
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

IMPORTANCE SAMPLING FOR A MIXED POISSON MODEL OF PORTFOLIO CREDIT RISK

Paul Glasserman
Jingyi Li

Columbia Business School
Columbia University

New York, NY 10027, U.S.A.

ult
e
f

ult
h-
k
r
ns
o

u-
fy
r-

m
)
r

a
ed
as
w
ly

ee
e-
es

n-
t
s
a-
g
r

f

in
ar-
t
of
al
r,
rs
e-

it

-
e
ts
of

o
s
in
f
y
el

-
d
.
re

n
la
4,
e
r

e
he
ABSTRACT

Simulation is widely used to estimate losses due to defa
and other credit events in financial portfolios. The challeng
in doing this efficiently results from (i) rare-event aspects o
large losses and (ii) complex dependence between defa
of multiple obligors. We discuss importance sampling tec
niques to address this problem in two portfolio credit ris
models developed in the financial industry, with particula
emphasis on a mixed Poisson model. We give conditio
for asymptotic optimality of the estimators as the portfoli
size grows.

1 INTRODUCTION

Developments in risk management have led financial instit
tions to make greater use of probabilistic models to quanti
their risks. Two main components of financial risk are ma
ket risk and credit risk. Whereas market risk results from
changes in prices, credit risk refers to losses resulting fro
the failure of an obligor (a party under a legal obligation
to make a contractual payment. Credit risk includes, fo
example, the possibility that a company will fail to repay
loan or a bond issuer will miss a coupon payment. Increas
interest in the modeling and management of credit risk h
led to the development of various commercial models, no
in widespread use. These include CreditMetrics, original
developed by JP Morgan, and CreditRisk+, developed by
Credit Suisse Financial Products. For an overview, s
Crouhy, Galai, and Mark (2001). These models are d
signed for the credit risk banks face from other compani
and differ from those used for consumer credit.

Given a credit risk model, the rapid and accurate co
struction of the portfolio loss distribution is at the hear
of credit risk management. Monte Carlo simulation i
frequently used to estimate this distribution. Each replic
tion of such a simulation usually consists of determinin
which obligors default and the losses given default. Fo
high-quality portfolios, most replications produce few i
s

any defaults, so the computational cost required to obta
accurate credit risk estimates can be very large. This is p
ticularly true for accurate estimation of small but importan
probabilities of large losses, which are usually the focus
risk measurement. Importance sampling (IS) is a natur
technique to consider for rare event simulation; howeve
complex dependence between defaults of multiple obligo
complicates the application IS. Capturing dependence b
tween defaults is at the heart of a portfolio view of cred
risk, so this issue is fundamental.

In most models of credit risk, dependence is intro
duced through a set of “risk factors” and defaults becom
independent conditional on the risk factors. This sugges
a general approach to IS based on applying a change
distribution to the factors and a change of distribution t
the default indicators conditional on the factors. This i
the approach we follow. We have used this approach
Glasserman and Li (2003) for the “normal copula” model o
Gupton et al. (1997). Here we show that a similar strateg
can be used very conveniently in the mixed Poisson mod
of CreditRisk+ (CSFP 1997). Indeed, the mixed Pois
son model is sufficiently tractable that it is usually solve
through numerical transform inversion, without simulation
Nevertheless, it provides an interesting illustration of a mo
general approach to IS for credit risk.

Section 2 reviews the normal copula and mixed Poisso
models. In Section 3, we discuss IS for the normal copu
model, based on Glasserman and Li (2003). In Section
we propose an IS method for the mixed Poisson model. W
establish the asymptotic optimality of this method unde
alternative limiting regimes. Numerical examples illustrat
the effectiveness of the method. Section 5 concludes t
paper.

2 CREDIT RISK MODELS

We consider a portfolio withm obligors. LetYi denote
the default indicator of thei th obligor for some fixed time
horizon (e.g., one year). Thus,Yi = 1 if this obligor defaults
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within the horizon andYi = 0 otherwise. Letci denote
the loss resulting from default of thei th obligor. These are
sometimes modeled as random variables, but for simplic
we take them to be (positive) constants. The portfolio lo
over the horizon is

L =
m∑

i=1

ci Yi . (1)

Our goal is to measure the tail of the loss distributio
P(L > x), particularly at large values ofx.

The marginal default probabilitiespi = P(Yi = 1) are
usually assumed known (e.g., from published credit rating
Different credit risk models differ in the mechanisms the
use to capture dependence among theYi . Here we give a
brief description of two models.

