Appears in the 12¢" International Symposium on High Performance Distributed Computing

Distributed Pagerank for P2P Systems

Karthikeyan Sankaralingam

Simha Sethumadhavan

James C. Browne

Department of Computer Sciences
The University of Texas at Austin
(kar u, si mha, br owne) @s. ut exas. edu

Abstract

This paper defines and describes a fully distributed im-
plementation of Google’s highly effective Pagerank algo-
rithm, for “peer to peer”’(P2P) systems. The implementa-
tion is based on chaotic (asynchronous) iterative solution of
linear systems. The P2P implementation also enables incre-
mental computation of pageranks as new documents are en-
tered into or deleted from the network. Incremental update
enables continuously accurate pageranks whereas the cur-
rently centralized web crawl and computation over Inter-
net documents requires several days. This suggests possible
applicability of the distributed algorithm to pagerank com-
putations as a replacement for the centralized web crawler
based implementation for Internet documents. A complete
solution of the distributed pagerank computation for an in-
place network converges rapidly (1% accuracy in 10 iter-
ations) for large systems although the time for an iteration
may be long. The incremental computation resulting from
addition of a single document converges extremely rapidly,
typically requiring update path lengths of under 15 nodes
even for large networks and very accurate solutions.

This implementation of Pagerank provides a uniform
ranking scheme for documents in P2P systems, and its in-
tegration with P2P keyword search provides one solution to
the network traffic problems engendered by return of docu-
ment hits. In basic P2P keyword search, all the document
hits must be returned to the querying node causing large
network traffic. An incremental keyword search algorithm
for P2P keyword search where document hits are sorted by
pagerank, and incrementally returned to the querying node
is proposed and evaluated. Integration of this algorithm
into P2P keyword search can produce dramatic benefit both
in terms of effectiveness for users and decrease in network
traffic. The incremental search algorithm provided approx-
imately a ten-fold reduction in network traffic for two-word
and three-word queries.

1 Introduction

“Peer to peer” (P2P) networks [18, 20, 22] are emerg-
ing as potentially important structures for information and
content management and distribution. Effective keyword
search is a crucial method for information and content man-
agement. Recent papers on P2P implementations of key-
word search for documents [8, 15, 19] have called attention
to the need for a document ranking system for documents
stored in such network systems. In the absence of a rank-
ing system, a P2P keyword search must return all of the
qualified documents to the node which initiated the query.
The amount of traffic generated by a typical search would
flood the network. It seems probable that P2P keyword
search will not be practical in the absence of an effective
P2P implementable document ranking algorithm. However,
a crawler based centralized server approach for computation
of such ranks is incompatible with a P2P implementation of
keyword search.

Google’s pagerank computation [11, 17] and other rele-
vance rankings for web pages have made Internet keyword
searches orders of magnitude more effective. Google’s
pagerank algorithm reduces to computation of the eigen-
vectors of a very large matrix which represents document
linkages of web pages. Google uses a web crawler which
traverses the Internet tabulating links among documents, re-
turning the link structure to a central server which generates
a graph of this link structure. The ranks of the documents
are obtained as the eigenvalues of a sparse matrix repre-
senting the graph, using an iterative numerical method on
a computational server. This process of explicitly generat-
ing and then solving of this very large (order three billion
or so [16]) matrix takes days [1]. A Google search can re-
turn just the pages assessed as most relevant to the search by
ranking the results based on the computed pagerank, fetch-
ing additional pages incrementally as required.

This paper reports on a method for generating pageranks
where the matrix representing the relationships among the
documents is never explicitly generated and the solution of
the matrix is distributed across all of the nodes which hold

the documents. The method is developed in the context of
keyword search in P2P networks but could be implemented
as an Internet service without the formal structure of a P2P
network.

This paper defines and describes a fully distributed,
“peer to peer” equivalent of Google’s highly effective pager-
ank algorithm and provides promising results on the per-
formance of the distributed implementation. The solution
phase of the pagerank computation is based on chaotic
(asynchronous) iterative solution of linear systems [5]. A
complete initial computation of a set of pageranks con-
verges rapidly (1% accuracy in 10 iterations) for large
systems. The algorithm enables incremental computation
of pageranks as new documents are entered into the net-
work. Incremental updates mean that pagerank computa-
tions are continuously updated as compared to the weekly
and monthly updates characteristic of centralized pagerank
computations. By using distributed computation on the P2P
system itself, the need for large computational server com-
plexes is eliminated.

For keyword searches in P2P networks, we define an
approach based on incremental return of documents with
highest rank, and evaluate its effectiveness. Integration of
the distributed pagerank algorithm into P2P implementa-
tions of keyword search, along with incremental return of
documents, produces dramatic benefit both in terms of ef-
fectiveness for users, and decrease in network traffic engen-
dered by document transfer. This scheme has the potential
to make keyword search on P2P systems as efficient as In-
ternet keyword search.

The rest of the paper is organized as follows: Section 2
defines and describes a static version of the algorithm. In
Section 3 we describe caching of document locations and
protocols for joining and leaving for both peers and docu-
ments. Section 4 provides a detailed evaluation of the pro-
posed distributed pagerank algorithm. Section 5 briefly dis-
cusses centralized alternatives to the distributed algorithm.
Section 6 describes future directions, Section 7 discusses
related work, and Section 8 concludes.

2 Static Algorithm Design

In this section, we describe the following: document link
structure, formulation of queries and the static version of
the distributed formulation of the pagerank algorithm where
pageranks are computed for an “in-place” network.

