
Simulator Design for Security Systems

Kaninda Musumbu
LaBRI (UMR 5800 du CNRS),
Université Bordeaux 1, France

351, cours de la Libération, F-33.405 TALENCE Cedex
musumbu@labri.fr

Abstract

This software is a simulator of security system de-
veloped with Java and providing a graphic interface
built with Java Swing. This simulator is bound to be
used to check an existing system or a system being cur-
rently devised.
A security system is represented by a logigram. A logi-
gram consists of events linked by rules. The rules stand
for triggering links between the events. The simulator
provides a set of processes on security systems. Cir-
cuit search and useless rules search (subsuming rules)
check the topology of the system. Two search through
methods simulate the flow of triggering on events. The
forward chaining stands for the simulation of the ac-
tual behavior of the system. The backward chaining
looks for possible causes of the occurrence of an event.
The simulator permits, thanks to those functionalities,
the exhaustively check the design of a security system.
Furthermore, the graphic display makes data handling
user-friendly and ensures better understanding.

Key-words: Simulation, logigram, resolution, for-
ward and backward chaining

1 Introduction

A system of security consists of elements or sensors
allowing the detection of incidents intervening within a
restricted environment. It manages the security using
methods of release making correspond the activation
of an element to a given time. With the detection of a
whole of sensors, the system starts in cascade of other
elements until its stabilization. The use of systems of
security is generalized in the significant zones; there

thus appears useful to check a system of security being,
and especially essential to validate a system in the
course of design. This software thus constitutes a tool
of assistance to the checking of systems of security,
through the simulation of its operations.

A system of security can be represented by a logi-
gram. A logigram is a constitued by the set of rules
of the links between events. These rules define the
behavior of a system, where time is an essential data.
This definition is an abstraction of the system.

The software that we carried out, ALOSE (”Au-
tomatisation de Logigrams de Sécurité”)1, is a tool
for checking of systems of security. The checking is
based on the simulation of the operation of the sys-
tem. The checks carried out by this simulator rest
on the abstract model of representation which is the
logigram. Although the concept of time between con-
cerned in simulation, it does not imply the checking in
real time. Time is thus not the keystone of the sim-
ulator carried out. The checking carried out by the
Alose software passes by three great stages, distinct
but dependent. The first of all about a tool for check-
ing automated of the topology of the system. This one
is considered not ambiguous if there are not circuits in
the release of the elements of the system, it makes it
possible to carry out a back chaining, opposite simu-
lation of the preceding one, generally from final events
to the initial ones. This makes it possible to know
the whole of the events which can be the source of the
release of other events. The results of the two types
of chaining carried out by the software constitute a
source of relevant information for the user (designer).
This software is based on a significant theoretical part
(heuristic, complexities...). Indeed, simulation is oper-
ated on an abstract representation of the real system
of security. This theoretical base presents the mod-
eling of a system of security in the form of logigram.
This abstract model is used for all the theoretical part

1We note Alose for conveniences of reading

of simulation. The objective of our paper is to discuss
a number of important issues for the design of timed
security systems and to contribute to give a backward
semantics.

A system of security does not make it possible to
tolerate possible inconsistencies. Hence, our software
play a great rule in complement of a thorough design of
the system, a means of validation. For that, it is nec-
essary to be able to detect any conjunction of events
being able to lead to a badly managed situation. The
goal is to test in an exhaustive way the behavior of the
complex systems. To test the operation of the real sys-
tem in the event of incident is indeed a process rather
not easily possible. On the other hand, a tool for simu-
lation makes it possible to carry out tests which are at
the same time multiple, fast and especially very easily
skeletal. The cover of the tests is thus definitely more
significant and much less expensive.

The results of the two types of chaining carried out
by the software constitute a source of relevant infor-
mation for the user. A logigram is a set of rules that
define the behavior of such systems, where the time
is very important. In these system, events are not
raised or canceled, they are scheduled. To give a for-
mal description of logigrams, at any time, the current
event of system can be described by a simple structure
called script. Scripts have many properties that seem
to make them a useful support for working on prob-
lems like backward-chaining. The paper is divided in
two parts. The section 2 gives the basis In section 3, we
give a methodological overview of our approach. We
insist of its wide applicability and theoretical sound-
ness. Then, in section 4, we provide a short discussion
about the nontrivial problem of backward-chaining.

2 Simulation

The simulation of the system aims at testing the
operations of the system of security. The user will
visualize the sequence of the release of the events in
order to check the correctness of the system. This sim-
ulation is an observation of the behavior of the system.
It must make it possible to detect a possible abnormal
operation.

