
Predictable configuration management in a
randomized scheduling framework

Mark Burgess and Frode Eika Sandnes

Faculty of Engineering, Oslo University College, Cort Adelers Gate 30, N-0254 Oslo, Norway

Configuration management is an essential part of system administration and component based software configuration.
Autonomous configuration is becoming more important with the emergence of agent technology and heterogeneous
nomadic environments. One important issue in configuration management is security, as the services provided by a
system is often publicly available. This article addresses security in configuration management systems and proposes
strategies for increasing security by randomized scheduling of actions constrained by a set of precedence relations.
The special class of time-triggered policies is security-enhanced by adding randomized time-offsets and granularity
reductions. These strategies makes it more difficult for malicious parties to detect and exploit configuration patterns
resulting in a reduced quality of service and ultimately a damaged system.

Keywords: Configuration management, security, scheduling, randomization

1 Introduction
For ten years or more, considerable effort has been invested in the analysis and design of protocols for
enabling distributed system administration. Amongst these are control and monitoring protocols, such
as the Simple Network Management Protocol (SNMP)[ZHGW99, OBC99], and the higher level, abstract
languages for policy based management[HZ89, And94, Bur95, DDLS00]. These languages address the
issues of what is to be done, if a system is found to be in a particular state, or has received a particular
signal. They offer varying levels of sophistication and each has strengths and weaknesses.

Another important aspect of configuration management, which has received less attention, is that of how
management functions are scheduled, both in response to specific events and as a general matter of the
maintenance of the system. Policy based administration, employing agents or software robots, is an admin-
istrative method which scales to large numbers of hosts[Bur98] in distributed systems, precisely because
every host is essentially responsible for its own state of configuration. However, the inter-dependencies of
such networked machines mean that configuration management must reflect global properties of the net-
work community, such as delegations and server functions. This presents special challenges. If hosts are
misconfigured, with respect to important peers, problems can arise. It is thus important to have predictable
scheduling properties.

Predictability does not necessarily imply determinism. It is well known that users, be they local or
remote, are the main cause of problem events in computer systems[Bur00a]. Some of these problems are
caused unintentionally, and others are caused with malicious intent. Problem events do not usually occur
in any predictable fashion; more often they occur apparently at random. The issue of how one schedules
checks and counter-measures, it therefore pivotal in assuring the stability and security of the system. For the
purpose of our discussion, it is convenient to view the user-system interaction as being a hostile encounter,
in which users’ actions are deleterious to the system. Although this is not always true, it is essentially true
on average and offers a framework for discussion as a game between users and the configuration system.

Various studies have been made examining policy-based configuration management, but few have ad-
dressed the problem in such dynamical terms, as a competition between forces which tend to disorder
systems, and forces which re-order them. The concept of managed objects does not generally take into

Mark Burgess and Frode Eika Sandnes

. . .

cfengine

repository

Developers

Site 1

cfengine

repository

Developers

Site 2

cfengine

repository

Developers

Site N

insecure network connection

Fig. 1: cfengine is running as a agent on each host in the system.

account the effect of errors which accrue through usage. Such a dynamical view is important because,
computer systems in real situations, are constantly undergoing changes. These changes result from the
time-variant, concurrent actions of multiple users, and undisciplined human administrators. Today, no tech-
nology is impervious to those influences. This means that the boundary conditions of system performance
are constantly changing.

The way a system responds to changes in its environment is important to configuration management.
Change occurs both through planned revisions of policy and through unplanned events, such as misunder-
standings between humans, undisciplined maintenance and regular usage. Throughout any change, one is
interested in upholding consistency of environment for any dependent processes[KM90]. The aim of the
current work is to summarize the core of an approach to system management, based on regulation of system
state.

2 Configuration management and cfengine
Configuration management is an important part of both system administration and component based soft-
ware development [Szy99]. Several studies have been conducted into the management of component con-
figurations [KC99, KC00, KM90, NM98, ZS95]. These studies all identified the lack of a common frame-
work for managing component configuration, a problem especially relevant in the context of heterogeneous
component-based distributed systems. While much progress has been made with policy based configuration
models, many issues remain. In this paper, we wish to address one of those issues: scheduling.

To anchor our discussion in a working model, we base our discussion around the policy-based agent
cfengine[Bur95, Bur] which has been in widespread use on Unix-like systems since the mid 1990’s. Cfengine
provides a high level, declarative language interface for the task of distributed resource management, as
well as a distributed agent for implementing policy. The advantage of policy-based configuration is that
instructions automatically document system policy, and enforce the characteristics, interrelationships and
dependencies of all sites from a single location. Cfengine has features similar to other distributed manage-
ment systems such as IBM’s Tivoli (TME 10) [Bru94, Far92, Sch99, Uel99], and its notion of policy is
similar to that described in [Slo94, DDLS00], if somewhat less refined.