2.1 Normal Copula Model

In the CreditMetrics model of Gupton et al. (1997) (se
also Li (2000)) the default indicators are modeled as

Yi = 1{Xi > xi }, i = 1, . . . ,m, (2)

where (X1, . . . , Xm) are correlatedN(0,1) random vari-
ables. Each thresholdxi is chosen to match the margina
default probability pi for the i th obligor; thus, xi =
8−1(1 − pi ), with 8 the cumulative normal distribution.
This construction transfers correlations among theXi to
dependence among theYi . This is an instance of a nor-
mal copula construction of dependent random variables,
what Cario and Nelson (1997) call “normal to anything.
In the credit risk context, theXi are often given a financial
interpretation.

Correlations among theXi are usually specified through
a factor model of the form

Xi = ai0εi + ai1Z1 + · · · + aid Zd, i = 1, . . . ,m, (3)

with εi and Z1, . . . , Zd independentN(0,1) random vari-
ables anda2

i1 + · · · + a2
id + a2

i0 = 1. Eachεi represents
risk affecting only thei th obligor, whereas theZ j repre-
sent common risk factors affecting multiple obligors. Fo
example, eachZ j may be associated with an industry,
geographic region, or a market-wide risk factor.

Normal copula models rely on simulation for the calcu
lation of the portfolio loss distribution. In each replication
every Xi is generated from independentN(0,1) random
variablesεi and Z1, . . . , Zd according to the model speci-
fication (3), and the portfolio loss is evaluated from (2) an
(1).
l.
nt
y
s

).

or

2.2 Mixed Poisson Model

An alternative way of introducing dependence uses a mixe
Poisson model, as in CSFP’s (1997) CreditRisk+. In this
setting, eachYi is (conditionally) Poisson distributed. This
may be viewed as a Poisson approximation to a Bernou
random variable (based on the fact that a Poisson rando
variable with a very small mean has a very small probability
of taking a value other than 0 or 1); alternatively, it can
be viewed as a reinterpretation of (1) in whichi indexes
groups of obligors with roughly equal exposureci , rather
than individual obligors. In this reinterpretation, values of
Yi greater than 1 are meaningful.

The common risk factors in this model are independen
gamma random variables01, . . . , 0d. Conditional on these
random variables, eachYi has a Poisson distribution with
meanRi ,

Ri = ai0 + ai101 + · · · + aid0d, (4)

for some positive coefficientsai0, . . . ,aid . Thus, eachYi

may be viewed as a Poisson random variable with a rando
mean — a mixed Poisson random variable. We normaliz
01, . . . , 0d to have mean 1 and variancesσ 2

1 , . . . , σ
2
d .

Mixed Poisson models have long been used in man
applications; see Section 3.2 of Johnson et al. (1993). Usin
gamma random variables for the mixing variables leads t
some tractability and allows calculation of the distribution of
L through numerical inversion of its probability generating
function (see CSFP 1997). The model nevertheless provid
an interesting setting for rare event simulation. Also, for the
IS method we develop the gamma random variables cou
be replaced with any other positive random variables havin
reasonably well-behaved moment generating functions.

Simulation without IS is straightforward. In each
replication, we first generate the common risk factor
0 j independently from the distributionsGamma(α j , β j ),
j = 1, . . . ,d, with

α j = 1

σ 2
j

, β j = σ 2
j , j = 1, . . . ,d.

This gives0 j mean 1 and varianceσ 2
j . Then we generate

Yi from Poisson(Ri ) with theRi calculated as in (4). From
the Yi we evaluate the portfolio loss (1).

3 IS FOR THE NORMAL COPULA MODEL

3.1 IS Estimator

In this section, we review an IS technique proposed in
Glasserman and Li (2003) for the normal copula mode
We begin by considering the simpler case of independe
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obligors in which Y1, . . . ,Ym are independent Bernoulli
random variables with parametersp1, . . . , pm.

In order to generate large losses more often, it is natu
to consider IS based on increasing each default probabil
pi to some larger valueqi . The associated estimator of
P(L > x) is the product of the indicator1{L > x} and the
likelihood ratio

m∏
i=1

(
pi

qi

)Yi
(

1 − pi

1 − qi

)1−Yi

.

For the new probabilities, it turns out to be convenient t
restrict attention to a one-parameter family of the form

pi (θ) = pi eθci

pi eθci + (1 − pi )
.

