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a b s t r a c t

The systematic flatness-based motion planning using formal power series and suitable summability
methods is considered for the finite-time deployment of multi-agent systems into planar formation
profiles along predefined spatial–temporal paths. Thereby, a distributed-parameter setting is proposed,
where the collective leader–follower agent dynamics is modeled by two boundary controlled nonlinear
time-varying PDEs governing themotion of an agent continuum in the plane. The discretization of the PDE
model directly induces a decentralized communication and interconnection structure for themulti-agent
system, which is required to achieve the desired spatial–temporal paths and deployment formations.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In the past decades, extensive research has been conducted
on the cooperative formation control of multi-agent systems
with possible applications ranging from UAVs over transportation
systems to micro-satellite clusters (see, e.g., Bullo, Cortés, and
Martínez (2009), Murray (2007), Ren and Beard (2008) for rather
recent and comprehensive overviews). Thereby, different analysis
and design approaches have emerged depending on the available
communication topology and the considered formation control
task. In the behavior-based approach a desired set of behaviors
is assigned to the individual agents and the overall behavior
of the system is achieved by defining the relative importance
between the individual behaviors (Balch & Arkin, 1998). The
virtual structure approach relies on the consideration of the entire
formation as a single (rigid) entity and the desired motion is
assigned to the rigid structure (Ren & Beard, 2004). Alternatively,
constraint functions relating the positions and orientations of the
individual agents can be defined (Zhang & Hu, 2008). The potential
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field approach is based on the introduction of structural interaction
forces between neighboring agents in order to stabilize the
system to the equilibriummanifold (Olfati-Saber, 2006).Moreover,
optimization-based approaches are analyzed to minimize the
individual and cumulative formation error (Dunbar & Murray,
2006; Murray, 2007). In general, an additional distinction arises
between leaderless and leader–follower systems. In the latter
either a real or a virtual agent is chosen as the leader, whose
motion follows a desired trajectory. The follower agents track
the movement of the leader while maintaining their overall
formation. Thereby in general feedback interconnection strategies
are analyzed, which either rely on global or local information
corresponding to a centralized or decentralized control scheme to
achieve the agent deployment into prescribed formations.

Besides the discrete analysis of the interconnected individual
agents, continuous models based on partial differential equations
(PDEs) have been used to represent and control traffic flow
(Alvarez, Horowitz, & Li, 1999) or large vehicular platoons
(Barooah, Mehta, & Hespanha, 2009). In view of the analysis
of multi-agent systems, Ferrari-Trecate, Buffa, and Gati (2006)
introduce a semi-discrete continuous-time partial difference
equation framework over graphs, where the spatial discretization
corresponds to the individual agent. It is thereby shown that
the graph Laplacian control proposed in Olfati-Saber and Murray
(2004) coincides with the linear heat equation. To incorporate
certain parameter uncertainties for multi-agent systems modeled
by partial difference equations adaptive control is considered, e.g.,
in Kim, Kim, Natarajan, Kelly, and Bentsman (2008). A wave-like
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PDE model in the limit as the number of vehicles in a platoon
moving in a straight line tends to infinity in proposed in Barooah
et al. (2009). With this, the stability margin of large vehicular
platoons under bidirectional decentralized control was analyzed
and improved by introducing a forward–backward asymmetry
in the control gains. Results on connecting PDEs and distributed
systems towards the evaluation of system theoretic properties
are provided in Sarlette and Sepulchre (2009). In terms of
formation control, linear diffusion–advection–reaction equations
with dynamic boundary conditions were studied in Frihauf and
Krstic (2009) to achieve the deployment into equilibrium profiles.
For this, PDE backstepping (Krstic & Smyshlyaev, 2008) was
applied in order to exponentially stabilize the equilibrium profiles.

In this paper, a systematic nonlinear PDE-based motion
planning framework is proposed for the realization of finite-
time transitions between desired deployment formations along
predefined spatial–temporal paths. For this, nonlinear time-
varying Burgers-like PDEs are used to represent the location
of a continuum of mobile agents in the plane. The desired
deployment formations correspond to the equilibrium profiles of
the governing PDEs, which include shock-like effects as are well
known for Burgers equation (see, e.g., also Krstic, Magnis, and
Vazquez (2008, 2009) for results on their stabilization). Moreover,
a leader–follower configuration is considered, where the positions
or velocities, respectively, of the leader agent and another agent,
subsequently referred to as the anchor agent, serve as boundary
inputs. For their design, a flatness-based approach (see, e.g., Fliess,
Lévine, Martin, and Rouchon (1995) for the general theory for
finite-dimensional systems and, e.g., Lynch and Rudolph (2002),
Petit and Rouchon (2002), Meurer and Zeitz (2005, 2008), Meurer
and Kugi (2009) for extensions to PDEs) is considered, which is
based on the differential parametrization of the system states and
the boundary inputs in terms of a flat or so-called basic output
by making use of formal power series and suitable summability
methods.

The paper is organized as follows: Section 2 introduces the
considered PDE-based leader-enabled deployment problemwhich
is solved in Section 3 following a flatness-based approach. For
the determination of the feedforward formation control the
assignment of suitable desired trajectories is analyzed in Section 4
in view of the realization of the leader-enabled deployment into
planar curves. Simulation results are presented in Section 5 and
some final remarks conclude the paper.

2. PDE-based leader-enabled deployment

The leader-enabled deployment of mobile agents is considered
under the assumptions that the agents are fully actuated and op-
erate in a common reference frame. Motivated by the correspon-
dence of graph Laplacian control and the linear heat equation in the
limit as the number of interconnected agents approaches infinity
(Ferrari-Trecate et al., 2006), subsequently, the planar motion of
the agents in the (x1, x2)-domain is introduced in terms of two de-
coupled nonlinear heat equations in the form of modified viscous
Burgers equations with time-varying parameters.