By parameterizing simulation, the user can limit his
observation to a subset of the system. This enables
him, by stage successive to refine its observation and
thus to determine in a precise way the driving context
with an abnormal operation.

Marking time makes it possible to follow the evolu-
tion of the state of the system. It scheduling reflects

the constraints to trigger events. Marking the time
produces a simulation very close to the real operation
of the system of security.

3 Notations and Formalisms

3.1 Scripts

Let E be the set of events Let N be the set of
natural integers. We call time any element of N .

Definition 1 A script is a total function

s : E −→ N ∪ {∞}

Let e be an event (e ∈ E). s(e) is the setting time

of e. If s(e) = ∞ we say that e is not scheduled.

Example 1 Let {(a, 1), (b, 2)(c, 0)} be a script. It
means that events have to be set in the following con-
dition: a at time 1; b at time 2; c at time 0.

Let S be the set of scripts and v the relation on the
over scripts, such that

si v sj ↔ ∀e ∈ E, si(e) < sj(e)

It is obvious (clear) that v is an order. Moreover, v
is well-formed. We can also define the preorder v :

si v sj ⇔ ∀e ∈ E,i (e) ≤ sj(e)

The order v is not total, but we can define the oper-
ator u, such that

s = si u sj ↔ ∀e ∈ E, s(e) = min(si(e), sj(e))

It is easy to see that u is the greatest lower bound of si

and sj . Moreover, u is always defined. Thus, the set of
scripts is a lattice. If we generalize the definition of u
by saying that us∈Ss = smin such that for each e ∈ E,
smin = mins∈Ss(e), then S is a complete lattice. We
can then define ⊥, such that ⊥∈ S and ∀e ∈ E,⊥
(e) = 0. So, ⊥ is the least element of S.

3.2 Rules

Definition 2 A rule R consists of: a set
condition(R), an integer delay(R), an event
consequence(R) such that condition(R) = C ∈ P(E),
delay(R) = d ∈ N , consequence(R) = c ∈ E. noted

C
d
→ c.

Definition 3 A normalized rule is a rule defining
by only one condition and only one consequense.

3.3 Logigram

Definition 4 A logigram is a set of normalized
rules.

Remark 1 This definition is sufficiently expressive.
Indeed, if a rule has disjunction in its condition, or
conjunction in its consequence, we can write it as a

set of several rules: ci
t
→ d

4 Semantics of Simulation

A simulation aim at deriving information about the
actual operational behavior of a system. Let a basis
model given by a set of rules, we can consider it as
a transition system. The evolution of the system be-
tween events is make by an fix-point operator.

4.1 Rules applicable

4.1.1 One rule applicable

Let R be a rule. We define the function

latestR : S −→ E

such that :

• latestR(s) ∈ condition(R)

• ∀e ∈ condition(R), s(e) ≤ latestR(s)

latestR(s) is the event in condition(R) of which the
setting time in s is maximal. If for a given s we have
latestR(s) = ∞ then at least bone of the events in
condition(R) is not scheduled in s: we say that rule
R is not applicable for s.

Definition 5 Let R a rule. An application of R is
a function pR : S −→ S, such that :

• if ∃e ∈ condition(R), s(e) = ∞ then pR(s) = s

• if ∀e ∈ condition(R), s(e) < ∞ then pR(s) =
s′,where s′ is a script such that:

– ∀e ∈ E such that e 6=
consequence(R), s′(e) = e,

– s′(consequence(R)) =
min(s(consequence(R)), s(latestR(s) +
delay(R))).

If an event on the condition of R is not scheduled,
that is, if latestR(s) = ∞, then R is not applicable. So
pR(s) = s. If R is applicable, then it only changes the
setting time of the consequence of R: the new time is
the time of latest event in the condition added to the
delay of R. But this is only applied if this new time is
lower than the old one.

Remark 2 For all R and s, pR v s. If R is applied,
the setting time of consequence(R) is decreased. A
setting time is never increased.

4.1.2 Application of a set of rules

Let R be a set of rules. The application of R is the
application of all rules in R simultaneously, as defined
below:

pR : S −→ S

s −→ uR∈RpR(s)

Property 1 Monotonicity. We can see that, for all
script s and all set of rule R, we also have pR(s) u s.
Indeed, setting time never increased.

Fix-points A fix-point of pR is a script sfix such
that sfix = pR(sfix), i.e. if R is a rule of R, either R

is not applicable to sfix, or R has no effect on sfix.

Remark 3 ⊥ is a fix-point of pR for any R. In fact,
any rule is always applicable to ⊥ , and ⊥ (e) = 0 ∀e ∈
E. So, ⊥ will not be modified after the application of
any rule. Of course, for all R, ⊥ is the least fix-point
of pR.