2.1 Documents and Links

Hyperlinks are the fundamental structuring elements for
Internet documents (web pages) and are the core data used
in Google’s computation of pageranks. Files (documents)
stored in peer to peer file systems also have an equivalent

link structure. The documents make references to other
documents in the file system. In systems with bounded
search such as CAN [18], Pastry [20] or Chord [22] the
GUID (Global Unique Identifier) implements a pointer to
each document. All these systems are distributed hash ta-
ble (DHT) based systems. Systems like Freenet [7] while
providing no bounded search guarantees, also maintain a
unique identifier, the SSK (a subspace key). Throughout
this paper we focus on DHT based systems, but indicate
how the mechanisms proposed can be extended for Freenet
like systems. For specifying document link structure an
HTML-like syntax is assumed. The underlying assump-
tion is that the document was originally an HTML docu-
ment. Documents on Freenet already use such a syntax with
Freenet browsing possible using a web browser with the lo-
calhost:8888 FProxy.

2.2 Google’s Formulation of Pageranks

The Google Pagerank algorithm assigns a numeric rank
to every document in a system which denotes its impor-
tance. The intuition behind the pagerank algorithm is based
on the random surfer model. A user visiting a page is likely
to click on any of the links with equal probability and at
some random point he decides to move to a new page. For-
mally the pagerank is defined as:

Pla)=(1—d)+dx Y P@i)/C() (1)
v inlinks i

where, P(i) is the pagerank of a document i, C(3) is
the number of outbound links out of any page 4, and d is
a damping factor. Due to lack of space, we restrict the
treatment of the pagerank algorithm to this brief discussion.
More details are found in [11, 17].

In a matrix form, Equation 1 can be rewritten as:

R =d(AR + D) (2

where the matrix A is an N*N link matrix, R is a column
vector of length N representing the ranks of pages, D is a
constant column vector(=(1 — d)/d). It can be shown that,
the solution for R corresponds to the eigenvectors of (A +
D x I). The formulation shown in (3) is an iterative solution
to (2).

Riy1 =d*AR; + D 3)

In the Google pagerank system implemented for Internet
web pages, a crawler first crawls all the web pages on the
Internet and writes them to a central database. This database
is then examined to extract the link structure from which
the A matrix can be obtained. The ranks are calculated by
a central server as the dominant eigenvector of (4 + D x
I). Page et al. [17] showed formally that this algorithm
converges.

2.3 Distributed Pagerank Formulation

In a P2P system, different documents reside on different
peers. The links in a document can point to documents on
other peers!. The distributed algorithm for computing the
pagerank for documents on P2P systems is as follows:

1. Every peer initializes all its documents with an initial
pagerank.

2. Each peer sends a pagerank update message to all
the documents to which the documents it stores are
linked(out-links). Pageranks of nodes present in the
same peer are updated without need for network up-
date messages.

3. Upon receiving an update message for a document,
the receiving peer updates the document’s pagerank.

4. Update of pagerank of a document in the system re-
sults in generation of further pagerank update mes-
sages for all out-links.

5. The difference between successive pageranks of a
particular document is used as a measure of conver-
gence and when this absolute difference falls below
an error threshold ¢, no more update messages are
sent for that document.

Different documents will attain their final pagerank at
different times. The algorithm is given in pseudo-code in
Figure 1.

This algorithm is essentially a distributed “peer to peer”
implementation of a chaotic (asynchronous) iterations lin-
ear equation solver, with the peers acting as simple state ma-
chines exchanging messages. Asynchronous iteration is the
natural algorithm for solving linear systems on distributed
networks since no central control or global synchroniza-
tion is required, and each peer executes the same process.
There is substantial literature on mathematical properties of
chaotic interactions. As shown in 1969 by Chazan and Mi-
ranker in their Asynchronous/Chaotic Iterations paper [5],
such systems can be proven to converge, albeit, typically
rather slowly.

On P2P systems which maintain only references (just the
GUIDs for example) and not the full documents, the docu-
ments need to be first fetched by the peers, the references of
the outlinks extracted from the contents, and stored along
with the reference of the document (the documents them-
selves need not be saved). A second issue is replication and
document caching that some P2P systems use to reduce re-
trieval time. On such systems, for the distributed pagerank
computation to work accurately, pointers need to be main-
tained at document sources to point to cached copies, so that

I Throughout this document we use the term peer or peer-node to refer
to a peer computer on the P2P system. And document or node to refer to
documents on the P2P system.

/* initialize */
Set all pageranks in all nodes to an
initial val ue;

At time = 0O:
Concurrently on all peers:

for all docunments in this peer {
conput e new ank based on inlinks;
relerr = abs(ol drank - new ank)/new ank;
if (relerr > epsilon) {
a) send pagerank update nmessage to
out-links on other peers;
b) weights of out-links in sane peer
updat ed;
}
}

/* first pass is done */
/* every peer |istens for pagerank
updat e messages */

whi | e pagerank update nessage received {
reconput e new ank based on nmessage;
relerr = abs(ol drank - new ank)/new ank;
if (relerror > epsilon) {
a) send pagerank update nmessage to
out-links on other peers;
b) weights of out-links in sane peer
updat ed;

Figure 1. Distributed Pagerank. epsilon is a
user defined error threshold used for testing
convergence.

all copies of the document can contain the correct computed
pagerank.

2.4 Integration with Peer to Peer Search Algo-
rithms

The exact method of use of the pagerank with search al-
gorithms varies based on the underlying P2P layer. This
section sketches briefly how the pagerank algorithm might
be utilized in a keyword search system in FASD/Freenet-
like systems, and DHT based systems like CAN, Pastry,
and Chord. We then propose an incremental search algo-
rithm that can used for efficient search using the pagerank
on DHT based systems.