2.1. Burgers equations and continuous agent topology

The motivation to use Burgers-type equations in the deploy-
ment of a continuum of interconnected agents is twofold. To
generate complex profiles involving corners (Fig. 1, left) and
‘‘switchback’’ shapes (Fig. 1, right), one option is to use a linear
PDE model that is of high order in the spatial variable α, where
α denotes the continuous index of the agents. This option creates
both considerable challenges for stabilization and for actuation.
Fig. 1. Examples of deployment profiles for multi-agent continuum in the (x1, x2)-
plane with the α-coordinate representing the continuous communication path.
Anchor and leader agents are marked by × and ◦.

With regards to stabilization, linear Korteweg–de Vries (third or-
der), Kuramoto–Sivashinsky (fourth order), and higher-order PDEs
are much harder to stabilize than parabolic PDEs. With regards to
actuation, higher numbers of derivatives in α in the PDE require to
employ ahigher number of boundary conditions,meaning, a higher
number of leaders and anchors.

The second option is to stick with PDEs that are second-
order in α, namely, parabolic, but allow nonlinearities, such as in
the Burgers equation. The quadratic nonlinearity in the Burgers
equation, which generates shock-like equilibrium profiles, allows
for corner-like shapes in deployment profiles. At the same time, the
motion planning and stabilization problems for Burgers equation
are tractable, with a number of boundary conditions/inputs that is
no higher than for linear parabolic PDEs.

Thus, the Burgers equation is a natural choice for considerably
expanding the catalog of achievable deployment profiles, without
dramatically expanding the complexity of the problem of deploy-
ing the agents to the desired profile.

We consider an agent continuum in the (x1, x2)-plane (cf. Fig. 1)
with the communication path represented by the continuous
independent coordinate α ∈ [0, 1] referring to the agent index
in the continuum. The locations of the anchor and leader agents at
α = 0 (×) and α = 1 (◦) serve as inputs, whose temporal paths are
determined by flatness-based motion planning and feedforward
control. Each xj = xj(α, t), j = 1, 2, is thereby governed by a
boundary controlled PDE, which determines the individual motion
of the agent continuum in the xj-direction. By superimposing the
respective x1- and x2-contributions, the desired planar deployment
is achieved along prescribed spatial–temporal motion paths. The
PDE formulation thereby in particular enables a design, which
is independent of the actual communication topology. The latter
is induced by means of a finite difference discretization scheme
to transfer the results from an agent continuum to a discrete
set of agents, where any follower agent processes only local
information.

2.2. Distributed-parameter agent dynamics

As pointed out above, in the following a modified viscous
Burgers equation is considered to model the motion of the mobile
agent continuumwith respect to the xj(α, t)-coordinate, j ∈ {1, 2},
i.e.

∂tx
j(α, t) = aj∂2αx

j(α, t)− bjxj(α, t)∂αx
j(α, t)

+ c j(t)xj(α, t), α ∈ (0, 1), t ∈ Rt0 (1a)

with aj, bj > 0, the time-varying parameter c j(t) ∈ R, and Rt0 =

{t ∈ R | t > t0}. The independent coordinate α corresponds to an
agent index in a large group (continuum) of agents. The positions
of the anchor agent (α = 0) and the leader agent (α = 1) are
governed by the inhomogeneous Dirichlet boundary conditions

xj(0, t) = uj
a(t), xj(1, t) = uj

l(t), t > t0. (1b)
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Note that velocity inputs can be equivalently included in the
analysis. The initial condition follows as

xj(α, t0) = xj0(α), α ∈ [0, 1] (1c)

with xj0(α) an initial steady state formationprofile. In the following,
the motion planning problem is considered based on (1) to realize
the finite-time deployment of the agents into desired formations
governed by the steady state solutions of the modified Burgers
equation along suitable predefined spatial–temporal transition
paths.

2.3. Desired deployment profiles

Besides the semilinearity of the PDE (1a) the steady state
analysis becomes more involved due to the time-variance induced
by the parameter c j(t). In particular, stationarity at t = t ≥ t0
requires that the following boundary-value problem is satisfied, i.e.

aj∂2αx
j(α)− bjxj(α)∂αx

j(α)+ c j(t)xj(α) = 0 (2a)

xj(0) = uj
a, xj(1) = uj

l. (2b)

Here, uj
a and uj

l denote constant input values and for xj(α) ≠ 0
the parameter c j(t) has to fulfill c j(t) = c j while ∂nt c

j(t) = 0,
n ≥ 1, for t ≥ t . The latter conditions imply that c j(t) is non-
analytic at t = t0. If Eqs. (2) are satisfied xj(α; c j, uj

a, u
j
l) = xj(α)

is called a stationary or steady state profile. Subsequently, desired
formation profiles for the agent continuum are determined by the
superposition of steady states (x1(α), x2(α)) in the x1- and x2-
direction. Thereby, depending on the system parameters and the
stationary anchor and leader positions, a broad variety of solutions
to (2) can be obtained in view of the solution of the deployment
problem.

For general parameter sets (aj, bj, c j), the solution to (2) has to
be computed numerically by prescribing both uj

a and uj
l . However,

an analytical analysis is possible for special cases. For the linear set-
up with bj = 0, subsequently, two distinct families of steady state
solutions are considered, i.e.

xj(α; c j, uj
a, u

j
l) = uj

a + α

uj
l − uj

a


(3a)

for c j = 0 and

xj(α; c j, uj
a, u

j
l) = A sin(kπα), ∀A ∈ R (3b)

given c j = (kπ)2, k ∈ N, and uj
a = uj

l = 0. Further solutions
to (2) for bj = 0 are, e.g., summarized in Frihauf and Krstic
(2009). If bj ≠ 0, solutions to (2) are determined, e.g., in Krstic
et al. (2009) and illustrate the well-known appearance of shock-
like profiles for viscous Burgers equation. In combination with
numerical routines for the solution of boundary-value problems a
computational framework can be hence introduced to characterize
desired formation profiles depending on the system parameters
(aj, bj, c j) and the stationary anchor and leader positions.