4.2 Forward-chaining

4.2.1 Motivation

The implementation of the forward-chaining is done in
a practically intuitive way starting from the structure
of the logigram used. The starting point of a chain-
ing is a script. This script describes the initial state
of the logigram,(i.e. the initial times of release of
events). The evolution of the logigram will be carried
out starting from this initial state. Thus, one can con-
sider that script constitutes the means of parameter
setting of the system. It is significant to understand
that an initial script describes the planning of events
in the course of time. Thus, a script describes in fact
in an exhaustive way which had releases has exter-
nal constraints with the system. Indeed, in a system
of security, the initial plannification of the release of
events cannot be modified. The parameter setting in
the course of forward-chaining corresponds to a pro-
cessing developed to improve the possibilities of tests.

4.2.2 Evolution of the system

The system evolves/moves starting from its initial
state. This evolution is done by stage. Each stage
corresponds to the release of new rules. Let us sketch
the approach from a general point of view. The oper-
ational semantics of any system consists of (or can be
rephrased as)

1. a set of events Σ (events are noted σ);

2. an immediate transition relation between events
denoted 7−→ where σ 7−→ σ′ means that σ′ is a
possible successor event of σ;

3. a delay associate with transition which presents a
temporal constraint. unary predicate on events,
denoted final(σ),

4. a unary predicate on events, denoted final(σ),
meaning that execution terminates in event σ.

The following semantics characterizes the set
Output(S) of final events reachable from an initial set
of events S:

Output(S) = {σ : σ ∈ Sfinal(σ)}
∪ Output({σ′ : σ ∈ S&σ 7−→ σ′})

This recursive definition is computable by usual re-
cursive evaluation for two reasons at least: S is finite
and sequences of transitions are finite.

However it can be given a mathematical meaning
as the least fix-point of transformation τ such that

(τf)(S) = {σ : σ ∈ Sfinal(σ)}
∪ f({σ′ : σ ∈ Sσ 7−→ σ′})

It is straightforward to show from the operational se-
mantics that this definition correctly maps each set of
events onto the set of final events reachable from them.

In the case of our simplified language, we define two
global operations2:

FS(S) = {σ : σ ∈ S&final(σ)},
DR(S) = {σ : ∃σ′ ∈ S : σ′ 7−→ σ}.

We can then rephrase the definition of τ :

(τf)(S) = FS(S) ∪ f(DR(S)).

The above presentation looks very simple because it
was assumed that relation 7−→ and predicate final are
primitive operations of the language. Let L be the

2FS and DR stand for “Final Events” and “Directly reach-

able”, respectively.

complete logigram(that is the set of all defined rules).
Let us consider the iteration of τfL:

τf(s) = fL(fL(. . . (fL(s) . . .))

We deduce from the property 1 that, for any script s,
the transformation τf is well defined, i.e. the itera-
tion of τfL converges (in a finite number of iteration).
In other words, if we consider the sequence s0, s1, . . . ,

such that s0 = 0 and ∀n > 0, sn = fL(sn−1), we can
say that there exists a N such that sN = sN−1, i.e.
sN is a fix-point of τfL. Indeed, we know that the se-
quence is decreasing. So, if we suppose there is no fix-
point, then the sequence(sn) is strictly and infinitely
decreasing, which is not possible since the order ⊆ is
well-founded. τf(s) is the result at of forward-chaining
of the script s. It is obvious that forward-chaining is
not invertible.

4.3 Backward-chaining

4.3.1 Problems of Backward-chaining

The backward-chaining is the most significant func-
tionality of our simulator. It’s principal problem is the
great number of operations to be carried out. During
the forward-chaining, the possibilities tend to be re-
duced progressively. It is not the case of the backward-
chaining because of the conjunctive nature of rules, in
progress of process, the possibilities will be growing.
Indeed, an event can have many causes. Within the
framework of the project, only the primary causes are
significant. The objective is thus only search of the
initial events leading to the events given.

Assuming that we can easily compute forward-
chaining, it is also easy to verify if a given script s

is such that τf(s) = s′ (where s′ is the goal script).
The first problem of the backward-chaining is that

there is a great number of potential solutions. We
have to determine which ones are really useful. This
could be done by clearly identifying properties of such
scripts. For instance, we can say that candidates for
being a solution should be ”initial” events, assuming
such events are defined (a subset of these events could
be spotted interactively by the user). It is necessary
to identify them, and to be able to compute efficiently
the classes.

