings; Y; by somef € R; this defines
a change of distribution through the likelihood ratio
exp(—0GY; + R (6% — 1)).

Here, R (e%? — 1) is the conditional cumulant generating
function of ¢Y;, given R;. The conditional mean of;
under the distribution defined by is R e%?. By choosing
0 > 0 we thus increase the mean 9f

Now apply this exponential twist to all tregY;. SincelL
is the sum of (conditionally) independent random variables
G Y;, the likelihood ratio has the form

m
[Texn—bcYi + R — 1)

i=1

-1, €

m
exp(—0L + > Ri(e%’

i=1

andZim:l R (€57 —1) is the conditional cumulant generating
function of L given the risk factorg™y, ..., I'y.

To further reduce variance, we apply a second im-
portance sampling step to the risk factors. We consider
exponentially twisting eacltj by somer;. This defines a
change of distribution through the likelihood ratio

d
— > {zjTj +ej log(1 — Bjzj)} 9)

j=1

exp
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than ¥/gj, | = 1,...d. Under the distribution defined by
rj, I'j has aGammdcaj, Bj/1 — Bjtj) distribution. In
other words, exponentially twisting a gamma distribution
produces another gamma distribution with the same shape
parameter and a different scale parameter.

The likelihood ratio for this two-step change of dis-
tribution is the product of the individual likelihood ratios
(8) and (9). Since thdy are determined by, ..., g
through (4), simple algebra shows that the likelihood ratio
can be expressed as

exp(=0L + ¥y P ©) +y 2 (@) + 2@, 7.1)), (10)

m
i=1
d
v@) = —Zaj log(1 - Bjtj),
j=1
d m
yO@.1.1) = ZZ € =D -l

i=1

It remains to choose the twisting parametars . ., g
andé. Inspection of the components of (10) reveals that by
linking the choices of these parameters we can eliminate the
I'j from the likelihood ratio, leaving only the dependence
on L. Because our goal is to estimate the tail distribution
of L, this will prove to be an effective choice. Suppose,
then, that we choose

m
=> &’ -1, j
i=1

For sufficiently smalb > 0, this will satisfy the constraint
7j < 1/Bj. Substituting (11)in (10) reveals that the two-step
IS likelihood ratio has the form

1,...d. (11)

exp(—6oL + ¥Lm(9)) 12)
where
YLm®) =¥ 0©0) + Y 1n(©) (13)
with y("), = @ as above and

Y0) = ZaJ Iog(l ﬂJZau(ec' - )
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In fact, this shows that/| m(0) is the cumulant generating
function of L and (12) is exactly the likelihood ratio for
exponentially twistingL itself by 6. (In contrast, in the
normal copula model it does not seem possible to blend the
two IS steps in this way or to find a simple expression for
the cumulant generating function af)

For the choice of, we use the same idea as in the
independent case, choosifig= 6x with 6x solving

Vi m(Bx) = X. (14)

The two-step IS estimator oP(L > x) for the mixed
Poisson model is then

exp(—0xL + ¥ m(Bx)L{L > x}. (15)

This is easily implemented through the following algorithm:

1. Definey. m as in (13) and solve faiy as in (14);
setfy = max0, 6}.

2. Computerj, j =1,...,d, from (11).

3. Generat&; ~ Gammada;j, %), ji=1...,d

4. Compute the conditional meaky, i =1,..., m,
as in (4).

5. Generatey; ~ PoissoriR €%%), i =1,..., m.

6. Calculate losg =c1Y1+ -+ CcnVYm.

7. Return estimator (15).

The conditiondy > 0 holds whenevek > E[L] and
thus whenevefl > x}isarare event. Inthe less interesting
case thatx < E[L] (and 6x < 0), IS is unnecessary.
Replacingdx with 0 (as in Step 1) restores the original
sampling distribution.