Obviously, if c j(t) involves points of non-analyticity at t ∈

{t1, t2, . . . , tI}, the set of achievable deployment profiles is
significantly enlarged, which can be exploited for motion planning
to enable the finite time transitions between different families of
steady states.

3. Flatness-based motion planning

For the solution of the finite time deployment problem into
desired formation profiles, subsequently flatness-based methods
are applied for the determination of suitable spatial–temporal
transition paths and the corresponding input trajectories for the
anchor and leader.
3.1. Formal power series solution

By assuming that xj(α, t) can be represented in terms of a
formal power series, i.e. xj(α, t) → x̂j(α, t), where

x̂j(α, t) =

∞−
n=0

x̂jn(t)
(α − α̂)n

n!
(4)

with α̂ ∈ (0, 1) fixed but arbitrary and the consideration of
the Cauchy product formula for the evaluation of the nonlinear
term xj(α, t)∂αx

j(α, t), the substitution of x̂j(α, t) into the PDE
(1a) yields the following second order differential recursion for the
series coefficients

x̂jn(t) =
1
aj


bj

n−2−
i=0


n − 2

i


x̂jn−2−i(t)x̂

j
i+1(t)

− c j(t)x̂jn−2(t)+ ∂t x̂
j
n−2(t)

 , n ≥ 2 (5a)

x̂j0(t) = x̂j(α̂, t) = yj1(t) (5b)

x̂j1(t) = ∂α x̂
j(α̂, t) = yj2(t). (5c)

For the evaluation of the two starting conditions (5b) and (5c) the
functions yj1(t) and yj2(t) are introduced, which serve as degrees
of freedom to solve the motion planning task. Obviously, the
nonlinearity prevents a closed-form solution of the differential
recursion. However, it can be easily shown that any series
coefficient can be formally represented as

x̂jn(t) = ψn


y j
1,n̄(n)(t), y

j
2,n̄(n)(t)


with n̄(n) = (n−n mod 2)/2 ∈ N0. Here, the formal dependencies
are summarized as

y j
i,n̄(n)(t) = [yji(t), ∂ty

j
i(t), . . . , ∂

n̄(n)
t yji(t)]

T , i = 1, 2.

With this, both the state and inputs can be schematically
parametrized as

xj(α, t) =

∞−
n=0

ψn


y j
1,n̄(n)(t), y

j
2,n̄(n)(t)

 (α − α̂)n

(n)!
(6a)

uj
a(t) =

∞−
n=0

ψn


y j
1,n̄(n)(t), y

j
2,n̄(n)(t)

 (−α̂)n
(n)!

(6b)

uj
l(t) =

∞−
n=0

ψn


y j
1,n̄(n)(t), y

j
2,n̄(n)(t)

 (1 − α̂)n

(n)!
(6c)

in terms of yj1(t), y
j
2(t), and their time-derivatives. In accordance

with the common notation for finite-dimensional nonlinear
systems, the tuple (yj1(t), y

j
2(t)) is denoted a flat or basic output for

(1). The determined expressions are so far only formal. Hence, to
deduce meaningful expressions from (6) the uniform convergence
of the parametrized formal power series has to be analyzed, which,
as is shown below, results in a problem of trajectory planning for
the basic output.

3.2. Uniform convergence in Gevrey classes

For convergence analysis, the notion of a Gevrey class is
required (Rodino, 1993).

Definition 1 (Gevrey class). The function f (t) is in GM,ς (Ω), the
Gevrey class of order ς in Ω , if f (t) ∈ C∞(Ω) and there exist a
positive constant M such that

sup
t∈Ω

|∂nt f (t)| ≤ Mn+1(n!)ς ∀n ∈ N0. (7)
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Fig. 2. Domain of convergence governed by ρ = 1/(MAj(M)) > 1/2 in the
(aj, bj,M)-domain.

If ς < 1, the function is entire while it is analytic for ς = 1
and non-analytic if ς > 1. With this, the following assumption is
imposed on the parameter c j(t), which implies that c j(t) is smooth
but locally non-analytic as suggested in Section 2.3.

Assumption 2. The function c j(t) ∈ GMc ,ς (Rt0)with ς ∈ (1, 2].

The proof of uniform series convergence essentially relies on the
determination of a suitable bound on the parametrized series
coefficients (5) (see, e.g., Lynch and Rudolph (2002), Meurer
and Zeitz (2005), Meurer and Zeitz (2008) for related results).
However, certain modifications are required due to the considered
configuration involving multiple input functions. By restricting
both the tuple (yj1(t), y

j
2(t)) and c j(t) to certain Gevrey classes the

main result can be formulated as follows.

Theorem 3. Let yj1(t), y
j
2(t) ∈ GMy,ς (Rt0) with ς ∈ [1, 2] and let

c j(t) ∈ GMc ,ς (Rt0) be as in Assumption 2. Then the series (6a) has
a radius of convergence ρ = 1/(MAj(M)) in |α − α̂|, where M =

max{My,Mc} with Gevrey constants My,Mc > 0 and

Aj(M) = max


1,


2 + bj

2aj
,

bj

6aj


1 +

3
2M



+


bj

6aj


1 +

3
2M

2

+
2

Maj

 . (8)

For a proof, consult Appendix A. It is obvious from (8) that the
domain of convergence decreases for decreasing aj and approaches
zero for aj → 0. This is exemplarily illustrated in Fig. 2. Here,
the domain of convergence fulfilling the condition ρ > 1/2 given
α̂ = 1/2 is depicted in the (aj, bj,M)-domain. Note that the figure
continues to a semi-bounded domain along the direction of the
aj-axis. Obviously for decreasing aj, the domain of convergence
decreases and approaches zero for aj → 0. This implies that the
shock-like effects,which appear for aj ≪ 1 canbe only represented
by the determined power series in a small subregion of the α-axis.
Hence, in order to capture and realize shock-like profiles for all
α ∈ [0, 1] suitable summability methods have to be integrated
for the evaluation of the parametrization.

