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for Systematic Default and Recovery Risk 
 

 

 

 

Abstract 

The following article develops a simultaneous multi-factor model for defaults and recoveries. 

Applying this model, risk parameters can be forecast using systematic and idiosyncratic risk fac-

tors and their implied correlations. The theoretical framework is accompanied by an empirical 

analysis in which a negative correlation between defaults and recoveries over the business cycle 

is observed. In the study, default and recovery rates are modeled by business cycle indicators and 

the properties of the economic and regulatory capital given these risk drivers are shown.  
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Modeling Default and Recovery Risk 

Today’s banks face the challenge of forecasting losses and loss distributions in relation to their 

credit risk exposures. It can be observed that most banks choose a modular approach which is in 

line with the current proposals of the Basel Committee on Banking Supervision [2004], where 

selected risk parameters such as default probabilities, exposures at default and recoveries given 

default are modeled in independent modules. However, the assumption of independence is ques-

tionable. Previous studies have shown that default probabilities and recovery rates given default 

are negatively correlated (e.g., Carey [1998], Hu/Perraudin [2002], Frye [2003], Altman et al. 

[2003] or Cantor/Varma [2005]). A failure to take these dependencies into account will lead to 

incorrect forecasts of the loss distribution and the derived capital allocation. 

 

The present paper extends a model introduced by Frye [2000]. Modifications of the approach can 

be found in Pykhtin [2003] and Düllmann/Trapp [2004]. Our contribution is original with regard 

to the following three aspects. First, we develop a theoretical model for the default probabilities 

and recovery rates and show how to combine observable information with random risk factors. In 

comparison to the above mentioned models, our approach explains the default and the recovery 

rate by risk factors which can be observed at the time of the risk assessment. According to the 

current Basel proposal, banks can opt to provide their own recovery rate forecasts for the regula-

tory capital calculation. Thus, there is an immediate industry need for modeling.  

 

Second, we show a framework for estimating the joint processes of all variables in the model. 

Particularly, the simultaneous model allows the measurement of the correlation between the de-

faults and recoveries given the information. In this model statistical tests for the variables and 

correlations can easily be conducted. An empirical study reveals additional evidence on the corre-

lations between risk drivers of default and recovery. Note that Cantor/Varma [2003] essentially 

analyze the same dataset and identify seniority and security as the main risk factors explaining 

recovery rates. The present paper extends their approach by developing a framework for model-

ing correlations between factor-based models for default and recovery rates. 
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Third, the implications of our results on economic and regulatory capital are shown. Note that 

according to the current proposals of the Basel Committee only the forecast default probabilities 

and recovery rates but no correlation estimates enter the calculation of the latter. We demonstrate 

the effects of spuriously neglecting correlations in practical applications. 

 

The rest of the paper is organized as follows. The theoretical framework is introduced in the sec-

ond section (‘Model and Estimation’) for a model using historic averages as forecasts and a 

model taking time-varying risk factors into account. The third section (‘Data and Results’) in-

cludes an empirical analysis based on default and recovery rates published by Moody’s rating 

agency and macroeconomic indices from the Conference Board. Section four (‘Implications for 

Economic and Regulatory Capital’) shows the implications of the different models on the eco-

nomic capital derived from the loss distribution and the regulatory capital proposed by the Basel 

Committee. Section five (‘Discussion’) concludes with a summary and discussion of the findings.  

 

Model and Estimation 

The Model for the Default Process 

 

Our basic framework follows the approach taken by Frye [2000]. We assume that  firms of one 

risk segment are observed during the time periods t (t=1,…,T). For simplicity these firms are as-

sumed to be homogenous with regard to the relevant parameters and a latent variable describes 

each obligor i’s (i=1,…, ) credit quality  

tn

tn

 ittit UwFwS ⋅−+⋅= 21  (1) 

( ).  and [ 1,0∈w ] )( 10,~ NFt ( )10,~ NUit  are independent systematic and idiosyncratic standard 

normally distributed risk factors. The Gaussian random variable  may be interpreted as the 

return on a firm’s assets and therefore  is often called ‘asset correlation’.  

itS

2w

A default event occurs if the latent variable crosses a threshold c   
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 cSit <  (2) 

which happens with probability ( )cΦπ =  where ( ).Φ  is the standard normal cumulative density 

function. If an obligor is in default the indicator variable  equals one and zero otherwise:  itD

  (3) ⎩
⎨
⎧

=
else0

 periodin  defaults obligor 1 ti
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Conditional on the realization  of the systematic risk factor, default events are assumed to be 

independent between obligors, i.e., each firm defaults with the conditional default probability   
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The Model for the Recovery 

 

In modeling the recovery rate  of a defaulted obligor we follow Schönbucher [2003] and 