4.2 Asymptotic Optimality

We now turn to the question of asymptotic optimality for
the IS estimator (15) as increases. Our first result takes
the loss threshold to be a fixed multiple ofn; we write
mgq instead ofx. We formulate an asymptotic optimality
result for settings in which the probabilitP(L > mq)
decays exponentially to O as increases t@o. As before,
asymptotic optimality means that the second moment

M2(q, 6q,m)
E@qym[l{L > mq} exp{—20g.mL + 2¢L m(0q.m)}]

decays at twice the rate of the probability itself. Here, we
have written the twisting parametéf asfqm and written
Eg,m for the expectation under the IS distribution.
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Asymptotic optimality would follow from the existence
of a limiting cumulant generating function

1
YL@ = lim —i m®). (16)

Inspection ofv,hﬁn reveals, however, that this limit will
ordinarily be infinite for allé > 0 if the parameters of the
problem are allO(1). In particular, if theaj; andc; are all
O(1) and positive, then

m
> e —1)
i=1

will be larger than 18 for sufficiently largem, making
wfzfm(e) infinite for all sufficiently largem.

The source of the problem here (as in the normal copula
setting) is that there is too much dependence amonyjthe
As a result,P(L > mqg) may even have a nonzero limit
as m increases. To formulate an asymptotic optimality
result, we consider limiting regimes in which either the
impact of the common factonsy, ..., I'q diminishes asn
increases, or in whiclg itself increases wittm. From a
practical perspective, this suggests that the IS estimator may
not be very effective in the presence of strong correlations
between theY;. Alternatively, this says thatj needs to
be large relative to the strength of the dependence on the
common risk factors.

There are many ways one could make the parameters of
the model vary withm that would lead to the convergence
required in (16). We give three specifications. In the first,
the coefficientsa;j are decreasing, so thé become less
sensitive to the risk factors; in the second, the number of
risk factors increases and each becomes less important; in
the third, the variability of each risk factor decreases.

Case (a):ci — ¢, ajo — ap, maj — a;, for some
constants, ag, ay, . . ., a4, and the limit is

YL(O) = ag(e” — 1).

Case (b):ci — ¢, ajo - ap, maj — a, d/m — dop, and
the limit is

d
YLO) = aoed — 1) — —log(1 ~ ofaEe” ~ 1)
]

Case (c):¢; — ¢, ajp — ap, &j — aj, M/aj — sz >0
andmg;j — of, and the limit is

d
1
YL(6) = 20(e” —1) — ) " log(1 - ofa;(e”

i=1 9]

—-1).
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For any of these possible limits, l6§ satisfy with Eg,, the expectation under the IS distribution. We
suppose that for each=0,1,...,d, aj — aj for some
Vi (6g) = Q. a7 constantsaj. We assume the indices dfi,...I'q are
ordered so thag 81 < --- < agfq.
Theorem 2 For Cases (a)—(c), we have Theorem3 If¢g — ¢ & — aj, j =0,1,...d,
then
lim m~tlogP(L > mg) = —64q + ¥ (6g).  (18)
M=o lim m“logP(L > xm*¥) = —x/capr
m— o0
and lim m“logMa(m, 6m) = —2x/caupi.
m—o0

lim m~tlogM2(q, 6q.m) = —20q9 + 2L (6g). (19
m— 00 9 M2(9. . m) qd+ 2y ). (19) Thus, IS using exponential twsisting with parameigris

asymptotically optimal.

Thus, IS using exponential twisting with parameigh, is Proof. Eirst we show that

asymptotically optimal.
Proof. Given the existence of, (18) is a direct con-

liminf m™*log P(L > xm'™®) > — . 20
sequence of the Gartner-Ellis Theorem (as in, e.g., Dembo m— 00 9Pl > = ca181 (20)
and Zeitouni (1998)).
From the definition 0fM2(q, 6gq.m), we have Sincec; — ¢, aj — a;j, for arbitrarye > 0 there exists an

m1 such that for anyn > my,
M2(d, fgm) < expl—2m(@g,md + M Y m(@gm))}
exp—2m(0qq + M~y m(0q)))

exp{—2m(fq0d + VL (6g)) + o(m)}. GivenT'y, let N7, No, ... be i.i.d. Poisson random variables
with mean(a; — €)I'1. For sufficiently largem,

C—e <G <C+e¢ andaj —e < aj <aj +e.