241 FASD/Freenet

In FASD, a metadata key representing the document as a
vector is associated with every document. These metadata
keys are stored in a distributed manner. Search queries
are also represented as vectors and documents that match
a query are “close” to the search vector. We make a modifi-
cation to the original FASD algorithm to incorporate pager-

ank into the search scheme. Results are forwarded based on
a linear combination of document closeness and pagerank.
Details can be found in [21].

24.2 DHT systems

In this paper, we focus on computing the pageranks on DHT
based systems and coupling it with keyword search algo-
rithms. Keyword search on DHT based systems is typically
implemented by using a distributed index, with the index
entry for each keyword pointing to all documents contain-
ing that particular keyword. We propose adding an extra
entry in the index to store the pageranks for documents.
When the pagerank has been computed for a node, an in-
dex update message is sent, and the pagerank is noted in the
index. When a search is performed the pagerank is used for
relevance sorting.

Boolean multi-word queries are inefficient on DHT
based systems, because documents ids of all the hits for the
keywords need to be passed from peer to peer for each word
in the query. To avoid this excessive traffic Bloom filter [3]
based solutions have been proposed [19].

2.4.3 Incremental Searching

We propose incremental searching which addresses the is-
sue of network traffic caused by multi-word queries, by in-
crementally returning documents sorted by pagerank. The
search scheme works as follows: When a boolean multi-
word query is received, the first term in the query is exam-
ined and is routed to the peer which owns the part of the
index that contains this term. The index is accessed and a
list of documents that the index entry points to are examined
and sorted by the pagerank. Instead of forwarding all these
documents to the peer responsible for the next term, only
the top x% of hits are forwarded. So, the next peer receives
only a small fraction, albeit encompassing the most impor-
tant documents. The second peer also follows the same pro-
cedure. It finds the documents that match the second term
and performs the boolean operation on the two sets of doc-
uments. The resulting set is again sorted by pagerank and
the top x% of hits are forwarded to the next peer. This pro-
cedure is repeated for each term in the query.

In practice we found that this approach provided an
order of magnitude reduction in traffic. Furthermore,
this approach can be coupled with a Bloom filter based
method [19] to provide further reduction in traffic.

3 Extension to Dynamic Systems

In this section, we extend the distributed pagerank com-
putation to handle dynamic behavior. The following two
basic dynamic behaviors are handled — a) documents and

peers entering and leaving the system and b) caching. It will
be shown that after an initial convergence the pageranks can
be incrementally updated as peers and documents get added
and deleted.

3.1 Entering and Leaving Protocols

So far we described our system assuming all peers are
alive at all times. In a P2P system this is rarely the case.
Furthermore, documents are regularly added and deleted.
Logically peers joining and leaving, and documents being
added and deleted are identical — except for the fact that
when peers join and leave a large set of documents appear
and disappear respectively. The other difference being that
when a document is deleted it is gone forever, whereas when
a peer leaves it is likely to rejoin the network at a later time.

Peer leaves and joins. When peers leave the P2P sys-
tem, they take away with them (until they reappear) all their
documents. This transient behavior could possibly result
in pagerank updates to documents in unavailable peers be-
ing lost forever. To avoid this, when a peer is detected as
unavailable, update messages are stored at the sender and
periodically resent until delivered successfully. In the worst
case, the amount of state saved scales linearly with the sum
of outlinks in all documents in a peer.

Document inserts and deletes: When a new document
is inserted into the network, its pagerank is initialized to
some fixed constant value and update messages to its out-
links are sent; it is thus immediately integrated into the dis-
tributed pagerank computation scheme. Similarly, when a
document is removed, a pagerank update message is sent
with the value of the pagerank negated. When the pager-
ank update message is received by the outlinked documents
they update their pageranks and the system eventually re-
converges.

3.2 Caching

On DHT based systems with no specific anonymity guar-
antees the network traffic generated from the pagerank up-
date messages can be reduced by caching IP addresses of
peers. When the first pagerank update message is sent for
a document, the P2P layer’s routing mechanism is used to
find the location of the document. Once its location has
been found the IP address is cached at the source node, and
subsequent update messages can be exchanged directly be-
tween source and destination. Storage requirement for this
scheme scales linearly with the sum of the outlinks in all
documents in a peer.

Graph size # of passes
(in 1000s) % of peers present
100 75 50
10 74 134 166
100 88 137 196
500 118 139 196
5000 120 141 241

Table 1. Convergence rate of the distributed
pagerank algorithm for 500 peers. Error
threshold of 107,

On Freenet, in order to honor anonymity guarantees IP
addresses cannot be cached in such a manner, and every
update message has to be individually routed through inter-
mediate nodes.

4 Evaluation

In this section, we evaluate the distributed pagerank al-
gorithm proposed. There are three key components to be
modeled — the graph structure of the document links, the
underlying P2P system, and the search queries. In the sub-
sequent sections, we describe the modeling of document
link structure, details of our simulation infrastructure and
discuss results under the following categories — 1) con-
vergence rate, 2) quality of the pagerank, 3) amount of
pagerank message traffic generated, 4) execution time, 5)
the quantitative effects of document insertion and deletion,
and 6) the traffic reduction obtained from using the pager-
ank in search queries.

4.1 Graph Structure

Broder et al. [4] studied the graph structure of Internet
documents by performing a crawl of approximately 200
million nodes. They concluded that the link structure is
similar to small world networks i.e. the number of nodes
with degree 4 is proportional to 1/i*. They numerically es-
timated & for in-degree and out-degree and determined it to
be 2.1 and 2.4 respectively. We hypothesize that files on
P2P storage systems will show similar link structure, and
we synthesized graphs based on this model with 10,000,
100,000, 500,000 and 5 million nodes for our experiments
- each node representing a document. We use only the link
structure among the documents.

