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INTRODUCTION

Hexoses are 6-carbon sugar molecules that play a key role in

several different biochemical pathways, including cellular energy

release, signaling, carbohydrate synthesis, and the regulation of

gene expression.1 Glucose and galactose are the two most com-

monly found hexoses in nature. Proteins that bind these sugars are

implicated in several human diseases, including diabetes, various

metabolic disorders, and Huntington disease. The biochemical and

molecular pathways for these disease mechanisms have not all been

elucidated and much work remains to be done.

In parallel, genome sequencing of a wide range of species has

yielded sequence knowledge of a large number of proteins whose

biochemical functions are still unknown. The three-dimensional

structures of many of these proteins were elucidated. Some of these

proteins have been shown to be members of certain pathways, but

they lack sufficient sequence or structural similarity to any other

protein with a known function.

The functional annotation of these ‘‘unknown’’ proteins is of

paramount importance. One approach to tackle this problem is to

predict what these proteins may bind to. Prediction of glucose-spe-

cific binding sites will significantly improve our understanding of

protein structure-function relationships and enable us to assign

possible functions to some of the many genomic proteins whose

function remains unknown (e.g., Patra and Mandal2). This, in

turn, will allow us to better understand disease mechanisms that

may involve some of these proteins and be better placed for either

diagnosis or treatment of these diseases.

Proteins that bind hexoses belong to diverse functional families

that lack significant sequence or, often, structural similarity.3 De-

spite this dissimilarity in the binding site architecture between pro-

tein families, these proteins show high specificity to their hexose

Additional Supporting Information may be found in the online version of this article.

Supported by the American University of Beirut (H.N.).

*Correspondence to: Walid Keirouz, Department of Computer Science, American University of

Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon. E-mail: walid@aub.edu.lb

Received 2 October 2008; Revised 6 February 2009; Accepted 9 March 2009

Published online 19 March 2009 in Wiley InterScience (www.interscience.wiley.com).

DOI: 10.1002/prot.22424

ABSTRACT

Glucose is a simple sugar that plays an essential

role in many basic metabolic and signaling path-

ways. Many proteins have binding sites that are

highly specific to glucose. The exponential increase

of genomic data has revealed the identity of many

proteins that seem to be central to biological proc-

esses, but whose exact functions are unknown.

Many of these proteins seem to be associated with

disease processes. Being able to predict glucose-

specific binding sites in these proteins will greatly

enhance our ability to annotate protein function

and may significantly contribute to drug design.

We hereby present the first glucose-binding site

classifier algorithm. We consider the sugar-binding

pocket as a spherical spatio-chemical environment

and represent it as a vector of geometric and

chemical features. We then perform Random For-

ests feature selection to identify key features and

analyze them using support vector machines classi-

fication. Our work shows that glucose binding sites

can be modeled effectively using a limited number

of basic chemical and residue features. Using a

leave-one-out cross-validation method, our classi-

fier achieves a 8.11% error, a 89.66% sensitivity

and a 93.33% specificity over our dataset. From a

biochemical perspective, our results support the

relevance of ordered water molecules and ions in

determining glucose specificity. They also reveal

the importance of carboxylate residues in glucose

binding and the high concentration of negatively

charged atoms in direct contact with the bound

glucose molecule.
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ligands. Assuming that common recognition principles

exist for the identification of common substrates,4 these

hexose binding sites have unique distinguishing biochem-

ical and spatial features. The amino acids constituting a

binding site determine its topology and biochemical

properties and may be selected, at least in part, for medi-

ating intermolecular interactions, perhaps at the expense

of protein stability.5 Based on this argument, the spatial

and biochemical properties of a binding site should ena-

ble us to predict the ligand type and, therefore, to specu-

late on the function of this ligand-binding protein

domain. This article addresses the issue of identifying

glucose binding sites by building a program that correctly

classifies a protein pocket into glucose binding or non-

glucose binding.

Researchers have investigated protein-sugar binding sites

for several years. From the biochemical perspective, Rao

et al.6 fully characterized the architecture of sugar binding

in lectins and identified conserved loop structures within

the protein as essential for sugar recognition. Later, Quio-

cho and Vyas7 presented a review of the biochemical char-

acteristics of carbohydrate-binding sites and identified the

planar polar residues (Asn, Asp, Gln, Glu, Arg) as the most

frequently involved residues in hydrogen bonding. They

found that the aromatic residues Trp, Tyr, Phe, and His,

stack against the apolar surface of the sugar pyranose ring.

Quiocho and Vyas also pinpointed the role of ordered

water molecules and metal ions in determining substrate

specificity and affinity. Taroni et al.8 analyzed the charac-

teristic properties of sugar binding sites and described a

residue propensity parameter that best discriminates

sugar-binding sites from other protein-surface patches.

Simple sugars typically have a polar-hydrophilic end which

establishes hydrogen bonds and a hydrophobic end which

is responsible for the pyranose ring stacking. Sugar binding

sites are thus neither hydrophobic nor hydrophilic, due to

the dual nature of sugar docking.8 In fact, as Garcia-Her-

nandez et al.9 showed, some polar groups in the protein-

carbohydrate complex behave hydrophobically. Further-

more, Zhang et al.10 reported that the hydrogen bonds

between the hexose ligand and certain amino acids in gal-

actosyltransferases are crucial for the orientation of the

ligand and the correct function of the protein.