IA

The second inequality holds becadge, minimizes—6q+

M~y m@). And sincem 1y m@g) — VL(Gg), we P(L > xm!t®) (21)
obtain the last equality. Thus, m
P(c—€) ) N > xmte)
lim supm~tlog Ma(q, q.m) < —204q + 21 (6g). i—1

m—o00

v

m
P(I' > yme)P((C—€) Y Ni > xm |l = ym)

. >
Since the second moment must be at least as large as the — —~
1=

square of the first moment, using (18) we get (19). and
asymptotic optimality holds.=

Through the argument in Sadowsky and Bucklew
(1990), it follows that we also have asymptotic optimality
if in the IS algorithm we replacéq m with the fixed value
0q solving ¥ (9g) = g. This has some potential advantage
in the sense thag. may have a simpler form thag_ m.
In numerical experiments we have found, however, that us-
ing 6q,m results in greater variance reduction — sometimes

whereym,e :.«:TST”;*OJF.E' Using the fact tha}_; N has

a Poisson distribution, giveii;, and applying the bound
(4.49) of Johnson et al. (1993), we find that the second factor
is greater than 1/2 for all sufficiently large. Combining

this with the fact that the tail of'; decays exponentially

at rate ¥ 1, for largem we get

1+ 1
much greater. P(L >xm™) > EP(Fl > Ym,e)
Now we consider another type of asymptotic optimality Ym.e
. . . . . 3 o
in which q itself increases withm. Supposey = xm® for = exp(— b +0o(m™)).

positive constants anda. Write 6, for the solution to
Sincee > 0 can be arbitrarily small, (20) follows.

Yl mOm) = xm-te, Next we show that
Thg second moment under the IS distribution with parameter lim supm™ log Ma(m, 6m) < — ' (22)
Om IS m— 00 ca1f1
Mz (M, Om) Define
_ 1+
= Eg,[1{L > xm ™} exp{—20mL + 2¢/L m(Om)}] YL me(0) = ‘/fl(_l,)m,e(e) + ':”|(_2,)m,g(9)
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where

1ﬂl(_l,)m,g(é)): m(ay + e)(e(c+g)9 _1
d

%(_Z,)m,g(@) = - Z ajlog(l — gjm(ag + €) (et — 1)).
=1

Form > my large enough an@l > 0, /| m.¢(0) > ¥ m(6).
Definefm  to be the value that solves

1
Y m,e(Ome) = xm+e

and observe that

wl/_(,lr‘)n,g(g) = m(ao + 6)(C + E)e(C—i-é)@
d 6
2 m(a; + €)(c + €)elc+e
W/L(,,L’g(e) = E : j

= 1-Aim@j + €)(ectel — 1)

From the definition ofM2(m, 6,), we know that

Ma2(m, Om)

IA

exp{—29mx mite 4 zm,m(em)} (23)

IA

exp{—ZGmyex mite 4 ZwL,m(é’m,e)}

IA

exp{—29m,€x mite 4 ZwL,m,e(Gm,e)} .

The second inequality comes from the fact haminimize
the upper bound.