Remark 4 (Uniform Convergence for bj = 0). For the linear case
with bj = 0 it can be shown by induction that the parametrized
series coefficients satisfy |∂ lt x̂

j
n(t)| ≤ M l+1F n((l + n)!)ς/(n!)ς/2 for

some F > 0 given yj1(t), y
j
2(t) ∈ GM,ς (Rt0) with ς ∈ [1, 2]. By

making use of the Cauchy–Hadamard theorem an infinite radius of
convergence is thus obtained for ς < 2.
3.3. Summability methods

The previous results directly illustrate that the convergence
of the power series (6a) determining the state and input
parametrization for the modified Burgers equation (1) in terms
of the basic output greatly depends on the appropriate trajectory
assignment for the basic output and the system parameters.
In order to overcome these convergence limitations so-called
summabilitymethods provide a powerful tool to prolong the space
of uniformly convergent power series in order to deal with certain
divergent series. For a comprehensive discussion the reader is
referred, e.g., to Hardy (1964) and Balser (2000) and the references
therein. Thereby, rather general results are mainly available for
formal solutions to ordinary differential equations (ODEs) (Balser,
2000) with certain extensions to PDEs (Balser, 2001; Balser &
Miyake, 1999). One promising technique, which is applicable to
both ODEs and PDEs is provided by the so-called k-summation.
Given the formal power series (4) k-summation can be introduced
as

xj(α, t) ∼= x̂j(α, t) = (Sk
B x̂

j)(α, t) (9)

with
Sk
B x̂

j (α, t) = lim
ξ→∞

∞−
n=0

sn(α, t)
ξ n

Γ

1 +

n
k

/Ek
∞
(ξ)

and the partial sum sn(α, t) =
∑n

l=0 x̂
j
l(t)(α − α̂)l/l! as

well as Ek
n(ξ) =

∑n
l=0 ξ

l/Γ (1 + l/k) (Balser & Braun,
2000). In view of the application of k-summation to formal
power series solutions arising from PDE control problems, it
has to be noted that many problems typically allow only the
determination of a finite number of series coefficients, which
hence requires an appropriate modification of the previously
introduced concept. This leads to an interpretation in terms of
so-called generalized sequence transformations (Weniger, 1989),
which play an important role in quantum physics and quantum
chemistry and allowus to accelerate convergence and approximate
the sum of certain divergent series using only partial information.
Within this framework, a modification of the previously discussed
k-summation in the form (9), namely the so-called (N, ξ)-
approximate k-summation, is proposed (Meurer, 2005), i.e.

S
N,ξ
k x̂


(α, t) =

N−
n=0

sn(α, t)
ξ

Γ

1 +

n
k

/Ek
N(ξ). (10)

This method can be applied to extract the limit (in the sense of
the summability method) of the slowly converging or possibly
diverging series (4) from a finite number of series coefficients
depending on the appropriate choice of the summation parameters
ξ and k. The interested reader is referred to Meurer (2005),
Meurer and Zeitz (2005, 2008) for a detailed study of summation
techniques in view of tracking control design for nonlinear
parabolic PDEs and the appropriate choice of the summation
parameters.

4. Trajectory assignment and feedforward formation control

The flatness-based state and input parametrizations provide
a systematic approach for the solution of the motion planning
problem to realize the finite-time deployment of a continuum
of agents into the desired formation profiles summarized in
Section 2.3. This requires us to determine appropriate trajectories
for the basic output (yj1(t), y

j
2(t)) in view of the convergence

results and the summability properties. Thereby, the time-varying
parameter c j(t) plays a crucial role and serves as a degree of
freedom, whose careful selection allows the transition between
different families of formation profiles.
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4.1. Connecting families of steady state formations

As pointed out in Section 2.3, the existence of steady state
solutions to the modified time-varying Burgers equation relies on
the non-analyticity of the time-varying parameter c j(t), i.e. ∃ t ≥

t0 : c j(t) = c j and ∂nt c
j(t)|t=t = 0,∀n ≥ 1. To address this,

subsequently the function

c j(t) = c j,0 +

c j,1 − c j,0


Φ
γ
j
c ,T

j
c
(t − t0) (11)

is considered, where

Φγ ,T (t) =


0, t ≤ 0
1, t ≥ T t

0 Λγ ,T (τ )dτ T
0 Λγ ,T (τ )dτ

, t ∈ (0, T )
(12)

and Λγ ,T (t) = 0 if t ∉ (0, T ) and Λγ ,T (t) = exp(−[(1 −

t/T )t/T ]
−γ ) for t ∈ (0, T ). The smooth compact support function

Φγ ,T (t), γ > 0 is non-analytic at t ∈ {0, T } with ∂kt Φγ ,T (t) = 0
for all t ≤ 0 and t ≥ T with k ∈ N. Furthermore, Φγ ,T (t) is of
Gevrey order ς = 1 + 1/γ (Rodino, 1993). Hence, by adjusting
the constants c j,0 and c j,T it follows immediately that (1) exhibits
two families of steady states satisfying (2) with c j(t) = c j,0 for
t ≤ t0 and with c j(t) = c j,1 for t ≥ t0 + T j

c , respectively, which are
connected by the path c j(t).