4.2 Distributed Computation

Our simulation methodology is explained below. First
the graph representing the documents is constructed as de-

scribed in the previous subsection. Each document in the
graph is then randomly assigned to a peer. We model the
logic of distributed computation of the pagerank assuming
an underlying DHT based P2P system. The computation
of the pagerank is done as follows: concurrently all peers
compute the pagerank using the available pagerank for in-
links (from the previous iteration). Once all pageranks have
been computed, we assume that pagerank messages are sent
and received instantaneously and all peers start their next it-
eration concurrently. In between such passes, sets of peers
randomly leave and join the network. Multiple iterations
are performed until the computation converges. The com-
putation converges when the error (absolute difference be-
tween successive values of the pagerank of a document), in
all the documents is less than the error threshold defined
in Section 2.3. This is a very strong convergence criterion.
Network latency effects, message routing, and other system
overheads are not modeled in the simulation. The experi-
ments in subsections 4.3 through 4.7 simulate 500 peers.

4.3 Convergence

Table 1 shows the number of passes required for con-
vergence for the four graph sizes we examined using an er-
ror threshold e = 10~* for checking convergence, with the
nodes distributed on 500 peers in the P2P system. When
all peers are present (column 2), the number of passes for
convergence is of the order of 100. Convergence rate grows
slowly with the problem size — a factor of 500 increase in
the graph size (10k to 5000k) increases number of passes
by only 60%.

To test the quality of the pagerank, we computed the
pageranks using a conventional synchronous iterative solver
and compared the error between the pagerank from our dis-
tributed asynchronous scheme(Py) and the pagerank from
the conventional approach(P,). In practice, the pagerank,
Py converges to within 0.1% of P, in as few as 30 passes.
Furthermore, we observed that for all the graphs, more than
99% of the nodes converged to within 1% of P, in less than
10 passes. A more detailed analysis of the pagerank quality
is given in Section 4.4.

Dynamic effects: To evaluate the effect of peer joins and
leaves, we simulate a fixed fraction of randomly selected
nodes leaving and joining the network at the end of every
iteration. In Table 1, in columns 3 and 4, we show the results
when only three quarters of the peers and half of the peers
are available at any given time. The algorithm converges
in the presence of these transient effects, albeit at a slower
rate. With only half the peers present at any given time only
a factor of two slowdown is seen in the convergence rate for
all the graph sizes.

Threshold
02 10 102 [10®[10* [10° |10
Scale
102 [10* | 107° [10® [107° [10-¢ | 10-°
% pages Relative error for 10k nodes
50 0.9 4.4 4.5 0.6 1.9 11 0.7
75 2.0 10.3 10.7 1.2 3.0 1.7 1.2
90 4.0 21.0 21.6 2.4 4.4 2.3 1.9
99 11.8 66.4 74.0 7.9 8.3 45 3.9
99.9 29.9 164.9 195.4 20.3 19.0 5.9 4.9
Max. 102.6 478.1 1166.4 64.1 41.6 6.5 5.9
Avg. 1.7 8.9 9.5 1.1 2.3 1.2 0.9
Relative error for 100k nodes
50 5.3 27.5 27.6 2.9 4.2 15 0.9
75 16.2 86.9 87.3 9.0 9.9 2.4 15
90 39.2 212.9 216.3 22.7 23.7 3.8 2.2
99 128.4 717.9 773.0 80.0 85.9 9.1 3.9
99.9 275.0 1589.9 1946.9 216.3 | 225.6 23.8 5.3
Max. 663.3 4579.9 12714.1 | 777.7 | 5202.2 | 300.8 | 125
Avg. 14.9 81.5 84.4 8.9 10.1 1.9 11
Relative error for 500k nodes
50 0.0 0.1 0.3 0.2 15 11 1.0
75 0.1 0.7 15 0.5 2.5 1.9 1.8
90 0.6 34 5.8 1.2 35 2.7 2.6
99 4.1 25.6 38.6 6.5 8.6 4.1 3.4
99.9 114 74.8 116.7 15.9 19.5 5.7 4.7
Max. 98.2 604.9 849.4 79.6 98.8 9.5 6.2
Avg. 0.3 1.6 2.7 0.6 1.9 1.3 1.2
Relative error for 5000k nodes
50 1.6 14.1 0.5 0.4 2.8 2.2 1.3
75 11.4 79.7 2.2 1.3 7.4 3.9 2.2
90 43.1 258.9 35 2.0 115 6.4 2.9
99 345.7 2591.2 7.5 3.0 17.5 10.1 4.2
99.9 1091.2 | 10912.4 | 21.3 4.3 21.9 12.9 5.4
Max. 1353.0 | 12204.9 | 1241.0 68.5 190.0 24.6 7.8
Avg. 215 158.4 1.4 0.8 4.7 2.8 15

Threshold 0.2

e 10k graphs: only 10 nodes have
error > 3%, max 10%

e 100k graph: only 100 nodes have
error > 27%, max 66%

e 500k graph: only 500 nodes have
error > 1%, max 10%

e 5000k graph: only 50,000 nodes
have error > 35%,
only 5000 nodes have error >
109%, max 135%

Threshold 0.001

e 10k graphs: only 10 nodes have
error > 0.02%, max 0.06%

e 100k graph: only 100 nodes have
error > 0.2%, max 0.7%

e 500k graph: only 500 nodes have
error > 0.02%, max 0.08%

e 5000k graph: only 5000 nodes
have error > 0.004%, max 0.07

Table 2. Relative error distribution with different error thresholds ¢. Relative error = (P; — P,)/P..
Relative error in table is not expressed as a percentage. Scale shown in row 4.