As m — oo, we haveyy| , (me) — oo and this
requires thabm /zm — 1 where

zm:Iog< +1)/(C+e)

pim(ay + €)

is the smallest root of the denominaip ,231,6(9)- But then
Om.cm — 1/(C+¢€)(a1+€)B1. SO

—20m, XM 4+ 20 i e (Om,e)
ma
2XYL m,e (Om.c)
Yl e Ome)
2XYL m,e (Om.c)
Yl meBme)

lim sup

m—o00

(24)

lim sup—26m exm—+

m—o00

B 2X
c+e)(am+e)hr

+ lim sup

m—o00

Becausey m. iS a convex function passing through the
origin,

22X o Om.)m.e
VL e Ome)

ZXI//L,m,e(em,e) <
VL me@me)

= 2X9m76 — 0.
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Sincee > 0 can be arbitrarily small, (22) holds. By Jensen’s
inequality, (20) and (22) together imply the two limits in
the statement of the theorena

4.3 Numerical Examples

We now illustrate the effectiveness of the IS algorithm
through some numerical examples. For our first example, we
consider a portfolio withm = 1000 obligors and exposures

¢i = 0.04+ 0.00196 increasing linearly from 0.042 to 2.
We setajg = 0.002 anda;jj = 0.0002,j =1,...,d. There
ared = 10 risk factors, each with variance 9. With these
parametersE[Yj] = 0.004 (think of this as the marginal
probability of default over 1 year) and the standard deviation
ofY; is 0.002; these values reflect a high degree of variability
in the conditional default probabilities.

Table 1 reports variance ratios (variance reduction fac-
tors) for several values of in estimatingP(L > mq).
Each variance ratio is calculated by estimating the variance
per replication using standard simulation and dividing it by
the variance per replication using 1S. Each estimate in the
table is based on 100,000 replications. At larger values of
g, the variance ratio becomes very large. The improve-
ment is substantial for probabilities in the range of 1% to
0.1% which are of particular interest in risk management
applications.

We have carried out the same experiments using 1
and obtained very similar results. We also obtained very
similar results in estimating

m
P(Z min{Y;, 1}c; > qm)
i=1

(i.e., dropping the Poisson approximation in the original
model) using the same IS distribution. We obtained greater
variance reduction in models with smaller valuesogt
However, the main determinant of the variance ratio seems
to be the magnitude of the probabili®(L > mq).

Table 1: Variance Reduction for In-

creasingq

q P(L > mqg) Var Ratio
0.0080 10.27% 3.27
0.0099 4.94% 5.46
0.0138 1.05% 17.30
0.0156 0.51% 30.81
0.0197 0.10% 120.57

Next we illustrate the effect of increasimg while
holding g fixed. For this example, we takg = 1 and
g = 0.009. The resulting probabilitie®(L > mq) and
variance ratios for increasimg are reported in Table 2, each
based on 20,000 replications. As expected, the probabilities
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approach a limit asn increases and the variance ratio also
appears to reach a limit. This contrasts with Table 1 where
the variance ratio grows quickly witg. The results are
consistent with Theorems 2 and 3, which indicate that for
large variance reduction we either negdo grow or the
effect of the underlying gamma risk factors to weaken.

Table 2: Variance Reduction for In-

creasingm
m P(L >mqg Var Ratio

500 8.28% 4.00
1000 4.45% 5.74
2000 3.52% 6.77
5000 2.95% 7.36
10000 2.83% 7.61
20000 2.68% 7.94
100000 2.57% 8.18

5 CONCLUDING REMARKS

This paper has proposed, analyzed, and tested a two-step IS

method for estimating loss probabilities in a mixed Poisson
model of creditrisk. The method applies an exponential twist
to the default random variables conditional on the values of
common risk factors, and it applies a second exponential
twist to the risk factors themselves. We have identified
limiting regimes under which this method is asymptotically

optimal and illustrated its effectiveness through numerical
examples.

The loss distribution in the mixed Poisson model can
be calculated numerically through transform inversion (as
in CSFP 1997), essentially by using the same cumulant
generating function we use in importance sampling. Nev-

ertheless, the strategy we have used here is applicable moreaddress is<pg20@columbia.edu>

generally. It applies, for example, to the normal copula
model, for which simulation is the most practical compu-
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