With no further theory, all that we can do is to
follow backward the rules by making hypothesis, and
eliminates wrong scripts while computing. These is
similar to the O’Keefe’s algorithm. [5] solves finite
sets of equations of the form xi = expri (1 ≤ i ≤ n)
where x1, . . . , xn are distinct variables, ranging on lat-
tices of finite depth T1, . . . , Tn, and expr1, . . . , exprn

are well-typed monotonic expressions possibly involv-
ing x1, . . . , xn. The algorithm computes the least fix-
point of the transformation

τ : T1 × . . . × Tn 7→ T1 × . . . × Tn

〈x1, . . . , xn〉 〈expr1, . . . , exprn〉

It proceeds as follows. Variables x1 to xn are initial-
ized to ⊥ and pushed onto a stack. Then variables are
popped from the stack until it becomes empty. Each
time a variable xi is popped its value is recomputed.
If the new value is greater than the previous one, all
variables that depends on xi and are not on the stack
are pushed on it.

One of the remarks we can have is that, by this
method, ”eligible” script can be computed recursively.
The following semantics characterizes the set Input(S)
of initial events from which we can reach a goal(event)
S:

Input(S) = {σ : σ ∈ S&initial(σ)} ∪
Input({σ′ : σ ∈ S σ′ 7−→ σ})

This recursive definition is not computable by usual
recursive evaluation for more reasons at least the num-
ber of sequences of transitions is exponential .Let us
notice that, if one carries out a chaining starting from
all the final events of a logigram, all the events will be
traversed. Since for each traversed event all the rules
coming with an event will be examined. If one counts
the number of addition in t, it will be equal to:

∑

r∈R

card(conditions(r))

In other words, complexity is equal to the num-
ber of rules multiplied by the average number of an-
tecedents per rule, or the total number of branches of
rules. For a logigram of big size, if the average number
of antecedents per rule is high and/or if the number of
rules is large, complexity will be an obstacle with the
simulation.

4.3.2 Introduction of pruning

For a logigram having many branches of rules an im-
provement is possible. Indeed, when an event is added
to the list t, all the branches of rules which would
make it possible to go up until this same event by an-
other path are likely to complicate calculations. Con-
sequently, it is useful systematically to remove all the
branches of downward rules starting from this event.
This pruning can also be continued in a downward way.
Indeed, if one of these suppression places an event in
position of initial event, then this one is useless with

the chaining (it does not have a previous initial state).
One is thus capable effective, starting from this event,
same pruning without losing solution. Pruning can
then continue in a downward way. Added to the pre-
ceding algorithm, this optimization does not find its
optimality. This is due to the fact that the course is
done in width. It results from this that pruning re-
moves most of the time branches of already traversed
rules. One can then reorganize the course so as to ex-
ploit this new fully improvement. The ideal would be
to arrive as soon as possible at the first initial event,
bus from this one the pruning would remove all the
other paths which leads only to it, then to quickly find
the second initial one and so on An in-depth course
makes it possible to arrive at this result.

The new algorithm thus obtained has the double
advantage of the strong reduction of complexity (see
below), and to remove some choices of rules not influ-
encing the result of the chaining. However it is not
necessarily optimal, indeed:

• of the useless courses is always carried out.

• of the non-relevant choices is sometimes proposed
to the user.

• complexity varies according to geometry of the
logigram.

The logigrams of the figure 1 illustrate the lower limit
of the utility of pruning. However, for this kind of
logigrams, complexity is close to the number of events.
Such a complexity is completely reasonable, one can
conclude from it that pruning does not complicate to
in no case the back chaining.

4.3.3 Characterization of the algorithm

1. Comparison with the naive chaining

The two algorithms has a similar complexity on a
particular type of logigram: when the number of
events is close to the number of branches of rules.
Indeed, such a logigram is a practically arbores-
cent structure starting from the initial states. In
such a logigram few events present several ascend-
ing branches.

For these type of logigrams, pruning does not
bring anything again. Indeed, it is necessary to
traverse all events in order to arrive at the initial.
However, for this kind of logigrams, complexity is
close to the number of events. Such a complexity
is completely reasonable, one can conclude from
it that pruning does not complicate to in no case
the back chaining.

En

E3

En−1

E2

E1

E1 E2 E3 E4

E5 E6

E7

Figure 1: For these two logigrams, pruning does not
bring anything again. Indeed, it is necessary to tra-
verse all events in order to arrive at the initial events.

2. Variations of complexity according to the

logigram

This algorithm of back chaining has a complexity
varying with the geometry of the logigram. The
logigrams of the figure 2 are two cases having the
same number of branches of rules and for which
the back chaining displays a different effective-
ness.