By choosingθ > 0, we increase each default probability
and we do so in a way that takes account of the origin
pi and also the loss magnitudesci .

With this choice of default probabilities, some algebr
shows that the likelihood ratio can be rewritten as exp(−θL+
ψL(θ)), where

ψL(θ) = log E[exp(θL)] =
m∑

i=1

log(1 + pi (e
ci θ − 1))

is the cumulant generating function ofL. Thus, using the
probabilitiespi (θ) is equivalent toexponentially twistingL,
a standard technique in IS. To sample under the twisted d
tribution, we simply replace the original default probability
pi with pi (θ).

It remains to choose the parameterθ . For this we look
at the second moment of the estimator, which is given b

M2(x, θ) ≡ Eθ [e−2θL+2ψL (θ)1{L > x}]
≤ exp(−2θx + 2ψL(θ)). (5)

The subscript on the expectation indicates that it is calculat
under the IS distribution for parameterθ . While finding the
value of θ minimizing M2(x, θ) is difficult, it is a simple
matter to minimize the upper bound in (5). The minimize
θx is the unique solution to

ψ ′
L(θx) = x. (6)

The expectation ofL under this changed measure is

Eθx [L] = Eθx

[
m∑

i=1

ci Yi

]
= ψ ′

L(θx) = x.
al
ty

l

s-

d

Thus, to estimateP(L > x) for large values ofx, we
increase the individual default probabilities to makex the
expected loss.

We now turn to the more interesting case in which
the Yi are dependent. We consider dependence introduc
through a normal copula as discussed in Section 2.1. W
apply IS as in the independent case, but we do so conditio
on the common factorsZ = (Z1, . . . , Zd)

>.
Observe that, givenZ, the Yi are indeed independent

with conditional default probabilities

p̃i = P(Yi = 1|Z) = 8

(
ai1Z1 + · · · + aid Zd − xi

ai0

)
.

From these we can calculate the conditional cumulant ge
erating function

ψL|Z(θ) = log E[eθL |Z] =
m∑

i=1

log(1 + p̃i (e
θci − 1))

and solve for the parameterθ̃x,

ψ ′
L|Z(θ̃x) = x.

We can then define new conditional default probabilities

p̃i (θ̃x) = p̃i eθ̃xci

p̃i eθ̃xci + 1 − p̃i

, i = 1, . . . ,m.

The IS procedure now generates default indicato
Y1, . . . ,Ym independently (givenZ) with Yi taking the
value 1 with probabilityp̃i (θ̃x).

SettingL equal to the sum of theYi ci yields the one-step
IS estimator

e−θ̃x L+ψL|Z(θ̃x)1{L > x}; (7)

this is the conditional counterpart of the IS estimator in th
independent case. Its conditional expectation isP(L > x|Z)
and its unconditional expectation is thereforeP(L > x).

To further reduce variance, we can apply a secon
step of importance sampling toZ, viewing P(L > x|Z)
as a function ofZ and the calculation ofP(L > x) as a
problem of integrating over the distribution ofZ. For this
we consider shifting the mean ofZ from the origin to some
pointµ. The likelihood ratio for this change of measure is

exp

(
−µ>Z + 1

2
µ>µ

)
.

When multiplied by (7) this yields the two-step IS estimato

exp

(
−µ>Z + 1

2
µ>µ− θ̃x L + ψL|Z(θ̃x)

)
1{L > x}
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in which Z is sampled fromN(µ,1) and thenL is sampled
from the θ̃x-twisted distribution conditional onZ.

It remains to specify the new meanµ for the common
factorsZ. The approach of Glasserman, Heidelberger, a
Shahabuddin (1999) suggests choosingµ by solving

µ = argmax
z

P(L > x|Z = z)e− 1
2 z>z.

The product on the right is (proportional to) the optima
IS density, so this approach chooses the new mean at
mode of the optimal density. This approach is investigat
in Glasserman and Li (2003).

3.2 Asymptotic Optimality of the One-Step IS Estimator

In rare event simulation, one often tries to measure t
effectiveness of an estimator of a small probability by in
vestigating its performance as the probability of the eve
vanishes. An estimator is said to be asymptotically optim
if its second moment decreases at twice the rate of t
probability itself. By Jensen’s inequality, this is the faste
possible rate of decrease for any unbiased estimator.