The cfengine agents enforce policy expressed in centrally maintained configuration files. Changes made
to one such file can result in a system-wide response, or can identify actions to be taken on a single host.
The high-level configuration language abstracts from the details of the different operating systems, allowing
clarity of intent.

As part of its normal duties, cfengine is tasked to conduct component installation, updates, adapt out-
of-the-box systems to site requirements, and perform garbage collection and security audits. The cfengine
agent is run on each computer in the distributed environment and all transactions associated with the devel-
opment and deployment of the software components are brokered via cfengine (See figure 1). For instance,
Hewlett Packard is one large organization employing cfengine for software installation[BR97]. Some typi-
cal configuration issues, which apply to component management, include:

1. Creating files and directories with appropriate ownership and permissions.

2. Copying authorized files from a master source and assuring their permissions. Such transactions have
to be secure in two senses of the word. They must prevent unauthorized parties from monitoring the

Predictable configuration management in a randomized scheduling framework

transmission, and also handle exceptional events such as copy-failure, before a file is completely
installed, an operation that could corrupt the old copy of a file and leave hosts in an inconsistent state.

3. Linking files and file-trees from a master source temporarily, or permanently, using both relative links
and absolute links.

Component updates are desirable whenever a new component version is released or whenever the envi-
ronment is changed so that a different version of a component is needed. Cfengine can perform these tasks
automatically as long all the dependencies are declared in a cfengine script.

In most distributed systems, the overall operation is dependent on availability of service. Certain server-
processes must be present in the environment if the system is to operate successfully. Cfengine can be
used to monitor processes, by checking for the presence, absence and behaviour of given processes and act
thereupon ensuring a continuous high availability of service. It is a distributed management system where
the workload is balanced evenly on the different hosts, and redundancy can easily be supported to provide
fault-tolerance.

3 Classes as scheduling entities
Policy based configuration languages associate the occurrence of specified events or conditions, with re-
sponses to be carried out by an agent. Cfengine accomplishes this by classifying the state of a host, at the
time of invocation, into a number of string identifiers. Some of these represent the time of invocation, others
the nature of the environment, and so on. For example:

files:

(linux|solaris).Hr12::

/etc/passwd mode=0644 action=fixall inform=true

The class membership is described in the second line. In this instance, it specifies the class of all hosts
which are of type linux or solaris, during the time interval from 12:00 hours to 12:59. Tasks to be scheduled
are placed in classes which determine the host(s) on which they should be executed, or the time at which
they should be executed. Host-classes are essentially labels which document the attributes of different
systems. They might be based on the physical attributes of the machine, such as its operating system type,
architecture, or on some human attributes, such as geographical location or departmental affiliation. Actions
are placed in such classes and are only performed if the agent executes the code in an environment which
belongs to one of the relevant classes. Thus, by placing actions in judiciously chosen classes, one specifies
actions to be carried out on either individual machines or on arbitrary groups of machines which have a
common feature relating them. Classes are evaluated in three main ways:

1. automatically as a result of characteristics of the environment in which the cfengine program is run,
e.g. the operating system type of the host, name of the host and the day on which the script is run etc.
Cfengine senses its runtime environment and switches on these classes.

2. implicitly by making the host a member of a named group of hosts, which then constitutes a class
with the same name as the group. This is useful for specifying tasks to be performed on machines
with a cultural or human connection, such as those belonging to a specific department at a university.

3. explicitly by defining an identifier to be a defined class in the control part of a cfengine program. This
is useful for switching on and off certain tasks at run-time and is used in connection with the manual
definition of classes listed below.

Creating an effective configuration for a system amounts to placing configuration actions in appropriate
classes. Classes may depend on other classes, either implicitly or explicitly. This makes it possible to refer

Mark Burgess and Frode Eika Sandnes

to all sites in a given list except for a list of exceptions. Aliases can be made for commonly referred entities
so that they can be referred to by meaningful names.

Classes form a number of overlapping sets, which covers the coordinate space of the distributed system�
h � c � t � , for different hosts h, with software components c, over time t. The aim of scheduling configuration

control, is to cover this space as fully as possible, without using too many resources. This is a scheduling
problem.