Some of this biochemical information has been used

in computational work with the objective of accurately

predicting protein sugar-binding sites. Shionyu-Mit-

suyama et al.11 were some of the first to use atom type

densities within binding sites to develop an algorithm for

predicting carbohydrate-binding. Sujatha and Balaji4 for-

mulated a signature for characterizing galactose-binding

sites based on solvent accessibility and secondary struc-

ture types. They implemented a three-dimensional struc-

ture searching algorithm, COTRAN, to identify galactose-

binding sites. Chakrabarti et al.12 modeled one glucose-

binding site and one galactose-binding site by optimizing

their binding affinity under geometric and folding free

energy constraints. More recently, Malik and Ahmad13

used a neural network to predict general carbohydrate

and specific galactose binding sites.

On a broader scale, Gold and Jackson14 compiled the

SitesBase database of precalculated protein-ligand binding

site similarities. Given a ligand-binding site, SitesBase

returns all database entries with similar binding sites,

ranked by a similarity score. They did this by performing

an all-against-all geometric hashing over the Protein Data

Bank15 (PDB). Although the primary use of this data-

base is to examine structural similarities between related

binding sites, it can also provide evidence of functional

similarity for unclassified binding sites.

None of the previous work specifically targeted glu-

cose-protein interactions. Some targeted a specific pro-

tein family,6,10,12 while others focused on galactose4,13

or on general hexoses.7,9 Attempts to develop computa-

tional classifiers for carbohydrate binding sites8,11,13 led

to moderate results. Structural comparisons14 give simi-

larity scores, but require additional analysis to determine

a site’s functionality.

With this in mind, this work builds and trains a sup-

port vector machines (SVM) classifier to predict glucose

binding sites. SVMs are used successfully in a wide area

of biological domains16; they are straightforward and

computationally inexpensive. We define a protein binding

site as a collection of atoms within a macromolecule

with a central docking-pocket and a geometrically

defined chemical neighborhood, as performed by Boba-

dilla et al.17 In this simplified model, charge, polarity,

mobility, and hydrophobicity can all be considered as de-

terminant features of a binding site. We thus follow Bag-

ley and Altman’s stipulation that ‘‘by temporarily aban-

doning a view of sites as groups of amino acids, and

instead concentrating on the chemical milieu in impor-

tant locations, we may gain insight into the critical fac-

tors that define a site18’’.

Our classifier may be a useful filter to identify poten-

tial binding sites that can then be verified using molecu-

lar dynamics simulations or biochemical experiments. It

can also act as a discriminating layer on top of structural

similarity search engines, like Gold and Jackson,14 for

glucose binding sites annotation.

MATERIALS AND METHODS

In this work, we extract multiple chemical, amino-acid

and spatial features from the binding-site and concate-

nate them as a feature vector. We then analyze the fea-

tures and select a relevant subset. Finally, we train the

SVM classifier.

Binding site representation

We represent the binding site as a sphere centered at

the ligand, as portrayed in Figure 1. The sphere is subdi-
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vided into concentric shells as suggested by Bagley and

Altman.18 The center of the glucose-binding site is the

center of the glucose pyranose ring and is computed as

the centroid of the coordinates of the ring’s 6 atoms (C1,

C2, C3, C4, C5, O5). For sites that do not bind glucose,

the center is taken as the center of the cavity or the re-

spective ligand’s center point.

The pyranose ring radius is 1.5 Å, the farthest glucose

atom (O6) is 3.5 Å away and the molecular interactions

are significant to a range of 7 Å as suggested by Bobadilla

et al.17 Therefore, the radius of the sphere is fixed at

10 Å. The first layer width is fixed to 3 Å while the width

of the subsequent seven layers is 1 Å each.

Preparation of the dataset

The SVM classifier needs to be trained with both glu-

cose-binding (positives) and nonglucose binding (nega-

tives) sites. We mine the PDB15 for protein-glucose com-

plexes. We consider the heterogen (HET) group name of

all glucose forms and derivatives and use the following

HETs: GLC for D-glucose, AGC for a-D-glucopyranose,
and BGC for b-D-glucopyranose. We remove theoretical

structures and redundancies, as well as files older than

PDB format 2.1. Using PISCES,19 we impose a 30%

overall sequence identity as a cut-off. We examine the

remaining structures at close range using the Swiss-

PDBViewer program.20 To remain true to the specificity

of a glucose binding site, we discard several proteins at

this point due to the proximity of other ligands in the

binding pocket or the fact that the same binding pocket

can bind to multiple ligands. The final outcome is a non-

redundant data set of 43 protein-glucose binding sites.

We use 29 for training and cross validation (Table I) and

the remaining 14 for testing (Table II).

The negative dataset consists of three groups of sites

that do not bind glucose. The first group of 36 sites, la-

beled ‘‘nonsugar binding’’, bind ligands other than hexo-

ses. We consider the ligand’s centroid to be the center of

the binding site. The second group of 15 sites, labeled

‘‘sugar-binding’’, bind nonglucose hexoses and other sug-

ars, namely galactose, mannose, fructose, sucrose, and

glucose-derivatives. The cavity center is computed in a

manner similar to glucose positives (see Fig. 1), using the

pyranose or furanose ring’s centroid. Finally, the third

group of 17 sites, labeled ‘‘nonbinding’’, includes sites

that are not known to bind any ligand. We used two

thirds of the dataset for training and cross-validation

(Table III), and kept a third for testing (Table IV).