To see what type of asymptotic optimality we migh
look for in the credit risk setting, we again consider th
independent case. Because the credit portfolios of financ
institutions can be very large, it is natural to conside
asymptotics asm → ∞. In the independent case, the ke
condition we need is convergence of the functionsψL/m
to a finite, convex functionψ; this holds, for example,
if the (pi , ci ) approach a limit asi increases. In this
case, asymptotic optimality can be established through
argument in Sadowsky and Bucklew (1990). In more deta
for all sufficiently largeq, we have

lim
m→∞

1

m
log P(L > mq) = γq

and

lim
m→∞

1

m
log M2(mq, θmq) = 2γq,

for someγq < 0. Thus, the second moment decreases
twice the exponential rate as the first moment.

It turns out that we generally cannot hope to have a res
of quite this form once we introduce dependence throu
either a normal copula or mixed Poisson model. Indee
once we introduce dependence,L/m will often converge to
a random limit andP(L > mq)may not vanish asm → ∞:
there is too much dependence for this formulation to le
to asymptotic optimality.

We therefore consider a limit in which the dependen
weakens asm increases. Whether or not we achieve asym
totic optimality depends on how quickly it weakens. Th
practical implication of this formulation is that the one-ste
d
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IS estimator is effective only if the underlying correlation
are not too large. At larger correlations, it becomes essen
to apply IS to the common risk factors as well.

To state a precise result, we limit ourselves to the ca
ci ≡ 1, pi ≡ p, and a single common factorZ, and all Xi

of the form

Xi = ρZ +
√

1 − ρ2εi .

We takeρ to be of the forma/mα, for somea, α > 0, and
find different behavior depending on the value ofα; i.e.,
depending on the speed at whichρ decreases.

Define

G(p) =
{

log(1−p
1−q )

1−q(
p
q )

q p < q,
0 p ≥ q;

mG(p) is the likelihood ratio atL = mq for the independent
case with marginal individual default probabilityp. Also
define

F(a, z) = G(8(az+8−1(p))).

The following theorem is proved in Glasserman and
(2003):

Theorem 1 If ρ = a/mα, a > 0, then
(a) For α > 1/2,

lim
m→∞ m−1 log P(L > mq) = F(0,0)

lim
m→∞ m−1 log M2(mq, θmq) = 2F(0,0).

(b) For α = 1/2,

lim
m→∞ m−1 log P(L > mq)= max

z
{F(a, z)− z2/2}

lim
m→∞ m−1 log M2(mq, θmq)= max

z
{2F(a, z)− z2/2}.

(c) For 0< α < 1/2,

lim
m→∞ m−2α log P(L > mq)

= lim
m→∞ m−2α log M2(mq, θmq)

= −z2
a/2,

with za = (8−1(q)−8−1(p))/a.
This result shows that we achieve asymptotic optimali

only in the caseα > 1/2 (in which the correlations vanish
quite quickly), because only in this case does the seco
moment vanish at twice the rate of the first moment. A
α = 1/2, the second moment decreases faster than the
moment, but not twice as fast, so this is an intermedia
case. Withα < 1/2, the two decrease at the same rat
which implies that one-step IS is (asymptotically) no mo
effective than ordinary simulation in this case. The failu
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of asymptotic optimality in (b) and (c) results from the
impact of the common risk factorZ in the occurrence of
a large number of defaults: at moderate or large values o
ρ, large losses occur primarily because of large moves i
Z. Capturing this effect requires applying IS toZ itself,
rather than just to theYi conditional onZ.

4 IS FOR THE MIXED POISSON MODEL

4.1 IS Estimator

We next consider the simulation problem for the mixed
Poisson model. As in the normal copula model, we can thin
of applying IS in two steps — one step changes the defau
probabilities conditional on the common factors, the othe
applies a change of distribution to the factors themselve
Because of the special structure of the mixed Poisson mod
these two steps can be combined in a convenientand effecti
way.

In analogy with the discussion for the normal copula
model, we first assume the values of the common risk facto
01, . . . , 0d are given, so that theYi are independent Poisson
random variables with parametersRi . Consider the effect
of exponentially twistingci Yi by someθ ∈ <; this defines
a change of distribution through the likelihood ratio

exp(−θci Yi + Ri (e
ci θ − 1)).

Here, Ri (eci θ − 1) is the conditional cumulant generating
function of ci Yi , given Ri . The conditional mean ofYi

under the distribution defined byθ is Ri eci θ . By choosing
θ > 0 we thus increase the mean ofYi .