Classes sometimes become active in response to situations which conflict with policy, but this is not the
only way in which reponses can be triggered. Some reponses are always scheduled for execution, but have
no net result because of an important property referred to, in cfengine parlance, as convergence. Cfengine’s
notion of convergence towards an ideal state of configuration means that the policy agent takes no action, if
no action is needed. This nullifies certain schedulable events, by virtue of their being unnecessary.

A further safe-guard which affects the scheduling of actions is a scheme of adaptive locks. All cfengine
transactions are lockable entities, and each lock can persist for a certain time after the completion of an
action. If the same action is scheduled too soon after completion, it will not be executed again until the
lock has expired. This prevents positive feedback (recursion) storms which can sometimes take place when
there are scheduled cycles, somewhat analogous to the millisecond dead-times exhibited by neurons in the
brain (presumably an important factor which prevents feedback “fits” in verterbrates).

Apart from the assurances laid down by this scheduling framework, there is still the risk of randomly
arriving events placing the system in jeopardy. Furthermore, repetetive (spam) attacks on specific resources
need to be controlled by counter-measures. Most systems are vulnerable in different ways to exploitation
due to public knowledge about their policy or configuration.

4 Management, resource allocation and scheduling
Scheduling takes many forms, such as job-shop scheduling, production scheduling, multiprocessor schedul-
ing and so on. It can take place within any extent of time, space or other suitable covering-label.

The two main classes of scheduling are dynamic and static scheduling. Dynamical schedules can change
their own execution pattern, while static ones are fully predetermined. In general, solving static scheduling
problems is NP hard. This involves assigning the vertices (tasks) of an acyclic, directed graph onto a set of
resources, such that the total time to process all the tasks are minimised. The total time to process all the
tasks is usually referred to as the makespan.

An additional objective is often to achieve a short makespan while minimising the use of resources. Such
multi-objective optimisation problems involve complex trade-offs and compromises, and good scheduling
strategies are based on a detailed and deep understanding of the specific problem domain. Most approaches
belong to the family of priority-list scheduling algorithms, differentiated by the way in which task priorities
are assigned to the set of resources. Traditionally, heuristics methods have been employed in the search for
high-quality solutions [KN84]. Over the last decade heuristics have been combined with modern search
techniques such as simulated annealing and genetic algorithms [AD96].

In version 1 of cfengine, scheduling of tasks occurred in bulk, according to a sequence of simple list
structures. This approach is extremely simple and works well enough, but it is unsatisfactory because it
requires the author of a policy to understand details of the scheduling of tasks and recursion properties. In
cfengine 2, this is replaced by methods described below.

4.1 Scheduling objectives and configuration management

The configuration management process can be understood as scheduling in several ways. First of all, within
a single policy there is often a set of classes or triggers which are interrelated by precedence relations.
These relations constrain the order in which policies can be applied, and these graphs have to be parsed.
A second way in which scheduling enters, is through the reponse of the configuration system to arriving
events. Should the agents activate once every hour, in order to check for policy violations, or immediately;
should they start at random times, or at predictable times? Should the policies scheduled for specific times
of day, occur always at the same times of day, or at variable times, perhaps random. This decision affects the

Predictable configuration management in a randomized scheduling framework

b

d

a

e f

g h i

c

j

Fig. 2: Random scheduling of precedence constrained policies.

predictability of the system, and thus possibly its security in a hostile encounter. Finally, although schedul-
ing is normally regarded as referring to extent over time, a distributed system also has two other degrees of
‘spatial’ extent: h and c. Scheduling tasks over different hosts, or changing the details of software compo-
nents is also a possibility. It is possible to confound the predictability of software component configuration
to present a ‘moving target’ to would-be attackers. The challenge is to accomplish this without making the
system nonsensical to legitimate users. These are the issues we wish to discuss below.

A set of precedence relations can be represented by a directed graph, G � �
V � E � , containing a finite,

nonempty set of vertices, V , and a finite set of directed edges, E, connecting the vertices. The collection of
vertices, V � �

v1 � v2 ������� � vn � , represents the set of n policies to be applied and the directed edges, E � �
ei j � ,

define the precedence relations that exists between these policies (ei j denotes a directed edge from policy
vi to v j).

This graph can be cyclic or acyclic. Cyclic graphs consist of inter-cycle and intra-cycle edges, where
the inter-cycle edges are dependencies within a cycle and intra-cycle edges represent dependencies across
cycles. When confronted with a cyclic graph then a set of transformations needs to be applied such that
intra-cycle edges can be removed and the graph can be converted into an acyclic graph.