Düllmann/Trapp [2004] and use a logistic normal process: 

itR
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with the transformed recovery rate 

 ittit ZXbY +⋅+= μ~   (6) 
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where , ( )1,0~ NX t ( )20 δ,~ NZit  are independent systematic and idiosyncratic factors and μ  

and  are parameters. These idiosyncratic factors are independent from the idiosyncratic factors 

which drive the latent default variable. Compared to the normal distribution assumption for re-

covery rates used in Frye [2000] the chosen transformation has the advantage that recovery rates 

are bounded between 0% and 100%. Note that any other cumulative density function could be 

used. As a matter of fact, we estimated models using a standard normal transformation and re-

ceived similar results. 

b

  

If we observe a homogenous segment of borrowers, the transformed recovery rate is given by  
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Therefore, we approximate the average transformed recovery rate by  

 ttt XbYY ⋅+=≈ μ~  (9) 

which is driven only by a systematic risk factor and normally distributed ( )2bNYt ,~ μ . The link 

between the recovery and default process is introduced by modelling the dependence of the two 

systematic risk factors. Since both  and  are marginally normal distributed we model their 

dependence by assuming that they are bivariately normal distributed with correlation parameter 

tF tX
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ρ . Alternatively, a copula which is different from the Gaussian could have been assumed. It then 

follows that the average transformed recovery rate and latent default triggering variable have a 

correlation 

 

 ( ) ρ⋅= wYS tit ,Corr   (10) 

The correlation equals one in the special case that a single systematic factor drives both the de-

fault events as well as the recoveries given these events.  

 

A Multi-Factor Model Extension 

 

So far, we presented a model for systematic risk in defaults and recoveries where systematic risk 

is driven by common factors which are not directly observable. These unobservable factors in-

duce uncertainties into the forecasts of loss distributions. The higher their impact is, the more 

skewed ceteris paribus the resulting distributions are and the higher key risk measures such as the 

Value-at-Risk or the Conditional Value-at-Risk will be. Since the true parameters of the models 

are unknown, the severity of the impact must be estimated from observable data.  

 

As an alternative to the models from above, we analyze a model, which has already been used in 

the context of default modeling. Examples are Rösch/Scheule [2004] and Hamerle/Liebig/Rösch 

[2003]. These models show that part of the cyclical fluctuations in default rates can be attributed 

to observable systematic risk factors. Once these factors are identified and incorporated into the 

model, a large part of uncertainty from unobservable factors can be explained. These types of 

models are also exhibited in Heitfield [2005] and are related to a concept broadly known as a 

point-in-time approach because losses are forecast based on information on the prevailing point 

of the business cycle.  

 

In our extension, it is assumed that the default threshold for the factor model of the default proc-

ess fluctuates through time. Alternatively, we could introduce a factor model with time-varying 
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mean. This variation with time is introduced by K observable macroeconomic risk factors, such 

as GDP growth or interest rates. We assume that these state variables are observed in prior time 

periods and denote them by ( )D
Kt

D
t

D
t zz ,,z 1111 −−− = L . As a result, the conditional default 

probability for each borrower within the risk segment is modified (compare Rösch [2003] and 

Heitfield [2005] who additionally condition default probabilities on firm-specific factors): 
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where ( 'γ )Kγγ L1=  denotes a vector of exposures to the common observable factors and 

0γ  a constant. The mean of this conditional default probability with respect to the unobservable 

standard normally distributed factor  is given by  tf
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D
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In a similar way, we assume that the mean of the log-transformed systematic recovery rate de-

pends on common macroeconomic factors ( )R
Lt

R
t

R
t zz ,,z 1111 −−− = L . This vector may or may 

not contain factors which also describe the default process:  

  (13) t
R
tt XbY ⋅++= − *zβ'*

10β

where ( L )ββ L1=β  denotes a vector of exposures and 0β  the constant.  

 

If models (12) and (13) hold, i.e., defaults and recoveries are driven by observable lagged sys-

tematic risk factors, it can be shown that their means are fluctuating with the change of the econ-

omy. Moreover, if these models hold, then model (4) and (9) with constant mean are misspecifi-

cations. As a consequence, fitting model (4) and (9) to observable data will have the effect that all 
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time variation is captured in the estimates of the exposures to the unobservable random factors 

 and . On the other hand, attributing time variation to observable factors will lead to lower 

parameter estimates for the influences of the unobservable factors, thereby reducing uncertainty 

with regard to the forecasts of the loss distributions. We will demonstrate these effects on the 

economic and regulatory capital below. 

tF tX

 

Model Estimation 

 

Once the models are specified an algorithm for estimating the parameters from observable data is 

needed. Following work by Frye [2000] we choose the Maximum-Likelihood method. In exten-

sion to these studies, we suggest an ML-procedure which allows the joint estimation of all coeffi-

cients, including those of models (11) and (13) with observable factors.  