Physio-chemical properties
used as descriptors

Charge, hydrogen bonding and hydrophobicity are the

three properties that define most chemical bonding. We

therefore use them to determine glucose recognition and

binding. These chemical properties are each assigned

nominal values: the measure of charge per atom is posi-

tive, neutral, or negative; atoms are either able to form

hydrogen bonds or not; hydrophobicity measures are

considered as hydrophobic, hydroneutral, or hydrophilic

(Table V). Table V shows a detailed listing of each atom

Figure 1
Importance of charge features according to RF. CNEUT stands for

neutral charge feature, NEG for negative charge feature and L# for the

layer number.

Table I
Inventory of Positive Training and Cross-Validation

Glucose-Binding Sites

PDB ID Glucose PDB ID Glucose PDB ID Glucose

1BDG GLC-501 1I8A GLC-189 1PWB GLC-405
1EX1 GLC-617 1ISY GLC-1461 1Q33 GLC-400
1GJW GLC-701 1ISY GLC-1471 1S5M AGC-1001
1GWW GLC-1371 1J0Y GLC-1601 1UA4 GLC-1457
1H5U GLC-998 1JG9 GLC-2000 1V2B AGC-1203
1HIZ GLC-1381 1K1W GLC-653 1WOQA GLC-290
1HIZ GLC-1382 1KME GLC-501 2BQP GLC-337
1HKC GLC-915 1MMUA GLC-1 2BVW GLC-602
1HSJ GLC-671 1NF5 GLC-125 2BVW GLC-603
1HSJ GLC-672 1NSZ GLC-1400

The cavity center is computed as the centroid of the glucose’s pyranose ring.

Table II
Inventory of Positive Testing Glucose-Binding Sites

PDB ID Glucose PDB ID Glucose PDB ID Glucose

1S5M AGC-1001 2E2O GLC-400 2IPL BGC-501
1SZ2 BGC-1001 2F2E AGC-401 2O9T GLC-500
1SZ2 BGC-2001 2FH6 GLC-1097 2PWF BGC-9998
1U2S GLC-1 2FVY GLC-307 3F9M GLC-500
1Z8D GLC-901 2H3H BGC-1500

The cavity center is computed as the centroid of the glucose’s pyranose ring.

SVM Prediction of Glucose Binding Sites
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and its features. For example, the first entry in the table,

the amide peptide linkage oxygen of an amino acid, is

denoted as O. It does not bear a partial atomic charge,

has a hydrophilic tendency, and is capable of forming a

hydrogen bond with a ligand. Several atoms or molecules

present in the protein cavity are not part of the protein

structure, but may have an effect on ligand specificity,7

such as water, sulfate, phosphate, calcium, magnesium,

and zinc. We include these atoms and molecules in the

features list presented in Table V. With regard to hydro-

gen atoms, we use them only in the context of the heavy

atom they are attached to such as nitrogen amide or car-

boxyl oxygen.

In addition to chemical features, we incorporate resi-

due features in our algorithm. Amino acids are generally

categorized into subgroups, based on the structural and

chemical properties of their side chains.21,22 Accord-

ingly, we classify the amino acids into the following sub-

groups: aromatic (Phe, Trp, Tyr), aliphatic (Ala, Ile, Leu,

Met, Val), acidic-carboxylate (Asp, Glu), basic (Arg, Lys),

neutral (Asn, Cys, Gln, Gly, Pro, Ser, Thr), and histidine

(His). We classify histidine as its own group because it is

often found in locations which are part buried and part

exposed, and it can have roles which are unique among

the aromatic hydrophobic amino acids, such as in metal

binding.23

Feature extraction

The algorithm obtains the spatial distribution of the

different atoms in a spherical region of a certain radius

and divides them into concentric layers. For each layer,

the program samples all the atoms and residues con-

tained in this layer, then samples all the properties of

each atom and creates a feature vector for every layer. As

such, each feature has a measure in each concentric layer.

The binding site feature vector is the concatenation of

the feature vectors of the layers. To put equal initial

weight on the different features, the data is standardized

by scaling and centering.24

Feature selection

Feature representation is an important step in design-

ing classifiers. Some feature combinations can effectively

partition the input space, while others are completely

irrelevant. Knowing that an increase in the feature

dimensionality tends to increase measurement cost and

decrease classification accuracy,25 good designers aim at

minimizing the number of features while maximizing the

classification performance.

Random Forests26 (RF) is a classification algorithm

based on multiple classification trees which provides

measures of feature importance and is used as a feature

selection tool. The RF feature selection method is robust

to noise, can be used when the number of features is

much greater than the number of observations, incorpo-

rates feature interactions and returns a direct feature im-

portance measure based on information gain.26 The RF

feature importance score measures the decrease of classi-

fication accuracy when values of a feature are randomly

permuted.27 The higher the score, the more important

the feature is. Random Forests matches or outperforms

Table III
Inventory of Negative Training and Cross-Validation Sites That do Not

Bind Glucose

Non-sugar binding sites Sugar binding sites

PDB ID Cavity center Ligand PDB ID Ligand

11GS 1672–1675 MES-3 1AXZ GLA-401
1A42 2054–2055 BZO-555 1BQP MAN-402
1A50 4939–4940 FIP-270 1D1W GAL-1400
1A53 2016–2017 IGP-300 1DZQ GAL-502
1AA1 4472–4474 3PG-477 1EUU GAL-2
1AJN 6074–6079 AAN-1 1KLF MAN-1500
1AJS 3276–3281 PLA-415 1LBY F6P-295
1AL8 2652 FMN-360 1TJ4 SUC-1
1BOB 2566 ACO-400 2GAM NGA-502
1D09 7246 PAL-1311 4PBG BGP-469
1DY1 1423 ZN-401
1EQY 3831 ATP-380 Nonbinding sites