4.2. Trajectory assignment for the basic output

For the assignment of a tuple of desired trajectories t →

(y∗,j
1 (t), y

∗,j
2 (t)) to realize transitions between desired formation

profiles within a prescribed time-interval t ∈ [t0, t0 + T j
], 0 <

T j
c ≤ T j, it is required to take into account that both y∗,j

1 (t) and
y∗,j
2 (t) have to be locally non-analytic at t = t0 and t = t0 + T j to

ensure the compatibility with the stationarity conditions. In view
of Definition 1 this implies that necessarily y∗,j

i (t) ∈ GM,ς (Rt0),
i = 1, 2, with ς ∈ (1, 2]. Therefore, consider

y∗,j
1 (t) = Aj,0

1 + (Aj,1
1 − Aj,0

1 )Φγ j
1,T

j(t − t0) (13a)

y∗,j
2 (t) = Aj,0

2 + (Aj,1
2 − Aj,0

2 )Φγ j
2,T

j(t − t0) (13b)

with Φγ ,T (·) as introduced in (12). The constants Aj,0
i and Aj,1

i , i =

1, 2, can be determined depending on the desired initial and final
formation profile corresponding to the steady states governed by
(2). For this, let xj(α̂; c j,0, uj,0

a , u
j,0
l ) and xj(α̂; c j,1, uj,1

a , u
j,1
l ) denote

a desired initial and final steady state for t ≤ t0 and t ≥ t0 + T j,
respectively, which in general belong to different families of steady
states. In view of the starting conditions (5b) and (5c) this implies
that

Aj,0
1 = y∗,j

1 (t0) = xj(α̂; c j,0, uj,0
a , u

j,0
l ),

Aj,0
2 = y∗,j

2 (t0) = ∂αx
j(α̂; c j,0, uj,0

a , u
j,0
l )

Aj,1
1 = y∗,j

1 (t0 + T j) = xj(α̂; c j,1, uj,1
a , u

j,1
l ),

Aj,1
2 = y∗,j

2 (t0 + T j) = ∂αx
j(α̂; c j,1, uj,1

a , u
j,1
l ).

(14)

As a result, once the desired stationary positions of the anchor and
the leader are assigned the respective desired trajectories for the
basic output, which determine the spatial–temporal connection
path between the initial and final formation profile according to
(6), are directly obtained from (13) with (14).
Remark 5. The previous results can be further generalized by
considering a sequence of N +1 transitions between N +1 desired
formation profiles possibly belonging to N + 1 different families
of steady states xj(α; c j,p, uj,p

a , u
j,p
l ), p = 0, 1, . . . ,N . For this, the

path

c j(t) = c j,0 +

N−1−
p=0

(c j,p+1
− c j,p)

×Φ
γ
j
c,p+1,T

j
c,2p+1−T jc,2p


t − t0 − T j

c,2p


together with the desired basic output trajectory

y∗,j
i (t) = Aj,0

i +

N−1−
p=0

(Aj,p+1
i − Aj,p

i )

×Φ
γ
j
p+1,T

j
2p+1−T j2p

(t − t0 − T j
2p), i = 1, 2

have to be assigned. Here, 0 = T j
0 = T j

c,0 < T j
c,1 ≤ T j

1 < · · · <

Tc,2N−2 ≤ T j
2N−2 and the constants Ap

i follow from

Aj,p
1 = xj(α̂; c j,p, uj,p

a , u
j,p
l )

Aj,p
2 = ∂αx

j(α̂; c j,p, uj,p
a , u

j,p
l )

for p = 0, 1, . . . ,N . With this, the 0 < p-th steady state formation
profile is reached at tp = t0 + T2p−1 and is held for the period
T2p − T2p−1.

4.3. Feedforward formation control

As a result, the evaluation of the parametrizations (6) with
c j(t) assigned in terms of (11) and (yj1(t), y

j
2(t)) replaced by

(y∗,j
1 (t), y

∗,j
2 (t)) yields the corresponding feedforward controls

u∗,j
a (t) and u∗,j

l (t) for the anchor and leader, respectively, to realize
the transient spatial–temporal formation x∗,j(α, t). However, in
view of Theorem3 it can be expected that the resulting series are in
general divergent such that subsequently the (N, ξ)-approximate
k-summation as introduced in (10) with suitable parameters N
and ξ depending on the system parameters aj, bj, c j(t) and the
properties of (y∗,j

1 (t), y
∗,j
2 (t)) is considered for the evaluation of the

feedforward controls (6b) and (6c), i.e.

u∗,j
a (t) =


S
N,ξ
k x̂


(0, t), u∗,j

l (t) =


S
N,ξ
k x̂


(1, t). (15)

To apply the presented results for a continuum of agents governed
by the nonlinear distributed-parameter system (1) to a finite-
dimensional set of agents, a discretization of the PDE with respect
to the α-coordinate is introduced, which directly induces a certain
communication and feedback topology (see also Frihauf & Krstic,
2009).

4.4. PDE discretization, communication topology, and agent intercon-
nection

As pointed out in Section 2.1, the continuous PDE formulation
yields a motion planning framework, which is independent of
the actual communication topology. By spatially discretizing the
PDE, a decentralized communication structure is imposed, which
is shown in Fig. 3 for the example of a three-point discretization
scheme. The interconnection between the individual agents is
thereby determined by the structure of the distributed-parameter
systems (1) governing the collective motion of the agents in the
(x1, x2)-plane.