 

Let us consider a realization  of the unobservable random factor . Given this realization the 

default events are independent and the number of defaults  is conditionally binomial 

distributed with probability distribution  
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with ( )tfπ  as in (4). Note that the transformed recovery rate can also be modeled given a realiza-

tion . It holds that the random vector tf ( ), 't tY  is normally distributed with F
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From the law of conditional expectation it follows that  has conditional mean  tY

 ( ) ( ) tttt fbfYEf ⋅⋅+== ρμμ  (15) 

and conditional standard deviation 

 ( ) ( ) 21Var ρσ −⋅=+= bfYf ttt   (16) 

Hence, the joint density  of  defaults and a transformed recovery rate  given  is sim-

ply the product of the density of  and the probability of , i.e., 
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Note,  depends on the unknown parameters of the default and the recovery process. Since the 

common factor is not observable we establish the unconditional density 

( ).g
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Observing a time series with T periods leads to the final unconditional log-likelihood function 
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This function is optimized with respect to the unknown parameters. In the appendix we demon-

strate the performance of the approach by Monte-Carlo simulations. 

 

For the second type of models which include macroeconomic risk factors, we replace ( )tfπ  from 

(4) by ( )t
D
t f,z* 1−π  from (11) and ( )tfμ  from (15) by  and obtain the 

analogous log-likelihood 

t
R
t fb ⋅⋅++ − ρβ 10 zβ'

( )ργβ ,,γ,,,β, wbl 00 .  

 

Data and Results 

The Data 

 
The empirical analysis is based on the global corporate issuer default rates and issue recovery 

rates published by Moody’s [2005]. In this data set, default rates are calculated as the ratio of 

defaulted and total number of rated issuers for a given period. According to Moody’s [2004], a 

default is in essence recorded if  

• Interest and/or principal payments are missed or delayed, 

• Chapter 11 or Chapter 7 bankruptcy is filed, or 

• Distressed exchange such as a reduction of the financial obligation occurs. 

Most defaults are related to publicly traded debt issues. Therefore, Moody’s defines a recovery 

rate as the ratio of the price of defaulted debt obligations after 30 days of the occurrence of a de-

fault event and the par value.  The recovery rates are published for different levels of seniority 

such as total (Total), senior secured (S_Sec), senior unsecured (S_Un), senior subordinated 

(S_Sub), subordinated (Sub) and junior subordinated debt. We excluded the debt category junior 

subordinated from the analysis due to a high number of missing values. 

 

In addition, the composite indices published by The Conference Board (www.tcb-indicators.org) 

were chosen as macroeconomic systematic risk drivers, i.e., the 

• Index of 4 coincident indicators (COINC) which measures the current health of the U.S. 

economy. The index includes the number of employees on non agricultural payrolls, personal 
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income less transfer payments, index of industrial production and manufacturing as well as 

trade sales. 

• Index of 10 leading indicators (LEAD) which measures the future health of the U.S. econ-

omy. The index includes average weekly hours in manufacturing, average weekly initial 

claims for unemployment insurance, manufacturers’ new orders of consumer goods and mate-

rials, vendor performance, manufacturer’s new orders of non-defense capital goods, building 

permits for new private housing units, stock price index, money supply, interest rate spread of 

10-year treasury bonds less federal funds and consumer expectations. 

The indices are recognized as indicators for the U.S. business cycle. Note that for the analysis, 

growth rates of the indices were calculated and lagged by three months. 

 

Due to a limited number of defaults in previous years, the compiled data set was restricted to a 

time period from 1985 to 2004 and split into an estimation sample (1985 to 2003) and a forecast 

sample (2004). Exhibit 1 and Exhibit 2 include descriptive statistics and Bravais-Pearson correla-

tions for default rates, recovery rates and time lagged macroeconomic indicators of the data set. 

Note that default rates are negatively correlated with the recovery rates of different seniority 

classes and macroeconomic variables. 

 

[*** Insert Exhibit 1 about here ***] 

 

[*** Insert Exhibit 2 about here ***] 

 

Exhibit 3 shows visually that both, the default and recovery rate fluctuate over time in opposite 

directions. This signals that default and recovery rates show a considerable share of systematic 

risk which can be explained by time varying variables.  

 

[*** Insert Exhibit 3 about here ***] 

 

Exhibit 4 contains similar graphs for the recovery rates of the different seniority classes. Note 

that the recovery rates increase with the seniority of a debt issue and show similar patterns over 

time. This indicates that they may be driven by the same or similar systematic risk factors.  
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[*** Insert Exhibit 4 about here ***] 

 

Next to the business cycle and the seniority, it is plausible to presume that recovery rates depend 

on the industry, the collateral type, the legal environment, default criteria as well as the credit 

quality associated to an obligor. Exhibit 5 and 6 show the recovery rates for different industries 

and issuer credit ratings as published by Moody’s [2004 and 2005]. Refer to these documents for 

a more detailed analysis of the properties of recovery rates. 

 

[*** Insert Exhibit 5 about here ***] 

 

[*** Insert Exhibit 6 about here ***] 

 

Estimation Results 

 

Based on the described data set, two models were estimated: 

• Model without macroeconomic risk factors (equations (4) and (9)): throughout the following 

text we call this model a through-the-cycle model because the forecast default and recovery 

rate equal the historic average from 1985 to 2003; 

• Model with macroeconomic risk factors (equations (11) and (13)); we call this model a point-

in-time model because the forecast default and recovery rates fluctuate over time. 