1F8I 13237 MG-451 PDB ID Cavity center

1FI2 1493 MN-202 11AS 5132
1IOL 2674–2675 EST-400 1A7W 351
1J1L 2246 FE2-1001 1BSI 103–114
1JTV 2136–2137 TES-500 1C3P 1089–1576
1KF6 16674–16675 OAA-702 1C5K 605–871
1NX8 6104–6109–6110 N7P-290 1DXJ 867–1498
1TVO 2857 FRZ-1001 1EVT 2149–2229
1UK6 2142 PPI-1300 1FSZ 2048–2190
2BIW 15,171 FE-1492 1KLM 4113–4373
2PAH 5318 FE-453 1KWP 1212
3PCB 3421–3424 3HB-550 2BG9 1237

The cavity center is computed as the centroid of the given atoms or ring. The

atoms are listed by their PDB serial number.

Table IV
Inventory of Negative Testing Sites That do Not Bind Glucose

Nonsugar binding sites Sugar binding sites

PDB ID Cavity center Ligand PDB ID Ligand

1A0J 6985 BEN-246 1ISZ GAL-471
1ATG 1751 WO4-250 1KWK GAL-701
1B8A 7224 ATP-500 1KZB MAN-1501
1BO5 7811 GOL-601 1LIU FBP-580
1RTK 3784–3787 GBS-300 1Y9G FRU-801
1W8N 4573–4585 DAN-1649 Nonbinding sites

1ZYU 1284–1286 SKM-401 PDB ID Cavity center

2C9Q 777 CU-1103 1AM2 1277
2D7S 3787 GLU-1008 1QZ7 2509–3592
2GP4 12 MSE-1 1ZT9 1056–1188
2GSH 6260 MG-402 2DN2 749–1006
2GSV 1126 SO4-102 2GRK 369–380

2GSE 337–10,618

The cavity center is computed as the centroid of the given atoms or ring. The

atoms are listed by their PDB serial number.
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other feature selection approaches, such as F-ratio, Wil-

coxon statistic, and Shrunken Centroids.28

The use of Random Forests as a feature selection tool

is ideal in our case because the number of features we

are monitoring is greater than the number of examples.

Furthermore, its use for feature selection, coupled with

SVM for classification, outperforms SVM alone.29 We

perform feature selection in the R statistical computing

environment30 with the varSelRF package.28

Classification method

Support vector machines31 is a parametric statistical

linear classifier that performs a nonlinear mapping of the

input space to a new (potentially higher dimensional)

feature space to which a linear machine can be applied.

SVM constructs a hyperplane separating the positive

examples from the negative ones in the new space repre-

sentation. To avoid overfitting, SVM chooses the Optimal

Separating Hyperplane that maximizes the margin in fea-

ture space.32 The margin is defined as the minimal dis-

tance between the hyperplane and the training examples.

The selected data points that support the hyperplane are

called support vectors. A smaller number of support vec-

tors reflects a better generalization.33 SVMs achieve good

performance when applied to real problems.16,34

We use the R LIBSVM implementation35,36 and opted

for the nonlinear soft margin implementation together

with the RBF kernel as suggested by Hsu et al.37 The

SVM gamma and cost parameters are tuned independ-

ently for each run. They are incremented exponentially:

gamma ranges from 2214 to 22 and cost from 224 to 214.

Assessment of predictions

We estimate the classifier performance by a leave-one-

out cross-validation technique, also known as jackknife

cross-validation, performed over the datasets in Tables I

and III. A classifier is designed using (n-1) samples and

evaluated on the one remaining sample. This process is

repeated n times, once per sample. Leave-one-out cross-

validation derives an unbiased error estimate38 and is a

method of choice when the data is scarce: all the data is

used, in turn, for training and testing. Model selection

and parameter tuning is performed independently in

each fold to avoid selection bias. Leave-one-out has been

Table V
Chemical Features

Atom
type Functional group Residue PDB atom symbol Charge

Hydro-
phobicity

Hydrogen
bonding

Oxygen Amide peptide linkage All amino acids O 0 HPHIL HB
Oxygen Carboxyl C- terminus All amino acids OXT 2ve HPHIL HB
Oxygen Carboxyl GLU, ASP OE1, OE2, OD1, OD2 2ve HPHIL HB
Oxygen Amide GLN, ASN OE1, OD1 0 HPHIL HB
Oxygen Hydroxyl SER, THR, TYR OG, OG1, OH 0 HPHIL HB
Nitrogen Amide peptide linkage All amino acids

except PRO
N 0 HPHIL HB

Nitrogen Amide peptide linkage PRO N 0 HPHIL NHB
Nitrogen Amide GLN, ASN NE2, ND2 0 HPHIL HB
Nitrogen Amide LYS NZ 1ve HPHIL HB
Nitrogen Guanidino ARG NE 1ve HPHIL NHB
Nitrogen Guanidino ARG NH1, NH2 1ve HPHIL HB
Nitrogen Imidazole HIS ND1, NE2 0 HPHIL HB
Nitrogen Indole TRP NE1 0 HNEUT NHB
Carbon Amide peptide linkage All amino acids C 0 HNEUT NHB
Carbon C-alpha All amino acids CA 0 HNEUT NHB
Carbon Aliphatic chain (neutral) ALA, SER, THR, CYS,