Threshold Number of Messages Exec. Time (hrs)
Total [Avg. | Total [Avg. | Total | Avg. | Total | Avg. 32 KB/sec | 200 KB/sec
10k nodes 100k nodes 500k nodes 5000k nodes
0.2 035 | 35 3.80 38 29.97 | 60 169.1 | 33.8 33.7 54
1071 0.39 | 39 4.16 42 31.14 | 62 183.8 | 36.7 36.7 5.8
1072 051 | 51 5.36 54 3548 | 71 395.0 | 79.0 78.8 12.6
1072 0.63 | 63 6.53 65 39.87 | 80 440.3 | 88.1 87.9 14.1
1074 0.75 | 75 7.74 77 44.36 | 89 485.2 | 97.1 96.8 15.5
107° 0.90 | 90 9.06 91 48.84 | 98 533.2 | 106.6 106 17.0
1078 111 | 111 10.54 | 105 52.84 | 106 586 117.21 | 117 18.7
Table 3. Variation of message traffic with error threshold ¢. Total number of messages shown in

millions.

Execution time for convergence shown in hours for 32Kbytes/sec and 200Kbytes/sec

networks.

4.4 Quality of Pagerank

We now examine the quality of the pageranks generated
by the distributed pagerank computation. The quality of the
pageranks is characterized by the relative error in pagerank:
(Ps — P.)/P.. Higher quality pageranks have lower rela-
tive error and are produced by using a lower error thresh-
old for convergence. However, the primary disadvantage
of having a low threshold is the increase in the number of
pagerank update messages (and therefore execution time).
Hence, reduction in network traffic and quality of pager-
ank are opposing goals. To accurately characterize the re-
lationship between the error threshold and pagerank quality
we simulated the distributed pagerank scheme for different
graph sizes and for different error thresholds. We report
the following statistical indicators: 1) the maximum error
in pagerank when using different thresholds, 2) average er-
ror across all the documents, and 3) distribution of relative
error across the document set.

In Table 2, the distribution of the error across the dif-
ferent documents is shown for the different thresholds. We
examined threshold values of 0.2 and 10! through 10—
for the four graphs. In the table we show collective data for
50%, 75%, 90%, 99% and 99.9% of the pages. The last two
lines indicate the maximum relative error and average rel-
ative error respectively. The first column lists the different
percentages. Columns 2 through 8 indicate the maximum
error for that percentage of pages. Note that each of the
columns has the error reported in a different scale, which is
indicated in the fourth row in the table headings. Looking
at the table, we can see for example that, with a threshold of
0.2, up to 50% of the pages in the 10k graph had a relative
error of less than 0.9 = 102, up to 99.9% of the pages had
arelative error of less than 29.9 x 10~3, indicating less than
10 pages had more than 3% relative error.

From the error distribution table we can see that a thresh-
old as high 0.2 performs extremely well, producing ex-
tremely good quality pageranks for most of the pages (up
to 99.9%). Examining the values down any particular col-
umn we can see that the pageranks of most documents is ex-
tremely close to P,, even with moderately high thresholds.
Examining the values for the four different graph sizes we
see that the trends hold independent of graph size. A thresh-
old of 103, produces extremely good results for all graph
sizes. A summary of the error results in Table 2 is shown
to the left of the table. The quality of the pageranks achiev-
able in a huge set of the documents, even with high error
thresholds is remarkable.

45 Message traffic

We now examine the number of pagerank update mes-
sages generated during the pagerank computation. Us-

ing lower error thresholds for convergence produces higher
message traffic. In Table 3, the number of pagerank update
messages generated for different error thresholds is shown
for the four graphs. Columns 2, 4, 6, and 8 show the to-
tal number of pagerank update messages in millions, gen-
erated for convergence, and columns 3, 5, 7, and 9 show
the average number of pagerank messages per node - this
is obtained by dividing columns 2, 4, 6, and 8 by the cor-
responding graph size. The average number of messages
per node is a graph size independent metric of measuring
message traffic.

From the Table, it can be seen that the increase in the
message traffic with the threshold is approximately loga-
rithmic. As the threshold decreases from 10! to 107¢, a
factor of 10°, the message traffic increases by less than a
factor of 3. The message traffic per node is largely indepen-
dent of the graph size. This suggests the scalability of the
algorithm to large problem sizes.

4.6 Execution Time

The total execution time to convergence for the dis-
tributed pagerank scheme is strongly dependent on the net-
work characteristics (latency, bandwidth and congestion)
and somewhat less dependent on the characteristics of the
processors implementing the computations. Execution time
is estimated for two execution environments, one model-
ing a typical peer to peer network and another modeling the
case where the algorithm is implemented by web servers
as a backbone service of the Internet as briefly sketched in
Section 8.

4.6.1 Peer to Peer Implementation

To simplify the analysis the following assumptions are
made:

e A homogeneous network in which all peers are al-
ways present.

o A network transfer model where the peers collect to-
gether all the pagerank messages for each other gen-
erated during one pass into a single message, and
transmit this message in one network call per peer.

e Each peer serializes sending of these messages to
other peers instead of sending them concurrently to
all peers.

e The IP address caching scheme proposed in Section
3.2 is used, hence the pagerank update messages can
be directly exchanged between peers without having
to be routed every time.

e The computational work to be done is constant over
all passes.

The execution times estimated in this model should be
conservative, given the assumptions of serialized network
transfer between peers and constant computational work per
pass.