This variability comes owing to the fact that when
a rule has several antecedents, it is not necessary
to be interested in its started event as long as the
rules has still at least a branch. Thus the per-
formance go increasing with the number of an-
tecedents by rules.

3. Variations within the same logigram

The logigram of the figure 3 is a case of variability.

It is thus noted that the command of course is
determining. Even if this variability is low, one
could imagine logigrams where it would be signif-
icant. For example on the figure ?? by adding
events similar to E3 E4 (dependent them also
on E2 E5) one can increase the differences in
results. This consideration carried out us to carry
out tests on average on the result.

The optimality of the chaining never postpones

E5

E4E3

E1

E2 E4E3

E1

E2

E5

Figure 2: Application of the backward-chaining on
the logigram of left comprises 5 against operation 6
for that of right-hand side This highlights the average
number of antecedents by rules influences complexity.

E1

E2E3E4

E5

Figure 3: In this logigram, the first branch of rule
chosen starting from E7 determines calculation. If
the branch of right-hand side is traversed in first, the
branch of left will be traversed only by pruning. How-
ever this last operation is less expensive than the back
course. What would complicate a departure on the
left is the fact that E5 has two antecedents. Let us
note moreover than on this logigram, the chaining will
propose a choice not justified

.

with pruning don’t be assured. The result will be al-
ways right but aspects like the complexity and the
choices suggested to the user are not necessarily the
best. As we highlighted, these questions of optimality
find variable results for the same logigram, this con-
stitutes a heuristic introduced by pruning.

4.3.4 Complexity of the chaining postpones

One can note that for the back chaining, the two prin-
cipal factors of complexity are the number of branches
of rules and the average number of antecedents by goal.
Any event will be examined once at least during a
back chaining starting from all the event terminals.
For each rule, its started event will be examined once
more if the last branch is removed while going down
(at the time of an iteration of pruning). Thus one ob-
tains an upper limit of complexity of the back chaining
which is the sum of the number of events and the num-
ber of rules. If it is considered that these two numbers
are bound, complexity is in O(2n) or n is the number
of events. The criteria of complexity chosen here are
not most relevant as soon as the number of rules is
much higher than the number of event. However, such
a logigram would not be really of interest for a system
of fire protection.

Conclusion

We describe a model for managing time-oriented se-
curity system and methods to perform simulation on
this systems like forward and backward-chaining. Ad
hoc solutions may be obtained but often fail to ad-
dress various issues. Or method in practice, provides
a new trend for design and verify a security system, to
ensure themselves of maintain integrity walls of com-
partments and to ensure of the correct operation of
those. while verifying that the good configuration of
the system allows resister well have temperatures pre-
define. Forward-chaining can be computed efficiently
by having two remarks: We never have to apply any
rule more than once and at any moment of the simu-
lation, we can say what rules are applicable. Indeed,
it is easy to say to know as each event is set, when
any rule become applicable. The be st strategy mini-
mizes the amount of computation (roughly speaking,
the number m of iterations). Clearly, this is very prob-
lem dependent. The model described above is still
being implemented using the monotonicity property,
we restrict search domain into intervals bounded by
fix-points By clearly identifying and study the prop-
erties of backward-chaining instance, we hope to gain

efficiency when computing them A certain amount of
improvements can be done in the same way, but we see
that the rule-backward-following method has defaults.
We can add two more:

• a relatively high complexity. By selecting eligi-
ble nodes(which suppose a verification for each
node, by computing forward-chaining), we get the
answer in a quadratic time per solution;

• as a solution, we may get redundant scripts. Even
if we manage to efficiently check script equiva-
lence, it remains that we shall be computing use-
less branches of the hypothesis tree, which makes
our complexity problem heavier.

In order to improve accuracy and complexity, it is bet-
ter to look for a good characterization of scripts, which
seem to be actual reasonable structure to work with.

References

[1] R. Alur and A.L. Dill A theory of timed au-
tomata. Theoretical Computer Science, 126(2):183-
235, 1994.

[2] E. W. Mayr An algorithm for the general Petri net
reachability problem SIAM J. Comput. 13(3):441-
460, 1984

[3] B. Le Charlier and P. Van Hentenryck. A univer-
sal top-down fixpoint algorithm. Technical Report
20/92, Institute of Computer Science, University
of Namur, Belgium, (also Brown University), April
1992.

[4] K.F. Man, K.S. Tang and S. Kwong Genetic Al-
gorithms Springer 1999

[5] R.A. O’Keefe. Finite fixed-point problems. In
J-L. Lassez, editor, Proceedings of the Fourth
International Conference on Logic Programming
(ICLP’87), pages 729–743, Melbourne, Australia,
May 1987. MIT Press.