 

Note that within the credit risk community, a discussion on the correct definition of a through-

the-cycle and point-in-time model exists in which the present article does not intend to partici-

pate. We use these expression as stylized denominations, being aware that other interpretations of 

these rating philosophies may exist. Compare Heitfield [2005] for a discussion. 

 

Due to the limitations of publicly available data we use Moody's global default rates, total recov-

eries, and recoveries by seniority class. Exhibit 7 shows the estimation results for the through-
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the-cycle model (4) and (9) and Exhibit 8 for the point-in-time model (11) and (13) using the 

variables COINC and LEAD as explanatory variables. In the latter model we choose both vari-

ables due to their statistical significance.  

 

[*** Insert Exhibit 7 about here ***] 

 

[*** Insert Exhibit 8 about here ***] 

 

First, consider the through-the-cycle model. Since we use the same default rates in each model, 

the estimates for the default process are similar across models, and consistent to the ones found in 

other studies (compare Gordy [2000] or Rösch [2005]). The parameter estimates for the (trans-

formed) recovery process reflect estimates for the mean (transformed) recoveries and their fluc-

tuations over time. Most important are the estimates for the correlation of the two processes 

which are positive and similar in size to the correlations between default rates and recovery rates 

found in previous studies. Note that this is the correlation between the systematic factor driving 

the latent default triggering variable ‘asset return’  and the systematic factor driving the re-

covery process. Therefore, higher ‘asset returns’ (lower conditional default probabilities) tend to 

come along with higher recovery. A positive value of the correlation indicates negative associa-

tion between defaults and recoveries. The default rate decreases while the recovery rate increases 

in boom years and vice versa in depression years. 

itS

 

Next, consider the point-in-time model. The default and the recovery process is driven by one 

macroeconomic variable in each model. The parameters of all macroeconomic variables show a 

plausible sign. The negative sign of the COINC index in the default process signals that a positive 

change of the index comes along with subsequent lower number of defaults. The positive signs of 

the variables in the recovery process indicate that higher recoveries follow a positive change in 

the variable. In addition, most variables are significant at the 10% level. The only exception is the 

parameter of the macroeconomic index LEAD for the senior subordinated recovery rate, which 

indicates only a limited exposure to systematic risk drivers. Note that the influence of the system-

atic random factor is reduced in each process by the inclusion of the macroeconomic variable. 
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While we do not mean to interpret these indices as risk drivers themselves, but rather as proxies 

for the (future) state of the economy, these variables are able to explain part of the previously 

unobservable systematic risk. The remaining systematic risk is reflected by the size of  and  

and is still correlated but not explainable by our proxies.  

w b

 

Once the point estimates for the parameters are given, we forecast separately defaults and recov-

eries for year 2004. Exhibit 9 shows that the point-in-time model leads to forecasts for the default 

and recovery rates that are closer to the realized values than the ones derived from the through-

the-cycle model. 

 

[*** Insert Exhibit 9 about here ***] 

 

Implications for Economic and Regulatory Capital 

 

Since the main contribution of our approach lies in the joint modeling of defaults and recoveries, 

we now apply the forecast default rates, recovery rates for the year 2004 as well as their esti-

mated correlation to a portfolio of 1,000 obligors. To keep things simple we take the senior se-

cured class as an example and assume a credit exposure of one monetary unit for each obligor.  

 

Exhibit 10 and Exhibit 11 compare two forecast loss distributions of the through-the-cycle model. 

To demonstrate the influence of correlation between the processes we compare the distribution 

which assumes independence to the distribution which is based on the estimated correlation be-

tween the default and recovery rate transformations of 0.7049. Economic capital or the credit 

portfolio risk is usually measured by higher percentiles of the simulated loss variable such as the 

95-, 99-, 99.5- or 99.9- percentile (95%-, 99%-, 99.5%- or 99.9%-Value-at-Risk). It can be seen 

that these percentiles are considerably higher if correlations between default and recovery rates 

are taken into account. If we take the 99.9%-Value-at-Risk as an example, the percentile under 

dependence exceeds the percentile under independence by approximately 50 percent. In other 

words, if dependencies are not taken into account which is a common feature in many of today’s 

credit risk models the credit portfolio risk is likely to be seriously underestimated. 
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[*** Insert Exhibit 10 about here ***] 

 

[*** Insert Exhibit 11 about here ***] 

 

The forecast default and recovery rates can be used to calculate the regulatory capital for the hy-

pothetical portfolio. In the context of corporate credit exposures, the Basel Committee on Bank-

ing Supervision [2004] allows banks to choose one of the following options: 

• Standardized approach: the regulatory capital is calculated based on the corporate issuer 

credit rating and results in a regulatory capital between 1.6% and 12% of the credit exposure. 