Configuration management is a mixture of a dynamic and static scheduling. It is dynamic in the sense
that it is an ongoing real-time process where policies are triggered as a result of the environment. It is static
in the sense that all policies are known a priori. Policies can be added, changed and removed arbitrarily in
a dynamical fashion. However, this does not interfere with the static model because such changes would
typically be made during a time-interval in which the configuration tool were idle or offline (in a quiescent
state). The hierarchal policy model remains static, in the reference frame of each configuration, but may
change dynamically between successive frames of configuration.

Cfengine’s meta-policy of convergence also plays a role here, in avoiding trivial cycles. The policies of
the system dictate how it is to be modified in order for it to converge towards its optimal state. Whenever
there is an anomalous change in the system, the system must be modified and the policy graph dictates the
partial ordering of the actions required to fix the anomaly. Since the tree primitives are designed to avoid
cycles at the atomic level, the only remaining cycles are at the level of the policy tree.

5 Security and randomization
The predictability of a configuration is both an advantage and a disadvantage to the security of the system.
While one would like the policy objectives to be constant, the details of implementation could legitimately
vary without unacceptable loss. Predictability is often exploited by hostile users, as a means of circum-
venting policy. For instance, at Oslo University College, policy includes forced deletion of MP3 files older
than one day, allowing users to download files for transfer to another medium, but disallowing prolonged
storage. Hostile users quickly learn the time at which this tidying takes place and set up their own counter-
measures in order to consume maximum resources. One way around this problem is to employ the methods
of Game Theory[NM44, Bur00b, AGH99, BH95] to randomize behaviour. Cfengine strategies are random-

Mark Burgess and Frode Eika Sandnes

izable families of classes, in which a single family member activates with predetermined probability, on
each execution of the agent.

In all scheduling problems involving precedence relations, the graph is traversed using topological sort-
ing. Topological sorting is based around the concept of a freelist. One starts by filling the freelist with
the entry nodes, i.e. nodes with no parents. At any time one can freely select, or schedule, any element
in the freelist. Once all the parents of a node have been scheduled the node can be added to the freelist.
Different scheduling strategies and problems differ in the way elements are selected from the freelist. Most
scheduling problems involve executing a set of tasks in the shortest possible time. A popular heuristic for
achieving a short schedules is the Critical Path/Most Immediate Successor First (CP/MISF) [KN84]. Tasks
are scheduled with respect to their levels in the graph. Whenever there is a tie between tasks (when tasks
are on the same level) the tasks with the largest number of successors are given the highest priority. The
critical path defined as the longest path from an entry node to an exit node.

In configuration management, the selection of nodes from the freelist is often viewed as a trivial problem,
and the freelist may, for instance, be processed from left to right, then updated, in an iterative manner.
If instead one employs a strategy such as the CP/MISF, one can make modifications to a system more
efficiently in a shorter time than by trivial strategy.

A system can be prone to attacks when a system is configured in a deterministic manner. By introducing
randomness into the system, it becomes significantly harder to execute repetitive attacks on the system.
One can therefore use a random policy implementation when selecting elements from the freelist. The
randomized topological sorting algorithms can be expressed as:

freelist := all_entry_nodes;
unscheduled := all_nodes;
while (not unscheduled.empty())

begin
node := freelist[random];
delay(random);
process(node); // do whatever
scheduled.add(node);
freelist.remove(node);
for all nodes in unscheduled whose parents are all scheduled

begin
freelist.add(nodes);
unscheduled.remove(nodes);

end
end

For example. Fig 2 illustrates a policy dependence graph. In this example, policy e is triggering a
management response. Clearly, only the policies h, i and j depend on e and consequently needs to be
applied. Since policy j depends on both h and i, policy h and i must be applied prior to j. Therefore, the
free-list is first filled with the policies h and i. Policy h and i are then applied in the sequences h, i or i, h,
both with a probability of 0.5.

Note that, by making a large number of observations, an external partner would be able to gradually
establish some of the precedence relations, and thus partially predict updates. However, the effect of this
is very much dependent on the topology of the graph. If the graph is a linear chain of policies then the
randomization has no effect. At the other extreme, if the graph consists of independent policies with no
inter-dependencies, then the order in which policies are applied is completely arbitrarily and impossible to
predict.

Research into techniques for searching combinatorial spaces indicate that a random policy for some
problems yield better results than a static left-to-right policy [Mic96]. Thus, in addition to gaining enhanced
security one may also obtain a more efficient schedule by applying a random ordering. A random approach
to the coverage of parameter spaces has been studied often in connection with Monte Carlo algorithms.
Since events themselves occur at random, it would be interesting to study the efficacy of regular versus
random scheduling of responses in minimizing the average time for expedition of the event.