Hence, let xji(t) = xj(i∆α, t) for i = 0, 1, . . . ,m, with ∆α =

1/m, where m + 1 denotes the number of agents. With this, the
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Fig. 3. Communication topology imposed by spatial discretization for the example
of 25 agents in the plane. Anchor, leader, and follower agents are marked by ×, ◦,
and •.

discretization of (1) using second order finite differences results in

∂tx
j
i(t) =

2aj − bj∆αxji(t)
2∆α2

xji+1(t)+


c j(t)−

2aj

∆α2


xji(t)

+
2aj + bj∆αxji(t)

2∆α2
xji−1(t), i = 1, . . . ,m − 1 (16)

with xj0(t) = u∗,j
a (t) and xjm(t) = u∗,j

l (t) and the respective
initial conditions xji(0) = xj0(i∆α). From (16) it follows on the one
hand that the time-varying communication and interconnection
(feedback) topology, which is required to realize the desired
spatial–temporal deployment paths, is directly induced by the
considered discretization scheme. For the present choice resulting
in a finite-dimensional system of coupled nonlinear time-varying
ODEs, each follower agent requires the position information of
its neighboring nodes while the positions of the anchor and the
leader are imposed by the feedforward controls (15). Note that
the time-variance in terms of c j(t) serves as a design parameter
which is a priori known and can be hence included in each agent’s
configuration using, e.g., (11). This, however, relies on the time-
synchronous operation using a common clock with c j(t) being
either directly prescribed for all t or being initiated by transmitting
the trajectory parameters c j,0, c j,1, γ j

c , and T j
c at certain instances of

time.
On the other hand, a discretization error of the order O(∆α2)

is introduced such that the application of u∗,j
a (t) and u∗,j

l (t) only
results in the approximate realization of the desired transition
path between the initial and final formation profiles. Nevertheless,
the approximation error and hence the deviation between the
desired position x∗,j

i (t) = x∗,j(i∆α, t) and the actual position
xji(t), i = 1, . . . ,m − 1 can be reduced by increasing the number
of agents m + 1. This illustrates that the proposed PDE-based
approach is particularly useful for the solution of the motion
planning problem for a large number of agents. Alternatively, given
a fixed number of agents the discretization error can be reduced
by considering a different discretization approach such as higher-
order finite differences, which in contrast imposes a different
communication and interconnection topology, where in general
not only the information from neighboring nodes will be required
for the realization.

5. Simulation results

In the following, the application of the determined feedforward
formation control is considered in three different simulation
scenarios for the deployment of 25 (m = 24) agents into planar
curves with the interconnection structure according to (16), which
also serves as the simulation model. For this, the PDE-based
feedforward formation control laws (15) are evaluated for α̂ =

1/2 using the summation parameters summarized in Table 1 for
different desired formation profiles in order to realize a finite time
transition from an initial formation profile at t = t0 = 0 to a
final formation profile at t = T = max{T 1, T 2

}. The formation
profiles are governed by the boundary-value problem (2). The
system parameters aj and bj, the parameters of the function c j(t)
according to (11) with γ 1

c = γ 2
c = 2, and the respective anchor

and leader positions uj
a, uj

l , j = 1, 2 at t = T are thereby
summarized in Table 1 for each scenario. The initial anchor and
leader positions at t = t0 are exemplarily chosen as (u1,0

a , u2,0
a ) =

(−1, 0) and (u1,0
l , u2,0

l ) = (1, 0). The transition trajectories for
the basic outputs are assigned according to (13) with (14) and the
parameters γ j

i = γ = 1.2, i, j = 1, 2, such that both y∗,j
1 (t) and

y∗,j
2 (t) are of Gevrey order ς = 1 + 1/γ = 1.83.
In the first scenario S1, the desired formation profiles and the

transition dynamics in both directions are governed by a linear
diffusion–reaction equation since b1 = b2 = 0. For the considered
set of parameters as well as anchor and leader positions, the initial
and final profile in the x1-direction are governed by (3a) and
cos(2πα) and in the x2-direction similarly by (3a) but (3b) for
k = 2, u2,1

a = u2,1
l = 0, respectively. The simulation results are

shown in Fig. 4(a) in the (x1, x2)-plane with time t as a curvature
parameter (top) and in the (x1, x2, t)-domain (bottom). These
in particular illustrate the effect of the time-varying but locally
non-analytic function c j(t), which allows us to obtain transition
paths connecting different families of steady state profiles. For this
setting the uniform convergence of the parametrized series (6)
with an infinite radius of convergence is ensured by Remark 4.
Hence, the application of the feedforward formation control results
in the deployment of the agents starting from the straight line
x1 ∈ [−1, 1], x2 = 0 at t = 0 into the depicted circle at
t = 0.25. In addition it should be pointed out that since the
transition paths x∗,j

i (t) or x∗,j(i∆α, t), respectively, are a priori
known, their representation in the (x1, x2, t)-domain allows us to
identify possible collisions, which can however be avoided by re-
planning the desired paths (y∗,j

1 (t), y
∗,j
2 (t)).

More complex deployment profiles can be realized by the com-
bination of a linear time-varying PDE and viscous Burgers equa-
tion in the x1- and x2-direction, respectively. This is exemplar-
ily shown in Fig. 4(b) and (c) for the scenarios S2 and S3. The
distinction arises from the different parameter sets assigned for
c1(t), where c1,1 = π2 in S2 while c1,1 = 4π2 in S3. As al-
ready pointed out above the local non-analyticity of c1(t) enables
us to realize finite time transitions between different families of
steady state formation profiles. Similar to the linear scenario S1,
the uniform convergence of the parametrized series for the linear
x1-PDE is guaranteed by Remark 4. However, a divergent behavior
of the parametrizations for the Burgers equation can be observed
such that the determination of the feedforward formation con-
trol (u∗,2

a (t), u∗,2
l (t)) essentially relies on the incorporation of the

(N, ξ)-approximate k-summation (10) with summation parame-
ters ξ 2 and k2. For their determination it is herein sufficient to an-
alyze the steady state accuracy of the feedforward controls (15).
Their evaluation for different ξ 2 and k2 at t = T 2, where by defi-
nition ∂nt y

2
1(T

2) = ∂nt y
2
2(T

2) = 0 for n ≥ 1, and the comparison
with the desired anchor and leader locations u2,1

a and u2,1
l directly

yields a simple graphical procedure for the determination of the
summation parameters. Alternative selection criteria are, e.g., for-
mulated in Meurer (2005) by making use of graphical analysis or
optimization techniques. By combining the resulting individual an-
chor and leader trajectories (u∗,1

a (t), u∗,1
l (t)) and (u∗,2

a (t), u∗,2
l (t))

the horseshoe-like final formation shown in Fig. 4(b) is achieved
at t = T . By altering the reaction parameter from c1,1 = π2 to
c1,1 = 4π2 such that the final steady state formation profile in the
x1-direction reads as x1,T (α̂) = sin(2πα) the transition into the
‘‘switchback’’-shaped final formation profile shown in Fig. 4(c) is
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(a) Scenario S1 . (b) Scenario S2 . (c) Scenario S3 .