The regulatory capital equals 8% of the credit exposure if firms are unrated; 

• Foundation Internal Ratings Based (IRB) approach: the regulatory capital is calculated based 

on the forecast default probabilities and a proposed loss given default for senior secured 

claims of 45% (i.e., a recovery rate of 55%) and for subordinated claims of 75% (i.e., a re-

covery rate of 25%). 

• Advanced IRB approach: the regulatory capital is calculated based on the forecast default 

probabilities and forecast recovery rates. 

 

For the through-the-cycle model the Standardized approach and the Foundation IRB approach 

result in a relatively close regulatory capital requirement (80.00 vs. 74.01). The reason for this is 

that the forecast default rate (0.0181) is close to the historic average which was used by the Basel 

Committee for the calibration of the regulatory capital to the current prevailing 8%. The Ad-

vanced IRB approach leads to a lower regulatory capital (70.08 vs. 74.01) due to a forecast re-

covery rate which is higher than the assumption in the Foundation IRB approach (57.39% vs. 

55%). Note that the Foundation IRB approach’s recovery rate of 55% is comparable to the aver-

age recovery rate of the senior secured seniority class but is proposed to be applied to both the 

senior secured (unless admitted collateral is available) as well as the senior unsecured claims. 

This could indicate an incentive for banks to favor the Foundation approach over the Advanced 

IRB approach especially for senior unsecured credit exposures. Similar conclusions can be drawn 
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for the Foundation IRB approach’s recovery rate of 25% which will be applied for both senior 

subordinated as well as subordinated claims. 

 

Exhibit 12 and Exhibit 13 compare the respective loss distributions with and without correlations 

using the point-in-time model. 

 

[*** Insert Exhibit 12 about here ***] 

 

[*** Insert Exhibit 13 about here ***] 

 

It can be observed that the economic capital - expressed as Value-at-Risk - is considerably lower 

for the point-in-time model than for the through-the-cycle model. The reasons are twofold. First, 

the inclusion of macroeconomic variables leads to a lower forecast of the default rate (1.62%), a 

higher forecast of the recovery rate (61.59%) for 2004 and therefore to lower expected losses. 

Second, the exposure to unknown random systematic risk sources is reduced by the inclusion of 

the observable factors. This leads to less uncertainty in the loss forecasts and therefore to lower 

variability (measured, e.g., by the standard deviation) of the forecast distribution. Moreover, the 

regulatory capital is the lowest for the Advanced IRB approach which takes both the forecast 

default and recovery rate into account. 

 

We also notice another important effect. Again, the economic capital, measured by the higher 

percentiles of the credit portfolio loss increases if the estimated correlation between the default 

and recovery rates are taken into account, but the increase is not that dramatic as in the through-

the-cycle model, although the correlation between risk factors of defaults and recoveries has 

slightly increased. The inclusion of macroeconomic factors renders the systematic unobservable 

factors less important and diminishes the impact of correlations between both factors. To the ex-

tent that recoveries and defaults are not exposed at all to unobservable random factors, the corre-

lations between these factors are negligible for loss distribution modeling. Exhibit 14 shows this 

effect. We assumed constant exposure of b=0.5 to the recovery factor and varied the exposure to 

the systematic factor for the defaults (asset correlation) for given correlation between the system-

atic factors. The benchmark case is a correlation of zero between the factors. Here we notice a 
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reduction of economic capital from 44 (i.e., 4.4% of total exposure) for an asset correlation of 0.1 

to 13 (1.3%) when the asset correlation is zero. In the case of a correlation between the factors of 

0.8 the Value-at-Risk is reduced from 61 (6.1%) to 13 (1.3%). Thus, the higher the correlation of 

the risk factors, the higher the economic capital gains are from lowering the implied asset correla-

tion by the explanation with observable factors.  

 

[*** Insert Exhibit 14 about here ***] 

 

Discussion 

 

The empirical analysis resulted in the following insights: 

1. Default events and recovery rates are correlated; Based on an empirical data set a 

a. Positive correlation between the default events and 

b. Negative correlation between the default events and recovery rates 

was found. 

2. The incorporation of the correlation between the default events and recovery rates in-

creases the economic capital. As a result most banks underestimate their economic capital 

when they do not account for this correlation. 

3. Correlations between defaults decrease when systematic risk drivers, such a macroeco-

nomic indices are taken into account. In addition, the impact of correlation between de-

faults and recoveries decreases. 

4. As a result, the uncertainty of forecast losses and the economic capital measured by the 

percentiles decreases when systematic risk drivers are taken into account. 

5. The economic as well as the regulatory capital charge for a given period depends on the 

forecast of the default and recovery rates. 

 

Note that most empirical studies on recovery rates (including this article) are based on publicly 

available data provided by the rating agencies Moody’s or Standard and Poor’s and naturally lead 

to similar results. The data sets of the rating agencies are biased in the sense that only certain ex-

posures are taken into account. Typically, large U.S. corporate obligors in capital intensive indus-
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tries with one or more public debt issues and high credit quality are included. Thus, the findings 

can not automatically be transferred to other exposure classes (e.g., residential mortgage or credit 

card exposures), countries, industries or products. 