Now apply this exponential twist to all theci Yi . SinceL
is the sum of (conditionally) independent random variable
ci Yi , the likelihood ratio has the form

m∏
i=1

exp(−θci Yi + Ri (e
ci θ − 1))

= exp(−θL +
m∑

i=1

Ri (e
ci θ − 1)), (8)

and
∑m

i=1 Ri (eci θ−1) is the conditional cumulant generating
function of L given the risk factors01, . . . , 0d.

To further reduce variance, we apply a second im
portance sampling step to the risk factors. We conside
exponentially twisting each0 j by someτ j . This defines a
change of distribution through the likelihood ratio

exp


−

d∑
j =1

{τ j0 j + α j log(1 − β j τ j )}

 . (9)
,
e

Here,−α j log(1−β j τ j ) is the cumulant generating function
of 0 j , which has aGamma(α j , β j ) distribution under the
original measure. We see from this thatτ j must be less
than 1/β j , j = 1, . . .d. Under the distribution defined by
τ j , 0 j has aGamma(α j , β j /1 − β j τ j ) distribution. In
other words, exponentially twisting a gamma distributio
produces another gamma distribution with the same sha
parameter and a different scale parameter.

The likelihood ratio for this two-step change of dis
tribution is the product of the individual likelihood ratios
(8) and (9). Since theRi are determined by01, . . . , 0d

through (4), simple algebra shows that the likelihood rat
can be expressed as

exp
(
−θL + ψ(1)(θ)+ ψ(2)(τ )+ ψ(3)(θ, τ, 0)

)
, (10)

where

ψ(1)(θ) =
m∑

i=1

ai0(e
ci θ − 1),

ψ(2)(τ ) = −
d∑

j =1

α j log(1 − β j τ j ),

ψ(3)(θ, τ, 0) =
d∑

j =1

(

m∑
i=1

ai j (e
ci θ − 1)− τ j )0 j .

It remains to choose the twisting parametersτ1, . . . , τd
andθ . Inspection of the components of (10) reveals that b
linking the choices of these parameters we can eliminate
0 j from the likelihood ratio, leaving only the dependenc
on L. Because our goal is to estimate the tail distributio
of L, this will prove to be an effective choice. Suppose
then, that we choose

τ j =
m∑

i=1

ai j (e
ci θ − 1), j = 1, . . .d. (11)

For sufficiently smallθ > 0, this will satisfy the constraint
τ j < 1/β j . Substituting (11) in (10) reveals that the two-ste
IS likelihood ratio has the form

exp(−θL + ψL ,m(θ)) (12)

where

ψL ,m(θ) = ψ
(1)
L ,m(θ)+ ψ

(2)
L ,m(θ) (13)

with ψ(1)L ,m = ψ(1) as above and

ψ
(2)
L ,m(θ) = −

d∑
j =1

α j log

(
1 − β j

m∑
i=1

ai j (e
ci θ − 1)

)
.
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In fact, this shows thatψL ,m(θ) is the cumulant generating
function of L and (12) is exactly the likelihood ratio for
exponentially twistingL itself by θ . (In contrast, in the
normal copula model it does not seem possible to blend
two IS steps in this way or to find a simple expression fo
the cumulant generating function ofL.)

For the choice ofθ , we use the same idea as in th
independent case, choosingθ = θx with θx solving

ψ ′
L ,m(θx) = x. (14)

The two-step IS estimator ofP(L > x) for the mixed
Poisson model is then

exp(−θx L + ψL ,m(θx))1{L > x}. (15)

This is easily implemented through the following algorithm

1. DefineψL ,m as in (13) and solve forθx as in (14);
setθx = max{0, θ}.

2. Computeτ j , j = 1, . . . ,d, from (11).

3. Generate0 j ∼ Gamma(α j ,
β j

1−β j τ j
), j = 1, . . . ,d.

4. Compute the conditional meansRi , i = 1, . . . ,m,
as in (4).

5. GenerateYi ∼ Poisson(Ri eci θx ), i = 1, . . . ,m.
6. Calculate lossL = c1Y1 + · · · + cmYm.
7. Return estimator (15).

The conditionθx > 0 holds wheneverx > E[L] and
thus whenever{L > x} is a rare event. In the less interestin
case thatx ≤ E[L] (and θx ≤ 0), IS is unnecessary.
Replacingθx with 0 (as in Step 1) restores the origina
sampling distribution.