Fig. 4. Agent trajectories in the (x1, x2)-plane (top) and (x1, x2, t)-domain (row) for the scenarios of Table 1. Black lines correspond to the anchor (×) and leader (◦)
trajectories, gray lines represent the followers motions (•).
Table 1
System and summation parameters and stationary anchor and leader positions at t = T for the evaluation of (2). The notion ‘−’ in the parameters ξ j and kj refers to partial
summation. In all scenarios N j

= 48 series coefficients were used.

Sc. Fig. a1/a2 b1/b2 (c1,0, c1,1)/(c1,0, c2,1) ξ 1/ξ 2 k1/k2 T 1/T 2 T 1
c /T

2
c (u1,1

a , u2,1
a ) (u1,1

l , u2,1
l )

S1 4(a) 1/1 0/0 (0, 4π2)/(0, 4π2) −/− −/− 0.25/0.25 0.25/0.25 (1, 0) (1, 0)
S2 4(b) 1/0.05 0/1 (0, π2)/(0, 0) −/5 −/1 1.5/1.5 1.5/1.5 (0, 1) (0, −1)
S3 4(c) 1/0.05 0/1 (0, 4π2)/(0, 0) −/5 −/1 1.5/1.5 1.5/1.5 (0, 1) (0, −1)
achieved, which both illustrates and confirms the rather broad va-
riety of achievable deployment profiles by means of the proposed
PDE-based motion planning approach. The evolving small devia-
tions in Fig. 4(c) between the desired and the achieved final forma-
tion are due to the discretized setting, which serves as the model
for the feedforward formation control design.

Remark 6. Applying spectral analysis implies that the linear PDE
with c1(t) = c1,1 = 4π2 for t ≥ t0 + T governing the x1- and x2-
motion in scenario S1 and the x1-motion in scenario S3 is unstable.
This, however, does not influence the simulation results for the
feedforward formation control in the considered time frame and
confirms the accuracy, which is achievable using the presented
PDE-based motion planning approach. In view of applications, a
suitable feedback control has to be integrated, e.g., by making
use of the backstepping approach (Frihauf & Krstic, 2009), whose
design for the considered nonlinear time-varying setting is a topic
of current research.

6. Conclusion

By modeling the collective leader–follower dynamics of a con-
tinuumof agents in terms of two decoupledmodified time-varying
Burgers equations with the boundary conditions corresponding to
the anchor and leader agent positions serving as the control inputs,
a systematic solution to the motion planning problem is proposed
for the deployment of mobile agents into desired formation pro-
files in the plane. For this, formal power series are used to deter-
mine a differential parametrization of any system variable in terms
of a basic output. The uniform convergence with a finite radius of
convergence of the parametrized series can be verified for time-
varying system parameters and desired trajectories for the basic
output from a certain but broad Gevrey class of non-analytic func-
tions. Moreover, a significantly enhanced domain of applicability
is achieved by incorporating appropriate summation methods and
generalized sequence transformation,which also allow to sum cer-
tain divergent series to a meaningful limit, into the design pro-
cess. With this, the suitable assignment of desired trajectories for
the basic output directly yields the respective feedforward forma-
tion controls for the anchor and leader, which enable the realiza-
tion of finite time transitions between desired deployment profiles
from the set of steady state of the governing nonlinear PDEs. An
appropriate choice of the time-varying system parameter, which
serves as a degree of freedom, enables the transition between dif-
ferent families of steady states. The transfer of the agent contin-
uum to a finite agent number is achieved by discretizing the PDE
model. This directly implies a corresponding decentralized com-
munication and interconnection structure for the multi-agent sys-
tem, which is required to obtain the desired formation. Based on
these results futurework includes the combination of the proposed
motion planning approach with suitable methods of stabilization
(see, e.g., Meurer & Kugi, 2007, Frihauf & Krstic, 2009 for a back-
stepping approach) to enable the deployment into formations cor-
responding to unstable steady states.

Appendix A. Proof of Theorem 3

In the following, the super-script j referring to the individual
directions xj(α, t), j = 1, 2, and, whenever it is clear from the
context, the explicit dependency on time is omitted for the sake
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of clarity of presentation. For the proof of Theorem 3, two Lemmas
are introduced.

Lemma 7. For y1(t), y2(t) ∈ GM,ς (Rt0) with ς ∈ [1, 2] and c(t) as
in Assumption 2 the N ∋ l-th derivative of x̂n(t), n ≥ 2, satisfies

|∂ lt x̂n| ≤ M l+n((l + n − 1)!)ςFn, n ≥ 2 (A.1a)

with Fn determined recursively according to

Fn =
1
a


γnFn−2

M(n − 1)ς
+

b
M(n − 1)ς

n−3−
i=0


n − 2

i


Fn−2−iFi+1

(βn
i )
ς

+ b
Fn−1F0
(n − 1)ς

 , n ≥ 3 (A.1b)

and F0 = F1 = 1, F2 = (2 + b)/a, βn
i =


n−2
i+1


(i + 1), and

γn = 1 + 1/(n − 2)ς .

Proof. Given y1 = x̂0 and y2 = x̂1, it follows fromDefinition 1 that
|∂ lt x̂0| ≤ M l+1(l!)ς and |∂ lt x̂1| ≤ M l+1(l!)ς . By means of the Leibniz
formula the absolute value of the l-th derivative of x̂n, n ≥ 2, as
introduced in (5a) evaluates to

|∂ lt x̂n| ≤
1
a


|∂ l+1

t x̂n−2| +

l−
p=0


l
p


|∂

l−p
t c||∂pt x̂n−2|

+ b
n−2−
i=0


n − 2

i

 l−
p=0


l
p


|∂

l−p
t x̂n−2−i||∂

p
t x̂i+1|


.