 

Moreover, the data is limited with regard to the number of exposures and periods observed. Note 

that our assumption in (8) of a large number of firms is crucial since it leads to the focus on the 

mean recovery. If idiosyncratic risk can not be fully diversified the impact of systematic risk in 

our estimation may be overstated. Due to the data limitations we cannot draw any conclusions 

about the cross-sectional distribution of recoveries which is often stated to be U-shaped (see, e.g., 

Schuermann [2003]). In this sense, our results call for more detailed analyses, particularly with 

borrower-specific data which possibly includes financial ratios or other obligor characteristics 

and to extend our methodology to a panel of individual data. As a result, we would like to call 

upon the industry, i.e., companies, banks and regulators for feedback and a sharing of their ex-

perience.  

 

In spite of these limitations, the present paper provides a robust framework, which allows credi-

tors to model default probabilities and recovery rates based on certain risk drivers and simultane-

ously estimate interdependences between defaults and recoveries. It can be applied to different 

exposure types and associated information levels. Contrary to competing models, the presence of 

market prices such as bond or stock prices is not required. 
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Appendix: Results of Monte-Carlo Simulations 

 

In order to prove the reliability of our estimation method a Monte-Carlo simulation was set up 

which comprises four steps: 

 

- Step 1: Specify model (1) and model (9) with a given set of population parameters , c, 

b, 

w

μ , and ρ . 

- Step 2: Draw a random time series of length T for the defaults and the recoveries of a 

portfolio with size N from the true model. 

- Step 3: Estimate the model parameters given the drawn data by the Maximum-

Likelihood method. 

- Step 4: Repeat Steps 2 and 3 for several iterations.  

 

We use 1,000 iterations for different parameter constellations and obtain 1,000 parameter esti-

mates which are compared to the true parameters. The portfolio consists of 10,000 obligors. The 

length of the time series T is set to T=20 years. We fix the parameters at =0.2, w μ =0.5, and 

b=0.5 and set the correlations between the systematic factors to 0.8, 0.1, and -0.5. In addition, we 

analyze three rating grades A, B, and C where the default probabilities and thresholds c in the 

grades are:  

- A:  005.0=π , i.e., c=-2.5758 

- B:  01.0=π , i.e., c=-2.3263 

- C:  02.0=π , i.e., c=-2.0537 

 

[*** Insert Exhibit 15 about here ***] 

 

Exhibit 15 contains the results from the simulations. The numbers without brackets contain the 

average of the parameter estimates from 1,000 simulations. The numbers in round (.)-brackets 

represent the sample standard deviation of the estimates (which serve as an approximation for the 

unknown standard deviation). The numbers in square [.]-brackets give the average of the esti-
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mated standard deviations for each estimate derived by Maximum-Likelihood theory. It can be 

seen in each constellation that our ML–approach for the joint estimation of the default and recov-

ery process works considerably well: the averages of the estimates are close to the originally 

specified parameters. Moreover, the estimated standard deviations reflect the limited deviation 

for individual iterations. The small downward bias results from the asymptotic nature of the ML-

estimates and should be tolerable for practical applications.  
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Exhibits 

 

Exhibit 1: Descriptive statistics of variables 
Variable  Mean  Median  Maximum  Minimum  Std. Dev.  Skewness  Kurtosis

Default Rate 0.0176 0.0144 0.0382 0.0052 0.0103 0.6849 2.2971 

Recovery Rate (Total) 0.4208 0.4300 0.6170 0.2570 0.0902 0.2883 3.0464 

Recovery Rate (S_Sec) 0.5794 0.5725 0.8360 0.3570 0.1379 0.2631 2.0440 

Recovery Rate (S_Un) 0.4481 0.4450 0.6280 0.2310 0.1158 -0.1816 2.2725 

Recovery Rate (S_Sub) 0.3703 0.3695 0.5190 0.2030 0.0984 -0.1868 1.7668 

Recovery Rate (Sub) 0.2987 0.3245 0.4620 0.1230 0.1117 -0.2227 1.7387 

COINC 0.0215 0.0245 0.0409 -0.0165 0.0160 -0.9365 3.0335 

LEAD 0.0130 0.0154 0.0336 -0.0126 0.0151 -0.4568 1.9154 

 

Exhibit 2: Bravais-Pearson correlations of variables 
Variable Default Rate Total S_Sec S_Un S_Sub Sub COINC LEAD

Default Rate 1.00 -0.67 -0.72 -0.72 -0.53 -0.34 -0.75 -0.47 

Recovery Rate (Total)  1.00 0.78 0.68 0.72 0.29 0.32 0.54 

Recovery Rate (S_Sec)   1.00 0.66 0.48 0.37 0.33 0.55 

Recovery Rate (S_Un)    1.00 0.56 0.42 0.49 0.48 

Recovery Rate (S_Sub)     1.00 0.24 0.20 0.40 

Recovery Rate (Sub)      1.00 0.41 0.17 

COINC       1.00 0.28 

LEAD        1.00 
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Exhibit 3: Moody's default rate vs. recovery rate 
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Exhibit 4: Moody's recovery rates by seniority class 
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Exhibit 5: Recovery rates for selected industries (Moody’s [2004]) 