4.2 Asymptotic Optimality

We now turn to the question of asymptotic optimality fo
the IS estimator (15) asm increases. Our first result takes
the loss thresholdx to be a fixed multiple ofm; we write
mq instead ofx. We formulate an asymptotic optimality
result for settings in which the probabilityP(L > mq)
decays exponentially to 0 asm increases to∞. As before,
asymptotic optimality means that the second moment

M2(q, θq,m)

= Eθq,m[1{L > mq} exp{−2θq,mL + 2ψL ,m(θq,m)}]

decays at twice the rate of the probability itself. Here, w
have written the twisting parameterθx asθq,m and written
Eθq,m for the expectation under the IS distribution.
e
r

Asymptotic optimality would follow from the existence
of a limiting cumulant generating function

ψL(θ) = lim
m→∞

1

m
ψL ,m(θ). (16)

Inspection ofψ(2)L ,m reveals, however, that this limit will
ordinarily be infinite for allθ > 0 if the parameters of the
problem are allO(1). In particular, if theai j andci are all
O(1) and positive, then

m∑
i=1

ai j (e
ci θ − 1)

will be larger than 1/β j for sufficiently largem, making

ψ
(2)
L ,m(θ) infinite for all sufficiently largem.

The source of the problem here (as in the normal copu
setting) is that there is too much dependence among theYi .
As a result,P(L > mq) may even have a nonzero limit
as m increases. To formulate an asymptotic optimality
result, we consider limiting regimes in which either the
impact of the common factors01, . . . , 0d diminishes asm
increases, or in whichq itself increases withm. From a
practical perspective, this suggests that the IS estimator m
not be very effective in the presence of strong correlation
between theYi . Alternatively, this says thatq needs to
be large relative to the strength of the dependence on th
common risk factors.

There are many ways one could make the parameters
the model vary withm that would lead to the convergence
required in (16). We give three specifications. In the first
the coefficientsai j are decreasing, so theYi become less
sensitive to the risk factors; in the second, the number o
risk factors increases and each becomes less important;
the third, the variability of each risk factor decreases.

Case (a):ci → c, ai0 → a0, maij → aj , for some
constantsc, a0,a1, . . . ,ad, and the limit is

ψL(θ) = a0(e
cθ − 1).

Case (b):ci → c, ai0 → a0, maij → a, d/m → d0, and
the limit is

ψL(θ) = a0(ceθ − 1)− d0

σ 2
j

log(1 − σ 2
j a(ecθ − 1))

Case (c):ci → c, ai0 → a0, ai j → aj , m/α j → σ 2
j > 0

andmβ j → σ 2
j , and the limit is

ψL(θ) = a0(e
cθ − 1)−

d∑
j =1

1

σ 2
j

log(1 − σ 2
j aj (e

cθ − 1)).
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For any of these possible limits, letθq satisfy

ψ ′
L(θq) = q. (17)

Theorem 2 For Cases (a)–(c), we have

lim
m→∞ m−1 log P(L > mq) = −θqq + ψL(θq). (18)

and

lim
m→∞ m−1 log M2(q, θq,m) = −2θqq + 2ψL(θq). (19)

Thus, IS using exponential twisting with parameterθq,m is
asymptotically optimal.

Proof. Given the existence ofψL , (18) is a direct con-
sequence of the Gärtner-Ellis Theorem (as in, e.g., Dem
and Zeitouni (1998)).

From the definition ofM2(q, θq,m), we have

M2(q, θq,m) ≤ exp{−2m(θq,mq + m−1ψL ,m(θq,m))}
≤ exp{−2m(θqq + m−1ψL ,m(θq))}
= exp{−2m(θqq + ψL(θq))+ o(m)}.

The second inequality holds becauseθq,m minimizes−θq+
m−1ψL ,m(θ). And since m−1ψL ,m(θq) → ψL(θq), we
obtain the last equality. Thus,

lim sup
m→∞

m−1 log M2(q, θq,m) ≤ −2θqq + 2ψL(θq).

Since the second moment must be at least as large as
square of the first moment, using (18) we get (19). an
asymptotic optimality holds.

Through the argument in Sadowsky and Buckle
(1990), it follows that we also have asymptotic optimalit
if in the IS algorithm we replaceθq,m with the fixed value
θq solvingψ ′

L(θq) = q. This has some potential advantag
in the sense thatψL may have a simpler form thanψL ,m.
In numerical experiments we have found, however, that u
ing θq,m results in greater variance reduction — sometim
much greater.