Predictable configuration management in a randomized scheduling framework

t1 t2 t3 t4

Random trigger

Trigger interval

Trigger centre

time

Fig. 3: Adding random offsets to time-triggered events.

6 Randomized time-triggers
One special family of scheduling classifiers, in configuration management is time-triggers. Such policies
dictate operations which are to be conducted at specific times. This could, for example, apply to the backup
of user files: all files in the user directories are to be copied to a special backup repository at 2 am every
night. It could also typically refer to the cleaning up of files: e.g. all temporary user files get removed at 6
am every morning.

Time-triggered events can be detected and learned by malicious parties and users. Instead of specifying
time-triggers with absolute time-stamps, it is desirable to introduce a level of randomness to certain time-
triggers. There are two main ways to specify randomized time-triggers. Absolute time with random offset
and period with random offset. The absolute time and with random offset specifies a given time, say every
hour, or every day at a certain time with a random amount added. The period with random offset specifies
a time-trigger with a certain period or frequency, also with a random offset added. Certain tasks are more
naturally described using a time stamp and other using frequencies. Fig 3 illustrates time-triggered events
with random offsets.

Cfengine supports the notion of local and distributed randomization in time. In local randomization, one
uses a Monte-Carlo Metropolis approach to a vary amongst a list of distinct tactics. Such an approach is
called a strategy, due to the connection with mixed strategies in Game Theory. For example:

strategies:

�
spread_load

percent_10: "1" # These classes get defined in
percent_30: "3" # these ratios of the sum 1+3+6
percent_60: "6" # i.e. 1/10, 3/10, 6/10�

action:

(Hr00.percent_10)||(Hr02.percent_30)::

policy

In this example, one member of the set of classes percent 10, percent 30, percent 60, is defined
on each invocation of the agent, with the indicated probability. When combined with time classes, using
AND and OR, one has an action to be carried out only 40 percent of the time. Ten percent of the time, it
will be done at 00:00 hour, and thirty percent of the time at 02:00 hours.

Distributed randomization is really a two-dimensional randomization. The SplayTime variable, in
cfengine, allows load to be spread over a maximum interval of time, depending on where one is in the
network name-space. This doubles as a load-balancing strategy.

SplayTime = (number of minutes)

This declaration evaluates to a different offset on each host. A hashing algorithm selects a value between

Mark Burgess and Frode Eika Sandnes

task a
task b
task c
task d
task e

Bulk

task b

task e

task a

task c
task d

time

t1 t2 t3 t4 t5t

Scattered

Fig. 4: Reducing the grain size and randomly scattering the fine-grained tasks.

zero and the specified number of minutes, based on the identity of the host running the agent. An additional
random element can be added.

Randomization makes it much harder to identify time-trigger patterns. For example if a time trigger is
set to 12:00 noon with a random offset of +/- 12 hours, then its virtually impossible to predict events. On
systems with quotas, some users hog resources by identifying and exploiting fixed cleanup policies. Shared
temporary directories are filled up with large files under the assumption that they will be accessible for
the next X hours. Other users may be stopped from executing certain tasks as a result of this antisocial
behaviour. With a randomized cleanup policy the users can never be completely assured that their files will
remain in its temporary location the next moment. Such a strategy will therefore serve to deter speculation
in shared resources without reducing the quality of service for ordinary users.

6.1 Reducing granularity
Configuration management tools, like cfengine, allow abstract descriptions such as time-triggered copying
of multiple files and directories. The objective of this abstraction is to have clean and simple configuration
scripts, uncluttered by detail. The configuration agent responds by performing the task as one entity, i.e. in
one batch. These abstract descriptions define coarse grained operations. However, when introducing the
notion of randomized time-triggered events, it is also natural to reduce the level of granularity. The set of
files specified by the policy in the configuration script are split up into smaller entities such that the copying
of files happens as a continuous random process. The files could be split into different groups on type, on
size or number.

This serves two purposes. First, it is more difficult for parties to determine the mapping between files and
their associated time-trigger. Second, proposed strategy will greatly assist load balancing as file copying
operations can be highly resource intensive.

The conversion of one coarse grained operation into m fine grained operations can and should be done
automatically by the configuration tool, making it transparent to the system administrator. Fig 4 illustrates
the effect of dispersing a bulk operation in the time-domain.