Industy Recovery Rate (1982-2003) 

Utility-Gas 0.515 

Oil 0.445 

Hospitality 0.425 

Utility-Electric 0.414 

Transport-Ocean 0.388 

Media, Broadcasting and Cable 0.382 

Transport-Surface 0.366 

Finance and Banking 0.363 

Industrial 0.354 

Retail 0.344 

Transport-Air 0.343 

Automotive 0.334 

Healthcare 0.327 

Consumer Goods 0.325 

Construction 0.319 

Technology 0.295 

Real Estate 0.288 

Steel 0.274 

Telecommunications 0.232 

Miscellaneous 0.395 

 

Exhibit 6: Recovery rates for selected issuer credit rating categories (Moody’s [2005]) 
Issuer Credit Rating Recovery Rate (1982-2004)

Aa 0.954 

A 0.498 

Baa 0.433 

Ba 0.407 

B 0.384 

Caa-Ca 0.364 
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Exhibit 7: Parameter estimation results for the through-the-cycle model 
Annual default and recovery data from 1985 to 2003 is used for estimation; standard errors are in parentheses; *** 

significant at 1% level, ** significant at 5% level, * significant at 10% level 

Parameter Total S_Sec S_Un S_Sub Sub 

c  -2.0942*** 
(0.0545) 

-2.0951*** 
(0.0550) 

-2.0966*** 
(0.0546) 

-2.0942*** 
(0.0544) 

-2.0940*** 
(0.0549) 

w  0.2194*** 
(0.0366) 

0.2212*** 
(0.0369) 

0.2197*** 
(0.0367) 

0.2191*** 
(0.0366) 

0.2210*** 
(0.0369) 

μ  -0.3650*** 
(0.0794) 

0.2976** 
(0.1284) 

-0.2347* 
(0.1123) 

-0.5739*** 
(0.0998 

-0.8679*** 
(0.1235) 

b  0.3462*** 
(0.0562) 

0.5598*** 
(0.0908) 

0.4898*** 
(0.0795) 

0.4351*** 
(0.0706) 

0.5384*** 
(0.0873) 

ρ  0.6539*** 
(0.1413) 

0.7049*** 
(0.1286) 

0.7520*** 
(0.1091) 

0.5081** 
(0.1799) 

0.3979* 
(0.2013) 
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Exhibit 8: Parameter estimation results for the point-in-time model 
Annual default and recovery data from 1985 to 2003 is used for estimation; standard errors are in parentheses; *** 

significant at 1% level, ** significant at 5% level, * significant at 10% level. 

Parameter Total S_Sec S_Un S_Sub Sub 

0γ  -1.9403*** 
(0.0524) 

-1.9484*** 
(0.05210) 

-1.9089*** 
(0.0603) 

-1.9232*** 
(0.05660) 

-1.9040*** 
(0.0609) 

1γ  -8.5211*** 
(1.8571) 

COINC 

-8.1786*** 
(1.7964) 

COINC 

-10.0782*** 
(2.2618) 

COINC 

-9.2828*** 
(2.0736) 

COINC 

-10.1399*** 
(2.2884) 

COINC 

w  0.1473*** 
(0.0278) 

0.1522*** 
(0.0286) 

0.1485*** 
(0.0276) 

0.1483*** 
(0.0277) 

0.1508*** 
(0.0279) 

0β  0.4557*** 
(0.0867) 

0.1607 
(0.1382) 

-0.5576*** 
(0.1635) 

-0.6621*** 
(0.1194) 

-1.1883*** 
(0.1845) 

1β  7.4191* 
(4.1423) 

LEAD 

11.1867* 
(6.4208) 

LEAD 

15.0807** 
(6.1142) 

COINC 

7.2136 
(6.0595) 

LEAD 

14.9625** 
(6.8940) 

COINC 

b  0.3063*** 
(0.0513) 

0.4960*** 
(0.0838) 

0.4260*** 
(0.0691) 

0.4071*** 
(0.0673) 

0.4820*** 
(0.0279) 

ρ  
0.6642*** 
(0.1715) 

0.7346*** 
(0.1520) 

0.6675*** 
(0.1481) 

0.4903** 
(0.2088) 

0.1033 
(0.2454) 
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Exhibit 9: Forecasts and realizations for year 2004 (through-the-cycle versus point-in-time)  
Parameter Total S_Sec S_Un S_Sub Sub 