Now we consider another type of asymptotic optimalit
in which q itself increases withm. Supposeq = xmα for
positive constantsx andα. Write θm for the solution to

ψ ′
L ,m(θm) = xm1+α.

The second moment under the IS distribution with parame
θm is

M2(m, θm)

= Eθm[1{L > xm1+α} exp{−2θmL + 2ψL ,m(θm)}]
o

the
d

-
s

r

with Eθm the expectation under the IS distribution. We
suppose that for eachj = 0,1, . . . ,d, ai j → aj for some
constantsaj . We assume the indices of01, . . . 0d are
ordered so thata1β1 ≤ · · · ≤ adβd.

Theorem 3 If ci → c, ai j → aj , j = 0,1, . . . d,
then

lim
m→∞ m−α log P(L > xm1+α) = −x/ca1β1

lim
m→∞ m−α log M2(m, θm) = −2x/ca1β1.

Thus, IS using exponential twsisting with parameterθm is
asymptotically optimal.

Proof. First we show that

lim inf
m→∞ m−α log P(L > xm1+α) ≥ − x

ca1β1
. (20)

Sinceci → c, ai j → aj , for arbitraryε > 0 there exists an
m1 such that for anym ≥ m1,

c − ε ≤ ci ≤ c + ε, andaj − ε ≤ ai j ≤ aj + ε.

Given01, let N1, N2, . . . be i.i.d. Poisson random variables
with mean(a1 − ε)01. For sufficiently largem,

P(L > xm1+α) (21)

≥ P((c − ε)

m∑
i=1

Ni > xm1+α)

≥ P(0 > γm,ε)P((c − ε)

m∑
i=1

Ni > xm1+α ∣∣0 = γm,ε )

whereγm,ε = xmα
(c−ε)(a1−ε)+ε. Using the fact that

∑
i Ni has

a Poisson distribution, given01, and applying the bound
(4.49) of Johnson et al. (1993), we find that the second fact
is greater than 1/2 for all sufficiently largem. Combining
this with the fact that the tail of01 decays exponentially
at rate 1/β1, for largem we get

P(L > xm1+α) ≥ 1

2
P(01 > γm,ε)

= exp(−γm,ε

β1
+ o(mα)).

Sinceε > 0 can be arbitrarily small, (20) follows.
Next we show that

lim sup
m→∞

m−α log M2(m, θm) ≤ − 2x

ca1β1
. (22)

Define

ψL ,m,ε(θ) = ψ
(1)
L ,m,ε(θ)+ ψ

(2)
L ,m,ε(θ)
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where

ψ
(1)
L ,m,ε(θ)= m(a1 + ε)(e(c+ε)θ − 1)

ψ
(2)
L ,m,ε(θ)= −

d∑
j =1

α j log(1 − β j m(a1 + ε)(e(c+ε)θ − 1)).

Form ≥ m1 large enough andθ ≥ 0,ψL ,m,ε(θ) ≥ ψL ,m(θ).
Defineθm,ε to be the value that solves

ψ ′
L ,m,ε(θm,ε) = xm1+α

and observe that

ψ
′(1)
L ,m,ε(θ) = m(a0 + ε)(c + ε)e(c+ε)θ

ψ
′(2)
L ,m,ε(θ) =

d∑
j =1

m(aj + ε)(c + ε)e(c+ε)θ

1 − β j m(aj + ε)(e(c+ε)θ − 1)
.

From the definition ofM2(m, θm), we know that

M2(m, θm) ≤ exp
{
−2θmxm1+α + 2ψL ,m(θm)

}
(23)

≤ exp
{
−2θm,εxm1+α + 2ψL ,m(θm,ε)

}
≤ exp

{
−2θm,εxm1+α + 2ψL ,m,ε(θm,ε)

}
.

The second inequality comes from the fact thatθm minimize
the upper bound.

As m → ∞, we haveψ ′
L ,m,ε(θm,ε) → ∞ and this

requires thatθm,ε/zm → 1 where

zm = log

(
1

β1m(a1 + ε)
+ 1

)/
(c + ε)

is the smallest root of the denominatorψ ′(2)
L ,m,ε(θ). But then

θm,εm → 1/(c + ε)(a1 + ε)β1. So

lim sup
m→∞

−2θm,εxm1+α + 2ψL ,m,ε(θm,ε)

mα
(24)

= lim sup
m→∞

−2θm,εxm+ 2xψL ,m,ε(θm,ε)

ψ ′
L ,m,ε(θm,ε)

= − 2x

(c + ε)(a1 + ε)β1
+ lim sup

m→∞
2xψL ,m,ε(θm,ε)

ψ ′
L ,m,ε(θm,ε)

.