6.2 Resolving cycles and storms
Any configuration or security system which offers an interactive dialogue, such as a system service or
configurator responding with countermeasures, is vulnerable to a denial of service attack of the form: start
request, system load increases, respond to load (loads further). This type of emergent condition can be
avoided by breaking the cycle of dependency using some kind of policy.

Adaptive (persistent) locking, which introduces a time-limit and expiry policy on transactions, can be
used to deal with repetition of an event over shorter time granules[BS97]. The transaction locking mecha-
nism, used in cfengine for instance, can break cycles in many graphs. They are set by two parameters:

IfElapsed = (num_of_minutes)
ExpireAfter = (num_of_minutes)

The former permits the execution of a transaction, only if the specified number of minutes has expired since
the last similar transaction. The latter will forcibly break a cycle, when a new transaction is attempted, if it
has not completed and unlocked within the time specified. For example, cycles which take an anomalous
time to complete can exceed the allowed lifespan of a persistent lock, so that it has expired before the cycle
comes around. These are sufficient to contain most recursive storms, caused by erroneous self-reference.

Predictable configuration management in a randomized scheduling framework

b

d

a

c

b

d

a

c

b

d

a

c

a b

c d

a b

c d

a b

c d

iteration i+1

iteration i

iteration i-1
a b

c d

time

Schedule acyclic graph
cyclic graph

Fig. 5: Keeping schedules of iterations disjoint to ensure no intra cycle dependency violations.

Thse methods are often sufficient, but do present a possibly exploitable loophole in the security of the
system. One example of this is that attackers could aim a denial of service attack at a dependency (such as
a naming service), which causes the configuration system to become sluggish. This can distort the normal
running of the system and lead to the artificial expiry of time limits. It is therefore of interest to combat
cycles by a second method.

Locks are only effective at preventing extraneous actions. A counter example, which cannot be handled
by a lock, is the opposite case where a cycle prevents something from getting started. For instance, a
configuration system which relies on its own configuration to update itself (such as cfengine) can suffer
from: syntax error, can’t parse configuration, cannot update and replace syntax error. This problem needs
to be addresses by breaking the cycle into two separate pieces: one which updates the configuration and one
which does the rest. The same thing naturally applies to human resources, where one relies on, say, E-mail
to report errors. The message cannot be sent or received until the system works.

There are no guarantees that the dependence hierarchy will not contain cyclic dependencies. Scheduling
literature mostly assumes the graph to be acyclic, and only a few studies address the scheduling of iterative
tasks. One technique for addressing this problem is that of graph unfolding and graph transformation - a
technique in which a cyclic graph is expanded into multiple iterations followed by a transformation step
where cycles are broken in strategic locations [YF97]. An alternative is to search for a configuration where
cyclic edges are removed such that the makespan is minimized [SM98]. Most real-world processes are
iterative and recurrent in nature and are more naturally expressed as a cyclic task graph. It is common to
view these cyclic problems as acyclic as this simplifies the scheduling problem. A cyclic problem can be
treated as acyclic as long as each scheduled cycle is disjoint from the other cycles so that no intra-cycle
dependencies are violated (see Fig 5). It is therefore essential to check for cycles in the configuration
dependence hierarchy and thereafter disconnect these cycles.

There are many strategies for detecting cycles in graphs [Wei72, Rei68]. A very simple approach to
detecting cycles in a graph involves representing a graph with n vertices as an n � n adjacency matrix A,
where row i and column i represent policy i. Non-zero elements in the matrix denote dependencies. For
example, a 1 in column 4 at row 3 indicate that policy 4 depends on policy 3, i.e. policy 3 must be applied
before policy 4. The cycles of A is found by taking the matrix product of A, such that

A � A1 � A2 � A3 � ����� � An (1)

All nonzero diagonal elements will then represent a cyclic dependence of length equal to the power. For
example:

A �

���
�

0 0 1 0
1 1 0 0
0 1 0 1
0 0 1 1

����
� � A2 �

���
�

0 1 0 1
1 1 1 0
1 1 1 1
0 1 1 2

����
�

Mark Burgess and Frode Eika Sandnes

0

1

2

3

Fig. 6: Cyclic graph with two self-cycles, one cycle of length two and one cycle of length four.

A3 �

���
�

1 2 2 2
2 3 2 2
2 4 3 4
2 4 4 5

� ��
� � A4 �

���
�

13 24 20 24
16 29 24 28
24 44 37 44
28 52 44 53

� ��
�

Shorter cycles recur at intervals equal to the cycle length, i.e. cycles of length two will re-emerge after
4 multiplications. The matrices above show that there are two self-cycles, or cycles of length one, namely
from task 0 to task 0, and from task 3 to task 3. There is one cycle of length two involving the third and the
forth task (note that the self-cycles remerge in the diagonal). Further, there is one cycles of length three,
and there is one cycle of length four involving all the tasks. This graph is also shown in Fig 6.