Let ¢; be the computation time for a pass at peer i, L;;
be the number of document links from peer i to peer j, the
size of a pagerank message be m and the average transfer
rate in the network be ¢. The execution time per pass at peer
1 can then be estimated as:

Lijxm
t

Execution Time per Pass = ¢; + Z
J

vV {Peersj}
(4)

Based on simulations on Pentium I11 and Pentium 4 class
machines we estimate the computation required per pass for
the 5000k node graph to be of the order of a minute or less.
The transfer rate between peers in peer to peer networks
may vary over a considerable range. We used a conser-
vative transfer rate of 32 Kbytes/sec to estimate an upper
bound on execution time and also a more aggressive trans-
fer rate of 200 Kbytes/sec. A message size of 24 bytes per
message is used (128 bits for GUID, 64 bits for pagerank
value). The execution time for the convergence of the 5000k
node graph is shown in the last two columns in Table 3. In
all cases the execution times are reasonably measured in
hours, totally dominated by communication time and de-
crease rapidly with faster transfer rates.

4.6.2 Web Server Implementation on Internet Scale

Assume the distributed algorithm is implemented as a func-
tion of a web server. The average transfer rates of the net-
works connecting web servers can reasonably be expected
to be at the rate of at least a T3 line (about 5.6 Megabytes
per second). We estimate the execution time for a network
with 3 billion documents to be about 35 days for a conver-
gence threshold of 10—2 and about 14 days for a conver-
gence threshold of 10~—!. These execution times are of the
same order of magnitude as the current web crawler based
centralized method. The distributed pagerank scheme in-
crementally incorporates document insertions and deletions
into the pageranks and does not require frequent recomputa-
tions. (Quantitative results for document insertions are dis-
cussed in the next section.) Furthermore, 99% of the graph
converges in as few as 10 passes which would correspond
to approximately 4 days.

4.7 Document insertions and deletions

To evaluate the effect of document insertions and dele-
tions we measure the total number of network messages that
can be generated when a document is inserted. When a new
document is inserted, it can only have outlinks. Since this

6K

1/6

1/3
50,
! 13
1/3

Figure 2. Propagation of pagerank increments
on document inserts.

is a new document, there cannot be inlinks already pointing
to it. Adding a node is equivalent to adding an extra column
and row to the A matrix and one extra entry to the R matrix
of Equation 3. The row added to the A matrix is all ze-
roes (since a new node cannot have inlinks coming into it).
The column added will have values of 1/n, when a link is
present from this node to another node and zero elsewhere
(n, is the number of outlinks out of this node).

We measure the network traffic in terms of number of
pagerank update messages, by performing the following ex-
periment. For each of the four graph sizes, we pick a ran-
dom node and set its pagerank to the initial pagerank value
(1.0 in our case). We then propagate this pagerank to all
its outlinks. Each outlink will get only a 1/n,, contribution.
When these messages reach the outlinks, they will in turn
send out messages to their outlinks. As shown in Figure 2,
when G sends an update message to H, H will in turn send
an update message to K and L - incrementing K’s and L’s
pagerank by some amount. In our example G’s increment
to H will be 1/3. H’s increment to K and L will in turn be
1/6 and so on. At some point the increment will be smaller
than the error threshold, at this point no more pagerank up-
date messages are generated. We measure the path length
and the total number of nodes to which an update message
is sent (called the node coverage). This node coverage is an
upper bound on the number of messages a document insert
can generate. Adding multiple documents simultaneously
may generate fewer messages than separately adding them,
because the inserted new documents could have links to the
same documents. This effect will be less pronounced as
graph sizes grow.

In Table 4, the path length and node coverage are shown
for the four graph sizes and error thresholds of 0.2 and 101
through 10=5. These numbers were obtained by averag-
ing the results over 1000 randomly picked nodes from the
graphs. Both the path length and the node coverage are
largely independent of, or grow extremely slowly with the
graph size, indicating the scalability of the algorithm. The
large anomaly in node coverage for the 10~° threshold is
because at such a low threshold almost the entire graph is
reachable for the 10k graph and the node coverage is limited

Threshold Path length

10k | 100k | 500k | 5000k
0.2 2.0 2.2 3.2 2.7
1071 29 31 4.8 3.4
102 5.8 6.3 9.1 7.4
10-3 8.7 9.3 14.5 111
10~* 116 | 126 19.3 15.2
10-° 147 | 16.0 24.3 19.5

Node coverage

0.2 14 19 17 34
10! 30 39 40 61
10~2 293 388 330 602
103 2139 | 3338 | 3625 6073
10~ 7067 | 20544 | 24234 | 52888
10-° 9863 | 62115 | 91736 | 326702

Table 4. Path lengths and node coverage.

by graph size. Examining the values down a column, we
can see that node coverage grows reasonably rapidly with
the threshold, and is almost linearly dependent as expected.

Document deletions: Document deletions are very simi-
lar to document inserts. A pagerank message is sent with a
negative increment. Mathematically removing a document
is equivalent to deleting its row and its corresponding col-
umn from the A matrix.

4.8 Pagerank Summary

In the previous subsections, we evaluated the proposed
distributed pagerank scheme over a wide range of graph
sizes and convergence error thresholds. The results on con-
vergence, quality of pageranks, message traffic and the ex-
ecution time demonstrate the scalability and performance.
Dynamic effects affected the convergence rate only to a
small extent. Based on these results we conclude that an
error threshold of 102 seems ideal — pageranks have a
maximum error of less than 1%, with reasonably low mes-
sage traffic generated for all the graphs sizes. Table 5 sum-
marizes these conclusions.

4.9 Incremental Search

This section presents our preliminary results on measur-
ing the effectiveness of the incremental search mechanism
in reducing network traffic while executing keyword search
queries. There are two key factors that contribute to reduc-
ing traffic. Firstly, the presence of the pagerank greatly re-
duces traffic on multi-word queries. Secondly, the presence
of a ranking scheme ensures that the user sees the most

Convergence Fast convergence, high tolerance and
adaptability to peer leaves and joins,
good scalability with graph size.