ASP, ASN, GLU, GLN,
ARG, LYS, PRO

CB, CG, CD, CE 0 HNEUT NHB

Carbon Aliphatic chain (hydrophobic) LEU, VAL, ILE, MET CB, CG, CD, CE 0 HPHOB NHB
Carbon Aliphatic branch LEU, VAL, ILE CG1, CG2, CD1, CD2, CD1 0 HPHOB NHB
Carbon Aromatic PHE, TYR, TRP CG, CD1, CD2, CE1, CE2,

CZ, CG,CD1, CD2, CE2,
CE3, CZ2, CZ3, CH2

0 HPHOB NHB

Carbon Imidazole HIS CG, CD2, CE1 0 HPHOB NHB
Sulfur Sulfhydril CYS SG 0 HPHIL HB
Sulfur Thioether MET SD 0 HNEUT NHB
Oxygen Sulfate SO4 O1, O2, O3, O4 2ve HPHIL HB
Oxygen Phosphate 2HP O1, O2, O3, O4 2ve HPHIL HB
Oxygen Water HOH O 0 HPHIL HB
Calcium Ion CA CA 1ve HPHIL HB
Magnesium Ion MG MG 1ve HPHIL HB
Zinc Ion ZN ZN 1ve HPHIL HB

HPHIL, hydrophilic; HPHOB, hydrophobic; HNEUT, hydroneutral; HB, Hydrogen bonding; NHB, nonhydrogen bonding.
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successfully integrated with SVMs and kernel classi-

fiers.39,40

In addition to cross-validation we use a hold-out inde-

pendent testing set. The testing set (Tables II and IV) has

a train-to-test ratio of 2:1. The hold-out method has a

pessimistically biased estimate since different partition-

ings will give different estimates, but has a lower variance

and time complexity than leave-one-out.41

We use the percentage of misclassified samples as an

estimate of the generalization error rate.41 We also report

our algorithm’s sensitivity (ratio of true positives over

the sum of true positives and false negatives) and speci-

ficity (ratio of true negatives over the sum of true nega-

tives and false positives). We use the R IPRED package42

to perform error estimation.

RESULTS

Inclusion of water and ions

Before running the main classifier, we test the need to

include water and ion features in our algorithm. Ordered

water molecules and ions, such as sulfate, phosphate, cal-

cium, magnesium, and zinc are known to have an effect

on ligand specificity of carbohydrate binding sites.7 We

perform leave-one-out SVM cross-validation experiments

while discarding water molecules, ions or both (Table VI).

We also show the results of a preliminary experiment

performed over a subset of our dataset which lacks the

sugar-binding sites negatives of Table II. We run these

experiments while including charge, hydrogen bonding,

hydrophobicity and residue properties. The results clearly

show that the inclusion of water and ions together in the

computation yields similar or better results than the

exclusion of either one (see Table VI).

Physio-chemical descriptors

We perform glucose-binding site recognition over the

training and cross-validation dataset. We use each

physio-chemical descriptor alone and compare the SVM

error with and without the RF feature selection. We plot

the most relevant features of each property. Table VII

shows the SVM error, sensitivity and specificity of each

experiment. It also reports the number of support

vector instances as a percentage of the total number of

instances.

Charge

Charge performs poorly as a discriminating property

on its own, with an error of 24.32%. However, after fea-

ture selection, it returns a much better result of 14.86%

improving both sensitivity and specificity. The five

selected features reflect a prominence of negatively

charged groups in the glucose binding site (see Fig. 2).

Negatively charged atoms are common in layer 3 and

subsequent layers, they seemed to be a distinguishing

characteristic of glucose binding sites. The negatively

charged atoms of layer 3, which are in direct contact

with the glucose molecule, constitute the most discrimi-

nating feature. In contrast, layers 1 and 2 overlap with

the glucose molecule’s own space. Atomic presence in

layer 1, which is 3 Å wide, generates a large steric hin-

drance and specifies nonbinding sites. A high atom con-

centration at layer 2 specifies small moiety nonsugar

binding negatives. Since charge-neutral atoms are much

more abundant in a protein than charged atoms, RF

selects charge-neutral as features for layers 1 and 2.

Hydrogen bonding

Applying feature selection to hydrogen bond alone

leads to a small drop in error rate from 17.57 to 14.86%,

while the support vector percentage increases from 41.89

Table VI
Testing the Importance of Water and Ions to Glucose Binding

Properties
Error over
dataset (%)

Error over subset
of dataset (%)

Include water and ions 18.92 7.81
Discard water 18.92 10.94
Discard ions 20.27 7.81
Discard water and ions 20.27 12.5

Table VII
Comparison of SVM’s Cross-Validation Performance on Chemical and Residue Properties With and Without RF Feature Selection

Property RF
Number of
features

SVM
error (%)

Sensitivity
(%)

Specificity
(%)

Support
vectors (%)

Charge False 24 24.32 79.31 73.33 77.03
True 5 14.86 86.21 84.44 44.59

H-Bond False 16 17.57 82.76 82.22 41.89
True 3 14.86 82.76 86.67 47.30

Hydro False 24 16.22 72.41 91.11 67.57
True 15 12.16 82.76 91.11 40.54

Residues False 48 21.62 48.28 97.78 100.00
True 19 9.46 93.10 88.89 41.89

Charge 1 H-Bond 1 Hydro 1 Residue False 112 18.92 75.86 84.44 79.73
True 24 8.11 89.66 93.33 40.54
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to 47.30%. Since a lower percentage of support vectors

reflects better generalization, the increase offsets the per-

formance gain due to feature selection. Figure 3 shows a

plot of the selected features. The positive and negative

data sets differ in the distribution of their hydrogen

bonding atoms. Glucose-binding and sugar-binding sites

have more hydrogen-bonding atoms at layer 3 than sites

that are not sugar-binding. A high atom concentration at

layer 1 indicates a large steric hindrance and specifies

nonbinding sites. We revisit the issue of hydrogen bonds

later in this article.