Having identified the cycles then cycles are broken off such that the cyclic graph becomes an acyclic
graph where the unprocessed nodes are collected at the bottom, or towards the end, of the graph. Note that
there is a relationship between the sequences generated during scheduling, and the paths obtained during
reachability and data-flow analysis of distributed systems [CK94].

6.3 Decentralized scheduling and global goals

Configuration management tools administer checks and controls to a distributed network of hosts. The
policy broker is the agent located at each host, whose function it is to interpret and implement policy, based
on the details of its local environment. The administration task is therefore decentralized, but unified with a
central or global goal. This is quite different to other scheduling scenarios where scheduling of a distributed
set of resources is centralized. However, each configuration agent operates in its own domain; in cfengine,
these agents operate with an almost complete disregard for the activities conducted by peer agents. This
independence is intentional, and helps to avoid cycles and complex dependencies in the distributed domain.
As far as we know, there is no evidence to suggest that this confers any limitations or significant restrictions
on configuration management. From the viewpoint of a system administrator, the scheduling problem is
centralized. However, viewed as a whole, the work of all the agents contribute toward the global optimal
state for the distributed system.

7 Conclusions
This paper considers the use of scheduling analysis as a tool for ensuring effective and predictable configu-
ration management. The policy agent cfengine is used as an example of some of these techniques.

Scheduling, in a distributed environment, is a powerful idea which extends in both time and ‘space’�
h � c � t � . The main message of our discussion is that scheduling can be used to place reasonable limits on

the behaviour of configuration systems: ensuring that policy checks are carried out often enough, but not so
often that they can be exploited to overwork the system. It should neither be possible to exploit the action of
the configuration system, nor prevent its action. Either of these would be regarded as a breach of security.

In a networked environment, individual hosts are exposed to threats not only from local users, but also
from would-be remote attackers. Protection against so-called Denial of Service attacks has been notoriously
hard to address, but we believe that the method of random scheduling of configuration described here can
play a role in preventing the efficacy of such attacks. Note that even the accumulation of system garbage (i.e.

Predictable configuration management in a randomized scheduling framework

files which contravene policy) can also be regarded as a Denial of Service attack, repetitively consuming
resources. In cfengine version 2, randomized strategies have been introduced as an experimental tool. It
remains to be seen how effective these are in practice. We aim to present some specific practical applications
in future work.

References
[AD96] Imtiaz Ahmad and Muhammed K. Dhodhi. Multiprocessor Scheduling in a Genetic Paradigm.

Parallel Computing, vol 22, pp395-406, 1996.

[AGH99] S.P. Anderson, J.K. Goeree, and C.A. Holt. Stochastic game theory: Adjustment to equilibrium
under noisy directional learning. Working paper, University of Virginia, 1999.

[And94] P. Anderson. Towards a high level machine configuration system. Proceedings of the Eighth
Systems Administration Conference (LISA VIII) (USENIX Association: Berkeley, CA):19,
1994.

[BH95] J. Brandts and C.A. Holt. Naive bayesian learning and adjustment to equilibrium in signaling
games. Working paper, University of Virginia, 1995.

[BR97] M. Burgess and R. Ralston. Distributed resource administration using cfengine. Software
practice and experience, 27:1083, 1997.

[Bru94] Lee Bruno. Sophisticated Network Management. Open Computing, 11(12):100, December
1994.

[BS97] M. Burgess and D. Skipitaris. Adaptive locks for frequently scheduled tasks with unpredictable
runtimes. Proceedings of the Eleventh Systems Administration Conference (LISA XI) (USENIX
Association: Berkeley, CA), page 113, 1997.

[Bur] M. Burgess. Cfengine www site. http://www.cfengine.org.

[Bur95] M. Burgess. A site configuration engine. Computing systems (MIT Press: Cambridge MA),
8:309, 1995.

[Bur98] M. Burgess. Computer immunology. Proceedings of the Twelth Systems Administration Con-
ference (LISA XII) (USENIX Association: Berkeley, CA), page 283, 1998.

[Bur00a] M. Burgess. Principles of Network and System Administration. J. Wiley & Sons, Chichester,
2000.

[Bur00b] M. Burgess. Theoretical system administration. Proceedings of the Fourteenth Systems Ad-
ministration Conference (LISA XIV) (USENIX Association: Berkeley, CA), page 1, 2000.