Pagerank Very high, typically < 1% error,

Quality good scalability with graph size.

Message Reasonably low, message traf-

Traffic fic per node nearly constant, logarithmic
growth with accuracy.

Execution Reasonably low, dominated by network

Time transfer time.

Document In- | Handled naturally, no global recom-

sertion, Dele- | putes required, pageranks continuously

tion updated.

Table 5. Distributed pagerank computation
summary.

important documents first, while other documents can be
fetched incrementally if requested.

We first built our own document corpus by performing
a crawl of a set of news web pages. We then computed
the pagerank of these pages using our distributed pager-
ank scheme. Automatically synthesized search queries were
then simulated to measure the reduction in traffic.

Documents and search queries: We built a document
corpus consisting of around 11,000 documents amounting
to 99MB of storage. After removing common stopwords
and thresholding based on most frequently appearing terms,
the document corpus was reduced to 1880 dimensional data.
Two-word and three-word search queries were generated
by randomly combining the top 100 most frequent terms.
We randomly distributed these documents on 50 peers and
computed the pagerank using our distributed scheme. The
search queries were simulated on this 50 node peer to peer
system.

Searchresults: We simulated these automatically synthe-
sized search queries to measure the performance of incre-
mental search. We assumed that each search term in the
query, was always present in a different peer. Therefore in
the baseline case, for every two word query, a set of doc-
ument IDs have to be transferred between two peers (the
one’s owning the first term and second term). Finally the
document IDs have to be transferred to the user. Twenty
each of the two and three word queries were used in our
experiments.

We simulated two instances of the incremental search al-
gorithm — one where the top 10% (based on pagerank) of
the hits are transferred to the next peer, and one where the
top 20% of the hits are transferred to the next peer. The
results are shown in Table 6. The reduction in traffic is
measured in terms of number of document IDs that must

| 2 Term queries | 3 Term queries
Average Traffic Reduction
Top 10% forwarded 12.2 11.9
Top 20% forwarded 6.5 6.9
Average # hits returned
Top 10% forwarded 55.3 41.7
Top 20% forwarded 66.8 21.7
Baseline 1603.9 835.6

Table 6. Network traffic reduction when using
Incremental search with pagerank.

be transferred between peers, and finally back to the user.
The baseline we compare against is a system where there
are no pageranks and hence all the document I1Ds need to
be transferred between peers. When the top 10% of the hits
are forwarded, more than a factor of 10 reduction in traf-
fic is obtained for both two- and three-word queries. When
the top 20% of hits are forwarded, more than a factor of 6
reduction is obtained. In both cases the number of results
returned is a very manageable amount unlike in the baseline
case. The reason why there are fewer 3 term hits with top
20% forwarding than with top 10%, is because of a simula-
tion artifact. When the top x% of the documents falls below
a threshold (we used 20), then all the results are forwarded
along. In some cases the top 20% amounts to a number just
over 20. But in the top 10% cases it does not, but the entire
set of hits is far greater than 20 and they are all forwarded.

5 Centralized Crawler Implementation

We briefly address the issue of using a centralized
crawler on DHT based P2P storage systems. Firstly, a cen-
tralized crawler is against the philosophy of P2P systems.
Secondly, a rudimentary centralized crawler would generate
an extremely large amount of traffic - basically it amounts
to fetching all the files on the P2P system to a central stor-
age server; such a scheme is undesirable. A more efficient
crawler based system would only transmit the link struc-
ture to the central server which would compute the pager-
anks and redistribute the ranks to the peers owning the doc-
uments. Document inserts/deletes can be handled by having
the peers directly communicate with the pagerank server —
this avoids the need for a recrawl every so often (as is done
on the Internet).

A centralized crawler would be unworkable on a Freenet
based system because of the anonymity guarantees.

6 FutureWork

In our current work, we have focussed on the design,
computation, scalability and feasibility aspects of the pager-
ank computation for P2P systems. We simulated a simple

10

P2P system model to perform our experiments. In future
work, we will implement the distributed computation of the
pagerank on a P2P system.

Many interesting extensions and optimizations are pos-
sible. One is to address whether the link structure in doc-
uments can be used for mapping documents to peers, and
whether this will alleviate network overheads in the compu-
tation of the pagerank. Arasu et. al. [2] noted that utilizing
the structure of the web can materially speedup convergence
of the iteration. This approach is closely related to the Fast
Multipole method for solving linear systems [9, 10]. Sec-
ondly, we propose to investigate adaptation of the fast mul-
tipole solver to pagerank computations. Thirdly, we will in-
vestigate the effectiveness of distributed asynchronous lin-
ear solutions executing on P2P systems in other problem
domains, where the generation of the elements of the matri-
ces can be, or are distributed across a network. And finally,
the Internet wide scalability of distributed pagerank, with
web servers computing pageranks as a service will be ex-
plored.

7 Related work

We are not aware of any other distributed implementa-
tions for computation of pagerank or other document rel-
evance metrics. There has been a great deal of research
on speeding up the centralized computation of the eigen-
vectors of the Markov matrices which underlie pagerank
computation [2, 12, 13, 14]. It appears on the basis of
our limited results that the asynchronous iteration may con-
verge more rapidly than the acceleration methods studied
in [14]. Verbeke et al. [23] proposed a framework for peer-
to-peer computation for coarse-grain parallelization using
the JXTA protocols. More closely related work is the con-
ventional parallelization of pagerank computation on mul-
tiprocessors. The only results we have found were by Chen
and Zhang [6]. These authors compared synchronous and
asynchronous iteration on 128 processors and found that
asynchronous iteration was more efficient.