A direct computation for n = 2 hence reveals |∂ lt x̂2| ≤ M l+2((l +
1)!)ς (2 + b)/a which coincides with (A.1). Assuming that (A.1)
holds for all n = 2, 3, . . . ,N − 1, it follows that

|∂ lt x̂N | ≤
1
a


|∂ l+1

t x̂N−2| +

l−
p=0


l
p


|∂

l−p
t c||∂pt x̂N−2|

+ b
N−2−
i=0


N − 2

i

 l−
p=0


l
p


|∂

l−p
t x̂N−2−i||∂

p
t x̂i+1|


.

Due to the individual bounds for the derivatives of both x̂0 and x̂1
all terms involving x̂0 and x̂1 have to be treated separately, which
for N > 3 results in

|∂ lt x̂N | ≤
1
a


|∂ l+1

t x̂N−2| +

l−
p=0


l
p


|∂

l−p
t c||∂pt x̂N−2|

+ b
l−

p=0


l
p


|∂

l−p
t x̂N−2||∂

p
t x̂1|

+ |∂
l−p
t x̂0||∂

p
t x̂N−1|

+

N−3−
i=1


N − 2

i


|∂

l−p
t x̂N−2−i||∂

p
t x̂i+1|


.

By making use of (A.1a) and c(t) ∈ GM,ς (Rt0), ς ∈ (1, 2] from
Assumption 2 as well as Lemmas 9 and 10 of Appendix B this
inequality reduces to

|∂ lt x̂N | ≤ M l+N((l + N − 1)!)ς

×


1
a


γNFN−2

M(l + N − 1)ς

+ b


F1FN−2

M[(N − 2)(l + N − 1)]ς
+

FN−1F0
(N − 1)ς
+
1

M(l + N − 1)ς

N−3−
i=1


N − 2

i


FN−2−iFi+1

(βN
i )
ς


.

Since l ≥ 0 the square bracketed term can be bounded from above
to obtain

|∂ lt x̂N | ≤ M l+N((l + N − 1)!)ς

1
a


γnFN−2

M(N − 1)ς

+ b


F1FN−2

M[(N − 2)(N − 1)]ς
+

FN−1F0
(N − 1)ς

+
1

M(N − 1)ς

N−3−
i=1


N − 2

i


FN−2−iFi+1

(βN
i )
ς


.

Comparing the terms in square brackets with (A.1b) yields

|∂ lt x̂N | ≤ M l+N((l + N − 1)!)ςFN

which completes the proof. �

Lemma 8. The coefficients Fn defined in (A.1b) satisfy

Fn ≤ (A(M))n
n!

((n − 1)!)ς
, n ≥ 1 (A.2)

with A(M) given by (8).

Proof. Consider the mapping Gn = Fn((n− 1)!)ς/n!, n ≥ 1, which
allows us to re-write the recursion (A.1b) in terms of Gn according
to

Gn =
1
a


γn(n − 2)ς

Mn(n − 1)
Gn−2 +

b
n
Gn−1

+
b

Mn(n − 1)

n−3−
i=0

(i + 1)Gi+1Gn−2−i


(A.3a)

for n ≥ 3 with the two starting conditions

G1 = 1, G2 =
2 + b
2a

. (A.3b)

It is subsequently shown by induction that

Gn ≤ (A(M))n , n ≥ 1 (A.4)

with A(M) from (8). For the induction start consider n = 1 and
n = 2, i.e, A(M) = 1 and A2(M) = (2 + b)/(2a), which directly
yield the first two arguments on the right hand side of (8). Under
the assumption that (A.4) holds for all n = 1, 2, . . . ,N − 1, it
follows with (A.3) for N ≥ 3 that

GN ≤ (A(M))N
1
a


2

M(A(M))2
+

b
3A(M)

+
b

2MA(M)


  

=g(A(M))

since (N − 2)ς/(N(N − 1)) ≤ 1 if ς ∈ [1, 2], 1/N ≤ 1/3, and
(N − 2)/(2N) ≤ 1/2 as well as γN ≤ 2 for N ≥ 3. Solving the
quadratic equation g(A(M)) = 1 for A(M) and taking the larger
value together with the results for n = 1 and n = 2 results
in (8). �

With Lemmas 7 and 8, the proof of Theorem 3 follows immediately
from the Cauchy–Hadamard Theorem.

Proof. By taking into account Lemma 7 for l = 0 and Lemma 8
for the growth of the coefficients Fn the supremum of the series
coefficients x̂n, n ∈ N, satisfies

X̂n := sup
t≥0

|x̂n| ≤ (MA(M))n n!, n ≥ 2 (A.5)
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for ς ∈ [1, 2] and A(M) as introduced in (8). By the Cauchy–
Hadamard Theorem, the radius of convergence ρ of the power
series (4) is given by ρ = (limn→∞ |X̂n/n!|1/n)−1. In view of (A.5),
this yields a finite radius of convergence ρ ≥ 1/(MA(M)) such
that the series (4) with coefficients (A.5) converges for all compact
subsets of |α − α̂| < 1/(MA(M)), which completes the proof. �

Appendix B. Useful Lemmas

Lemma 9 (Gevrey (1918)). Given ς ≥ 1 and λn > 0 for all n ∈ N,
then

∑
∞

n=1(λn)
ς

≤ (
∑

∞

n=1 λn)
ς .

Lemma 10 (Lynch and Rudolph (2002)). For all k, l ∈ N,
∑l

j=0
l
j


(l − j)! (j + k)! =

∑l
j=0


l
j


(l − j + k)! (j)! =

(l+k+1)!
k+1 .
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