[CK94] S. C. Cheung and J. Kramer. An integrated method for effective behaviour analysis of dis-
tributed systems. Proceedings of the 16th IEEE Conference on Software Engineering, 1994.

[DDLS00] N. Damianou, N. Dulay, E.C. Lupu, and M. Sloman. Ponder: a language for specifying security
and management policies for distributed systems. Imperial College Research Report DoC
2000/1, 2000.

[Far92] Rik Farrow. Object-Oriented Network Management. UNIX/world, 9(11):93, November 1992.

[HZ89] B. Hagemark and K. Zadeck. Site: a language and system for configuring many computers as
one computer site. Proceedings of the Workshop on Large Installation Systems Administration
III (USENIX Association: Berkeley, CA, 1989), page 1, 1989.

Mark Burgess and Frode Eika Sandnes

[KC99] Fabio Kon and Roy H. Campbell. Supporting automatic configuration of component-based
distributed systems. In Proceedings of the 5th USENIX Conference on Object-Oriented Tech-
nologies and Systems (COOTS-99), pages 175–188, Berkeley, CA, 1999. USENIX Associa-
tion.

[KC00] Fabio Kon and Roy H. Campbell. Dependence management in component-based distributed
systems. IEEE Concurrency, 8(1):26–36, January/March 2000.

[KM90] Jeff Kramer and Jeff Magee. The evolving philosophers problem: Dynamic change manage-
ment. IEEE Transactions on software engineering, 16(11):1293–1306, November 1990.

[KN84] Hironori Kasahara and Seinosuke Narita. Practical Multiprocessor Scheduling Algorithms for
Efficient Parallel Processing. IEEE Transactions on Computers, vol C-33, no 11, pp1023-
1029, 1984.

[Mic96] Zbigniew Michalewicz. Genetic Algorithms+Data Structures=Evolution Programs,3rd edi-
tion. Springer, 1996.

[NM44] J.V. Neumann and O. Morgenstern. Theory of games and economic behaviour. Princeton
University Press, Princeton, 1944.

[NM98] E. Niemelae and J. Marjeta. Dynamic configuration of distributed software components. Lec-
ture Notes in Computer Science, 1543:149–150, 1998.

[OBC99] S. Omari, R. Boutaba, and O. Cherakaoui. Policies in snmpv3-based management. Proceed-
ings of the VI IFIP/IEEE IM conference on network management, page 797, 1999.

[Rei68] Raymond Reitter. Scheduling parallel computations. Journal of the Association for Computing
Machinery (ACM), 15(4):pp590–599, 1968.

[Sch99] Stéphane Schitter. Integration of intrusion detection products in the tivoli enterprise console.
Master’s thesis, Eurécom Institute, June 1999.

[Slo94] M. Sloman. Policy driven management for distributed systems. Journal of Network and Sys-
tems Management, 2:333, 1994.

[SM98] Frode Eika Sandnes and G. M. Megson. Improved static multiprocessor scheduling using
cyclic task graphs: A genetic approach. PARALLEL COMPUTING: Fundamentals, Applica-
tions and New Directions, North-Holland, 12:703–710, 1998.

[Szy99] Clemens Szyperski. Component Software - Beyond Object-Oriented Programming. Addison
Weseley, 1999.

[Uel99] Stefan Uelpenich. Extending the reach of tivoli distributed monitoring - creating a custom
monitoring collection. The Managed View, 3(2):21–40, Spring 1999.

[Wei72] Herbert Weinblatt. A new algorithm for finding the simple cycles of a finite directed graph.
Journal of the Association for Computing Machinery (ACM), 19(1):pp45–56, 1972.

[YF97] Tao Yang and Cong Fu. Heuristic Algorithms for Scheduling Iterative Task Computations on
Distributed Memory Machines. IEEE Transactions on Parallel and Distributed Systems, vol.
8m no. 6, 1997.

[ZHGW99] M. Zapf, K. Herrmann, K. Geihs, and J. Wolfang. Decentralized snmp management with
mobile agents. Proceedings of the VI IFIP/IEEE IM conference on network management, page
623, 1999.

Predictable configuration management in a randomized scheduling framework

[ZS95] Andreas Zeller and Gregor Snelting. Handling version sets through feature logic. In Wilhelm
Schäfer and Pere Botella, editors, Proceedings of the 5th European Software Engineering Con-
ference, volume 989 of Lecture Notes in Computer Science, pages 191–204. Springer-Verlag,
September 1995.