8 Conclusionsand a Question

This paper proposes and evaluates a distributed algo-
rithm which enables computations of pageranks in peer to
peer networks and applies it to the problem of multiple word
keyword searches in peer to peer networks. The distributed
algorithm converges rapidly, produces high quality pager-
anks, and enables incremental and continuous computation
of pageranks as documents are added/deleted.This formu-
lation can be coupled with standard information retrieval
methods to enable effective keyword search in P2P sys-
tems. An incremental search mechanism which provides a

ten-fold network traffic reduction on multi-keyword search
queries in P2P networks is defined and evaluated.

While the primary target for the distributed pagerank
computation was peer to peer networks, the algorithm can
be extended in a straightforward manner to the World Wide
Web and its vast corpus of web pages. By augmenting web
servers and the HTTP protocol to exchange messages, web
servers can be collectively responsible for computing the
pageranks for documents they host. Web servers would
play the role of peers in a peer to peer network and ex-
change pagerank update messages. Application of the al-
gorithm at the WWW level, if practical, removes both the
need for a central server computing pageranks, and the need
for periodic recrawls to reflect changes. Assuming that the
distributed algorithm can be applied on the WWW scale,
which seems at first glance to be plausible, a very inter-
esting possibility arises — can the entire Internet keyword
index be computed and stored in a distributed manner? Ef-
ficient keyword search requires both components, pagerank
and keyword index. Coupling such a distributed keyword
index with the web server computed distributed pagerank,
could enable a fully distributed pagerank based keyword
search for the Internet.

Acknowledgments

We thank the anonymous reviewers for their sugges-
tions that helped improve the quality of this paper. We
would like to thank Mike Dahlin for his insightful com-
ments and suggestions. This research was supported in part
by the National Science Foundation under grant 0103725
“Performance-Driven Adaptive Software Design and Con-
trol”.

References

[1] PageRank Explained.
glish/pagerank/.

[2] A. Arasu, J. Novak, A. Tomkins, and J. Tomlin. Pagerank
computation and the structure of the web: Experiments and
algorithms. Nov 2001.

http://www.webrankinfo.com/ en-

[3] B. Bloom. Space/time trade-offs in hash coding with allow-
able errors. Communications of the ACM, 13(7):422-426,
July 1970.

[4] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Ra-
jagopalan, R. Stata, A. Tomkins, , and J. Wiener. Graph
structure in the web: experiments and models. In Proceed-
ings of the 9th World Wide Web Conference, 2000.

[5] D. Chazan and W. Miranker. Chaotic relaxation.
Algebra Applications, 2:199-222, 1969.

Linear

[6] Y. Cheng and H. Zhang. Parallelization of the page rank-
ing in the google search engine. http://manip.crhc.uiuc.edu/
chen/pagerank.ps.

11

[7] 1. Clarke, T. W. Hong, S. G. Miller, O. Sandberg, and B. Wi-
ley. Protecting free expression online with freenet. IEEE
Internet Computing, 6(1):40-49, 2002.

O. D. Gnawali. A Keyword-Set Search System for Peer-to-
Peer Networks. M.E. Thesis, Department of Electrical Engi-
neering and Computer Science, MIT, May 2002.

L. Greengard and V. Rokhlin. A Fast Algorithm for Particle
Simulations, 1987.

L. Greengard and V. Rokhlin. A new version of the fast mul-
tipole for the LaPlace Equation in Three Dimensions, 1997.

[11] T. Haveliwala. Efficient computation of pagerank. Techni-
cal Report 1999-31, Stanford Digital Library Technologies
Project, 1999.

T. Haveliwala. Topic senstive pagerank. In Proceedings

of the Eleventh International World Wide Web Conference,
WWW 2002, 2002.

G. Jeh and J. Widom. Scaling personalized web search. In
Proceedings of the Twelfth International World Wide Web
Conferemce, WWW 2003, To Appear, 2003.

S. Kamvar, T. Haveliwala, C. Manning, and G. Golub. Ex-
trapolation methods for accelerating pagerank computations.
In Proceedings of the Twelfth International World Wide Web
Conferemce, WWW 2003, To Appear, 2003.

A. Z. Kronfol. FASD: A Fault-tolerant, Adaptive, Scal-
able, Distributed Search Engine. Technical report, Princeton,
2002.

C. Moler. The world’s largest matrix com-
putation. http://www.mathworks.com/company/newsletter/
clevescorner/oct02_cleve.shtml.

[17] L. Page, S. Brin, R. Motwani, and T. Winograd. The pager-
ank citation ranking: Bringing order to the web. Technical
report, Stanford Digital Library Technologies Project, 1998.
S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network. Tech-
nical Report TR-00-010, Berkeley, CA, 2000.

P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword
searching. Technical report, Rice University, 2002.

A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In Proceedings of the IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware), pages
329-350, November 2001.

K. Sankaralingam, S. Sethumadhavan, and J. C. Browne.
Initial specification of a distributed pagerank scheme for
p2p systems. http://www.cs.utexas.edu/ karu/docs/ projec-
treport.pdf.

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable Peer-To-Peer lookup service
for internet applications. In Proceedings of the 2001 ACM
SIGCOMM Conference, pages 149-160, 2001.

J. Verbeke, N. Nadgir, G. Ruetsch, and I. Sharapov. Frame-
work for peer-to-peer distributed computing in a heteroge-
neous, decentralized environment. In Proceedings of the
3rd International Workshop on Grid Computing, November
2002.

(8]

9]

[10]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

[21]

[22]

[23]