Hydrophobicity

Hydrophobicity is the best discriminating chemical

property with an error rate of 16.22% and a 91.11%

specificity. Feature selection lowers the error rate to

12.16% while improving sensitivity to 82.76% and lower-

ing the percentage of support vectors to 40.54%. Figure 4

plots the seven most relevant hydrophobicity features.

The subsequent eight features have RF importance scores

close to zero. Most hydrophobicity features have a low

importance score, which reflects a small information

gain. Although most relevant features are hydrophilic, we

notice a hydrophobic feature at layer 7.

Residue

Before feature selection, the residue classifier has a

100% support vectors percentage (see Table VII). This

classifier memorizes the data, but is not able to general-

ize. Feature selection cuts the support vectors to 41.89%,

Figure 2
Importance of hydrogen bond features according to RF. HB stands for

hydrogen-bonding feature and L# for the layer number.

Figure 3
The seven highest hydrophobicity feature importance measures as

returned by RF. HPHIL stands for hydrophilic feature, HNEUT for

hydroneutral feature, HPHOB for hydrophobic feature, and L# for the

layer number.

Figure 4
The eight highest residue feature importance measures as returned by

RF. ALIPH stands for aliphatic residue feature, CAR for carboxylate

residue feature, RNEUT for neutral residue feature, ARO for aromatic

residue feature and L# for the layer number.
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while achieving a 9.46% error rate. Sensitivity (93.10%)

and specificity (88.89%) are also high, with a slight bias

toward detecting true positives. Figure 5 plots the eight

most relevant residue features. The subsequent 11 fea-

tures have RF importance scores close to zero. The high

information gain of carboxylate-bearing acidic residues

suggests a high propensity of the negatively charged glu-

tamate (Glu) and aspartate (Asp) amino acids to occur

in the glucose binding sites. The most relevant residue

features also include aromatic residues, known to play a

role in glucose docking.

Combining chemical and residue features

The results of combining chemical and residue features

confirm our previous findings. This combination yields

the best discriminating feature subset. With 24 selected

features, it drops the error rate to 8.11% and the support

vectors percentage to 40.54%, the lowest levels in our

analysis (see Table VII). It achieves a high specificity rate

of 93.33% and a slightly lower sensitivity rate of 89.66%.

Although the exclusive use of residue features improves

the sensitivity to 93.10%, the specificity, error rate and

support vectors percentage are worse than the corre-

sponding values for combinations of chemical and resi-

due features. Table VIII lists the 24 selected features. Fig-

ure 6 plots the seven most relevant features. As seen

from these results, the layer eight acidic carboxylate resi-

due feature ranks as the most important in the identifica-

tion of a glucose binding site, closely followed by layer

three hydrogen bonding and hydrophilic chemical

features. All these features characterize glucose binding

sites. The next clustering of RF importance scores are the

layers 1 and 2 neutral charge features, characterizing

nonsugar binding sites, and layer 3 negative charge and

layer 6 acidic carboxylate residue features. To improve

readability, Figure 6 does not show the remaining fea-

tures of Table VIII, which follow at a lower RF impor-

tance score level.

Validation over the testing set

To validate the classifier of Table VIII, we test it using

the separate and independent testing set (see Tables II

and IV). Our model misclassifies two positive and two

negative entries. We thereby achieve a 10.81% error rate,

a 85.71% sensitivity and a 91.30% specificity. These

results parallel the cross-validation estimates, despite a

slightly lower performance. The hold-out testing method

is known to produce pessimistically biased estimates.41

Figure 5
The seven highest atomic and residue feature importance measure as

returned by RF. CNEUT stands for neutral charge, NEG for negative

charge, HB for hydrogen-bonding, HPHIL for hydrophilic, CAR for

carboxylate-bearing residues and L# for the layer number.

Table VIII
The Feature Combination Achieving the Best Results

Property Features L1 L2 L3 L4 L5 L6 L7 L8

Charge Negative X X X
Neutral X X
Positive

H-Bond Non H-Bonding X
H-Bonding X X X

Hydrophobicity Hydrophilic X X X
Neutral X X
Hydrophobic X X

Residues Aromatic [Phe, Tyr, Trp]
Aliphatic [Ala, Ile, Leu, Met, Val]
Neutral [Asn, Cys, Gln, Gly, Pro, Ser, Thr] X X X
Acidic (Carboxylate) [Asp, Glu] X X X X X
Basic [Arg, Lys]
Histidine [His]
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DISCUSSION

Chemical properties

We first establish that ordered water molecules and

ions that appear in the crystallized x-ray PDB structure

are important features to add to our algorithm, thereby

confirming the findings of Quiocho and Vyas.7 We pro-

vide further evidence that prosthetic groups or crystallo-

graphic water molecules are a physical extension of the

binding pocket, being as involved in coordinating the

bound ligand as amino acids are.

Our next results show that, of the chemical properties,

hydrophobicity outperforms both charge and hydrogen

bonding in its importance in defining a glucose binding

site. Charge has the same error as hydrogen bond

(14.86%), but a smaller support vectors percentage. This

is surprising since hydrogen bond would have been

expected to be more important for glucose docking than

charge and hydrophobicity.