Default Rate      

Forecast TTC 0.0181 0.0181 0.0180 0.0181 0.0181 

Forecast PIT 0.0162 0.0162 0.0160 0.0162 0.0162 

Realization 0.0072 0.0072 0.0072 0.0072 0.0072 

Recovery Rate      

Forecast TTC 0.4097 0.5739 0.4416 0.3603 0.2957 

Forecast PIT 0.4381 0.6159 0.4484 0.3867 0.3014 

Realization 0.5850 0.8080 0.5010 0.4440 0.1230 
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 Exhibit 10: Loss distributions for the through-the-cycle model (S_Sec) 

 
 

Exhibit 11: Descriptive statistics of loss distributions for the through-the-cycle model 
Portfolios contain 1,000 obligors with an exposure of one monetary unit each, 10,000 random samples were drawn 

for each distribution with and without correlation between systematic factors 

 
Mean Std.dev. Med 95 99 99.5 99.9 

Basel II Capital

(Standardized) 

Basel II Capital 

(Foundation IRB) 

Basel II Capital 

(Advanced IRB)

Independent 

Factors  
7.82 5.59 6.53 18.55 27.35 31.92 39.02 80.00 74.01 70.08 

Correlated 

Factors 
8.73 7.59 6.62 23.81 36.04 42.43 58.75 80.00 74.01 70.08 
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Exhibit 12: Loss distributions for the point-in-time model (S_Sec) 

 
 

 

Exhibit 13: Descriptive statistics of loss distributions for the point-in-time model 
Portfolios contain 1,000 obligors with an exposure of one monetary unit each, 10,000 random samples were drawn 

for each distribution with and without correlation between systematic factors 
 

Mean Std.dev. Med 95 99 99.5 99.9 
Basel II Capital

(Standardized) 

Basel II Capital 

(Foundation IRB) 

Basel II Capital 

(Advanced IRB)

Independent 

Factors  
6.33 3.61 5.64 13.10 18.01 20.43 25.77 80.00 71.16 60.74 

Correlated 

Factors 
6.78 4.71 5.64 16.03 22.78 25.60 31.77 80.00 71.16 60.74 
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Exhibit 14: Economic capital gains from decrease in implied asset correlation for correlated 

risk factors
Exhibit shows 99.9-percentiles of loss distributions for the senior secured seniority class depending on asset correla-
tion and correlation of systematic risk factors. Portfolio contains 1,000 obligors each with default probability of 1%, 

exposure of one monetary unit, and expected recovery of 50%.  
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Exhibit 15: Results from Monte-Carlo simulations

  c w μ  b ρ  
Grade ρ       

A 0.8 -2.5778 

(0.0495) 

[0.0468] 

0.1909 

(0.0338) 

[0.0317] 

0.4991 

(0.1112) 

[0.1070] 

0.4784 

(0.0776) 

[0.0756] 

0.7896 

(0.1085) 

[0.0912] 

 0.1 -2.5789 

(0.0484) 

[0.0475] 

0.1936 

(0.0336) 

[0.0322] 

0.4970 

(0.1154) 

[0.1079] 

0.4824 

(0.0788) 

[0.0763] 

0.1139 

(0.2269) 

[0.2185] 

 -0.5 -2.5764 

(0.0492) 

[0.0472] 

0.1927 

(0.0318) 

[0.0320] 

0.5048 

(0.1116) 

[0.1078] 

0.4826 

(0.0798) 

[0.0763] 

-0.4956 

(0.1923) 

[0.1697] 

B 0.8 -2.3287 

(0.0480) 

[0.0460] 

0.1927 

(0.0327) 

[0.0306] 

0.4999 

(0.1104) 

[0.1084] 

0.4852 

(0.0774) 

[0.0765] 

0.7951 

(0.0920) 

[0.0856] 

 0.1 -2.3291 

(0.0472) 

[0.0456] 

0.1906 

(0.0306) 

[0.0305] 

0.4927 

(0.1105) 

[0.1080] 

0.4831 

(0.0778) 

[0.0764] 

0.0861 

(0.2330) 

[0.2152)] 

 -0.5 -2.3305 

(0.0479) 

[0.0453] 

0.1900 

(0.0324) 

[0.0303] 

0.4988 

(0.1115) 

[0.1074] 

0.4805 

(0.0806) 

[0.0759] 

-0.4764 

(0.1891) 

[0.1703] 

C 0.8 -2.0536 

(0.0489) 

[0.0448] 

0.1935 

(0.0315) 

[0.0297] 

0.4972 

(0.1104) 

[0.1080] 

0.4855 

(0.0804) 
[0.0763] 

0.7915 

(0.0956) 

[0.0843] 

 0.1 -2.0542 

(0.0580) 

[0.0448] 

0.1943 

(0.0382) 

[0.0298] 

0.5030 

(0.1168) 

[0.1085] 

0.4851 

(0.0782) 

[0.0770] 

0.1067 

(0.2374) 

[0.2128] 

 -0.5 -2.0554 

(0.0510) 

[0.0443] 

0.1923 

(0.0359) 

[0.0295] 

0.4998 

(0.1085) 

[0.1076] 

0.4833 

(0.0852) 

[0.0766] 

-0.4898 

(0.1815) 

[0.1656] 
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