BecauseψL ,m,ε is a convex function passing through th
origin,

2xψL ,m,ε(θm,ε)

ψ ′
L ,m,ε(θm,ε)

≤ 2xψ ′
L ,m,ε(θm,ε)θm,ε

ψ ′
L ,m,ε(θm,ε)

= 2xθm,ε → 0.
es
Sinceε > 0 can be arbitrarily small, (22) holds. By Jensen’s
inequality, (20) and (22) together imply the two limits in
the statement of the theorem.

4.3 Numerical Examples

We now illustrate the effectiveness of the IS algorithm
throughsome numerical examples. For our first example, w
consider a portfolio withm = 1000 obligors and exposures
ci = 0.04+ 0.00196i increasing linearly from 0.042 to 2.
We setai0 ≡ 0.002 andai j ≡ 0.0002, j = 1, . . . ,d. There
ared = 10 risk factors, each with variance 9. With these
parameters,E[Yi ] = 0.004 (think of this as the marginal
probability of default over 1 year) and the standard deviatio
of Yi is 0.002; these values reflect a high degree of variabilit
in the conditional default probabilities.

Table 1 reports variance ratios (variance reduction fa
tors) for several values ofq in estimating P(L > mq).
Each variance ratio is calculated by estimating the varian
per replication using standard simulation and dividing it by
the variance per replication using IS. Each estimate in th
table is based on 100,000 replications. At larger values
q, the variance ratio becomes very large. The improve
ment is substantial for probabilities in the range of 1% to
0.1% which are of particular interest in risk managemen
applications.

We have carried out the same experiments usingci ≡ 1
and obtained very similar results. We also obtained ver
similar results in estimating

P(
m∑

i=1

min{Yi ,1}ci > qm)

(i.e., dropping the Poisson approximation in the origina
model) using the same IS distribution. We obtained great
variance reduction in models with smaller values ofσ j .
However, the main determinant of the variance ratio seem
to be the magnitude of the probabilityP(L > mq).

Table 1: Variance Reduction for In-
creasingq

q P(L > mq) Var Ratio
0.0080 10.27% 3.27
0.0099 4.94% 5.46
0.0138 1.05% 17.30
0.0156 0.51% 30.81
0.0197 0.10% 120.57

Next we illustrate the effect of increasingm while
holding q fixed. For this example, we takeci ≡ 1 and
q = 0.009. The resulting probabilitiesP(L > mq) and
variance ratios for increasingm are reported in Table 2, each
based on 20,000 replications. As expected, the probabiliti
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approach a limit asm increases and the variance ratio als
appears to reach a limit. This contrasts with Table 1 whe
the variance ratio grows quickly withq. The results are
consistent with Theorems 2 and 3, which indicate that f
large variance reduction we either needq to grow or the
effect of the underlying gamma risk factors to weaken.

Table 2: Variance Reduction for In-
creasingm

m P(L > mq) Var Ratio
500 8.28% 4.00

1000 4.45% 5.74
2000 3.52% 6.77
5000 2.95% 7.36

10000 2.83% 7.61
20000 2.68% 7.94

100000 2.57% 8.18

5 CONCLUDING REMARKS

This paper has proposed, analyzed, and tested a two-ste
method for estimating loss probabilities in a mixed Poiss
model of credit risk. The method applies an exponential tw
to the default random variables conditional on the values
common risk factors, and it applies a second exponen
twist to the risk factors themselves. We have identifie
limiting regimes under which this method is asymptotical
optimal and illustrated its effectiveness through numeric
examples.

The loss distribution in the mixed Poisson model ca
be calculated numerically through transform inversion (
in CSFP 1997), essentially by using the same cumul
generating function we use in importance sampling. Ne
ertheless, the strategy we have used here is applicable m
generally. It applies, for example, to the normal copu
model, for which simulation is the most practical compu
tational tool. In the normal copula model, applying ju
a single IS step leads to asymptotic optimality only if th
model’s correlations decrease as the portfolio size increa
effective variance reduction usually requires applying IS
the risk factors as well. The special structure of the mix
Poisson model allows the two steps to be combined into
single exponential change of distribution.
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