Most protein-ligand binding requires the establishment

of hydrogen bonds between the protein and the ligand,

which means that atoms and residues capable of estab-

lishing hydrogen bonds abound in most binding-site

grooves. Hence the hydrogen bond property may not be

able to discriminate between our positive glucose-binding

data set and our negative nonglucose-binding data set.

To test this hypothesis, we build a classifier that exclu-

sively uses, as a negative data set, domains that do not

bind any ligand (such as surface residues, transmembrane

helices, and others). These nonbinding sites are not

biased with respect to hydrogen bonding atoms and such

a classifier should be able to discriminate primarily

according to the hydrogen bonding property. We use the

same 29 positive entries from Table I and a negative set

of 28 sites that do not bind any ligand (see Supporting

Information). We perform the runs on each of the chem-

ical properties, namely charge, hydrogen bond and

hydrophobicity (Table IX).

As expected, the hydrogen bond feature outperforms

charge and hydrophobicity for SVM classification error

and for the support vector percentage. A comparison of

the Tables VII and IX results reveals a great improvement

in classification accuracy, simply by using a negative data

set that is less similar in function and shape to the posi-

tive data set. Both the hydrogen bond high discrimina-

tion capacity and the sharp drop in the classification

error confirm our suggestion. Hydrogen bonding is a key

property in glucose-binding sites, but it is not a good

discrimination criteria vis-a-vis other binding sites.

Feature selection findings

Feature selection pinpoints the difference in spatial

configuration between positive and negative binding-site

data sets. Negative nonbinding sites and small groove

nonsugar binding-sites have a higher atomic presence in

layers 1 and 2, both of which overlap with the bound

glucose molecule’s own space. Positive binding sites tend

to have most of their discriminating chemical features in

layer 3, in direct contact with the bound glucose.

Chemically, charge feature selection reveals the relative

negativity of layers 3 and above (see Fig. 2). This finding

is reflected by the high propensity of the negatively

charged carboxylate-bearing residues in layers 3 and above

(see Fig. 5). Both carboxylate-bearing residues, glutamate

(Glu) and aspartate (Asp) were identified by Taroni et al.8

as having a high sugar interface propensity level.

Feature selection over the combined chemical and resi-

due properties shows that hydrogen bonding feature in

layer 3 has one of the highest RF scores (see Fig. 6). In

their review of glucose binding sites, Quiocho and Vyas7

identify the planar polar residues (Arg, Asn, Asp, Gln,

Glu) as involved in a network of hydrogen bonds with

the docked glucose. We have already established the

prominence of Asp and Glu. Asn and Gln are both part

Figure 6
The 7 highest atomic and residue feature importance measure as

returned by RF. CNEUT stands for neutral charge, NEG for negative

charge, HB for hydrogen-bonding, HPHIL for hydrophilic, CAR for

carboxylate-bearing residues and L# for the layer number.

Table IX
SVM Trained Using an Exclusively Nonbinding Sites Negative Set

Property SVM error (%) Support vectors (%)

Charge 5.26 73.68
Hydrogen bond 3.51 61.40
Hydrophobicity 5.26 68.42
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of our ‘‘neutral’’ amino acid subgroup, a group that is

relevant to glucose-binding classification (see Fig. 5 and

Table VIII).

As Taroni et al.8 report, the sugar binding sites are

neither hydrophobic nor hydrophilic. Hexoses exhibit a

dual hydrophobic-hydrophilic nature and both antagonist

properties are involved in hexose docking. Many glucose

binding sites have both a hydrophilic region which estab-

lishes hydrogen bonds and a hydrophobic region which is

responsible for the pyranose ring stacking over aromatic

residues. This fact may explain why both hydrophobic

and hydrophilic chemical features have high RF scores in

hydrophobicity feature selection (see Fig. 4).

A constant feature of carbohydrate docking is their

pyranose ring docking against an aromatic resi-

due.7,13,43 In fact, the COTRAN galactose binding site

predictor4 is based on identifying exposed aromatic resi-

dues. Residue feature selection shows that the aromatic

feature plays an important role in discrimination (see

Fig. 5). Its presence in layer 5 helps discriminate glucose

from nonglucose binding sites. However, this feature was

not selected in the final model of Table VIII. Unlike

other sugars, glucose stacks over an aromatic residue in

most, but not all, glucose binding sites.43 Although Suja-

tha et al.43 found positional and energetic differences

between glucose and galactose docking, they concluded

that aromatic residues may not play a significant role in

distinguishing glucose from galactose binding. Our classi-

fier, too, does not rely on this feature.

Analysis of final model

Using feature selection and leave-one-out cross-valida-

tion, we select a subset of 24 features (Table VIII) that

achieve a low 8.11% error. Our model misclassifies three

positive glucose binding sites and three negative nonglu-

cose binding sites (Table X). It correctly rejects all non-

binding sites, the easiest negative subgroup.

One false positive is a nonsugar binding site, 1A53,

which binds indole-3-glycerol phosphate. This compound

is �9 Å, not much bigger than glucose, and this protein

is a member of the b-barrel protein family which

includes many glucose binding proteins (cf. SCOP data-

base44). It is therefore not unlikely that our algorithm

might misclassify it. The other two false positives are

nonglucose sugar binding sites, a negative subgroup

which we populated with structures that were highly sim-

ilar to glucose-binding sites, as a more challenging test to

the algorithm. In fact, 1AXZ is a galactose binding site,

while 1BQP binds mannose. Galactose, mannose and glu-

cose binding sites are very similar. Nevertheless, our

model correctly rejected eight nonglucose sugar binding

sites, namely five galactose and mannose binding sites,

and all fructose, sucrose and glucose-derivative sites that

were tested.

A closer look at the false negatives explains their mis-

classification. 1H5U contains a pyridoxal-50-phosphate
(PLP) molecule in the binding pocket as a coligand with

the glucose, thus it is not strictly speaking binding only

glucose. This highlights an idea for future expansion of

our algorithm, namely to add chemical features for possi-

ble cofactors. In contrast, 1HSJ is crystallized with glu-

cose, but the protein in vivo actually binds maltose, a di-

saccharide composed of two glucose units. The binding

site is thus larger and topologically different from single

glucose binding sites. Similarly, 1ISY in vivo binds xylan,

even though here it has been crystallized with a glucose.

Thus, even though glucose was used in the crystallization

of the above two structures, they are not in essence glu-

cose-specific binding proteins. In that sense, our algo-

rithm demonstrated some ability to distinguish between

true glucose-binding sites and ‘‘artificial’’ glucose binding

sites resulting from crystallization conditions.

When applied to the hold-out testing set, the final

model of Table VIII returns two false positives (1W8N,

1KZB) and two false negatives (1Z8D, 2O9T). 1W8N was

used as a nonsugar binding site which binds 2-deoxy-

2,3-dehydro-N-acetyl-neuraminic acid. However, this

protein also binds galactose, albeit at a different binding

site, and close inspection of its structure reveals that its

two binding sites are not dissimilar, which would explain

its misclassification. 1KZB binds mannose, a hexose very

similar to glucose, as explained above.

As for the false negatives, both are unusual structures.

1Z8D is the structure of a glycogen phosphorylase in an

intermediate state, and the binding pocket is closed in

tight on the glucose molecule. In addition, 1Z8D has a

modified lysine inside the binding pocket (LLP680)

which would alter its conformation. Although this is not

in contact with the glucose, it could affect the recogni-

tion of the binding site by our algorithm.

2O9T is an exo-b-glucosidase that attaches to the end

of a large carbohydrate complex and nicks off the glucose

molecules one by one. The crystal for that x-ray structure

was generated by transferring a seed from another crystal

into crystallization solution saturated with cellotetraose,

and after 15 min was flash-frozen to 120 K8.45 Glucose

is thus present in the crystal structure as a product of

substrate hydrolysis, and it might be that the crystallized

form depicts the structure of the complex halfway

between tight product binding and product release. This

is supported by the observation that when crystallized

Table X
Cross-Validation Entries Misclassified by Final Model

Dataset subgroup
Dataset
size

Misclassified
entries

Glucose binding sites 29 1H5U, 1HSJ (GLC-672),
1ISY (GLC-1471)

Non-sugar binding sites 24 1A53
Non-glucose sugar binding sites 10 1AXZ, 1BQP
Non-binding sites 11 None
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with a covalently-bound glucose-like inhibitor (2F-

DNPG), which in theory resembles a transition state in-

termediate, the glucose moeity forms slightly different

contacts with the binding pocket.

Given these encouraging results using an algorithm

that resolves the binding site into spherical layers, we

expect that a second-generation algorithm that takes the

analysis one step further by including the angular orien-

tation of the sugars would perform even better. Shape-

based approaches are frequently used in drug design,46

and extrapolations from those techniques could be made

for applications in glucose binding site predictions.

Comparison with other programs

This work develops the first glucose-binding site pre-

dictor program, which means that comparisons with

other programs have to be based on different data sets.

We present a list of carbohydrate binding site predictor

programs and the data sets they used (Table XI). We add

the performance scores simply to give the reader an idea

of the accuracy of each program within its own data set.

This list includes the COTRAN galactose binding site

identifier of Sujatha and Balaji,4 the galactose-binding

site identifier of Malik and Ahmad,13 and the two gen-

eral carbohydrate binding site predictors of Taroni et al.8

and Shionyu-Mitsuyama et al.11 The last two predictors

are not based on a binary classification scheme and only

output predicted carbohydrate-binding sites without

offering sensitivity and specificity values. Note that

COTRAN is validated on a highly skewed data where the

660 negatives outnumber the 160 positives. This discrep-

ancy may explain the high specificity and the low error

score. From these published results, our SVM glucose

classifier reports a low error rate and the highest sensitiv-

ity score based on our own cross-validated dataset of glu-

cose binding and nonbinding protein domains.

CONCLUSIONS

This article reports on the first classifier program that

aims to predict glucose binding sites. It demonstrates

that SVMs can make an important contribution to this

field, especially if coupled with Random Forests feature

selection. Given the center of a protein surface groove,

our system uses SVM to correctly detect a glucose bind-

ing site 89.66% of the time and correctly reject a nonglu-

cose binding site 93.33% of the time. We use Random

Forests to determine different chemical and residue prop-

erties that characterize a glucose binding site and showed

that glucose binding sites can be modeled using a limited

number of basic features. An SVM classification using a

small subset of the initial features gives an error as low

as 8.11%. Our results support the relevance of ordered

water molecules and ions in determining glucose-binding

specificity and highlight the importance of carboxylate

residues in glucose binding. Finally we note a high con-

centration of negatively charged atoms in direct contact

with the bound glucose.

A direct application of this work is the prediction of

potential glucose binding sites. Our system can form the

core of a glucose binding-site predictor package; such a

program identifies protein groove centers and may feed

the center coordinates to our program for functional pre-

diction. Such a predictive system can even parse the

whole PDB to predict and annotate potential glucose

binding sites. The utility of this tool for functional pre-

dictions and eventually for serving genome annotation is

potentially great.
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