
PAO* for Planning with Hidden State
Dave Ferguson†, Anthony Stentz†, and Sebastian Thrun‡

† Robotics Institute ‡ Computer Science Department
Carnegie Mellon University Stanford University

Pittsburgh, PA, USA Stanford, CA, USA

Abstract— We describe a heuristic search algorithm for gen-
erating optimal plans in a new class of decision problem,
characterised by the incorporation of hidden state. The approach
exploits the nature of the hidden state to reduce the state space
by orders of magnitude. It then interleaves heuristic expansion
of the reduced space with forwards and backwards propagation
phases to produce a solution in a fraction of the time required
by other techniques. Results are provided on an outdoor path
planning application.

I. I NTRODUCTION

The path planning problem has been addressed extensively
by the robotics research community. A number of approaches
exist to solve the planning problem in deterministic domains
(e.g. A*). Recently, incremental approaches have been devel-
oped which allow for corrections to the original cost values
associated with state transitions [1], [2]. These algorithms are
both optimal and efficient given the information they ascribe
to. However, they are unable to cope optimally with uncertain
apriori information.

Consider a robot navigating outdoors equipped with an
overhead map of the surrounding area (generated by satellite
or an aerial vehicle). The resolution of the map may be
much lower than the resolution used by the robot to navigate.
Due to this low resolution, there is some uncertainty as to
whether portions of the terrain are traversable or not. As a
result, certain cells in the final map will hold incomplete
information: the robot knows some information about what
the terrain is like in the general vicinity but not the exact
value at the particular cell. Some of these cells may be crucial
for the robot’s planning task, such as those residing in narrow
passageways.

Current planners deal with such cells in one of two ways [2],
[1]. Firstly, they may assign a default value to all such cells.
Typically, this method (known as “assumptive planning” [3])
allows the robot to update the information about cells as it
moves, so that it can plan using the actual terrain of the cell
when it comes close enough to determine it. Alternatively,
they may compute an expected value of the cell. Given some
probability density function over possible terrains, one can
compute the expected terrain of the cell and plan using this
expectation.

However, neither of these methods makes use of the infor-
mation provided to act optimally. If the cell has a non-zero
probability of being untraversable, then planning using the
expected terrain (or terrain cost) will not in general produce
the best path. This is because the cost of the cell must reflect

the possibility that the cell turns out to be untraversable and
the robot must find an alterior path to the goal. The cost of
this alterior path is a global property and cannot be derived
directly from the terrain cost of the cell in question.

This paper explores a family of problems that extend
classical deterministic path planning problems with a limited
type of hidden state (discussed below), enabling us to model
exactly the above type of uncertainty. This family encompasses
several key application problems, in particular mobile robot
navigation in environments with detectable state (such as
indoor environments with doors which may be open or closed,
or outdoor environments with gaps that may turn out to be too
narrow to pass through). It also includes the graph-theoretical
Canadian Traveller’s Problem, which consists of planning a
route through a graph where edges may be untraversable [4].

We present a solution to such problems which performs
search in a reduced information state space using a heuristic
to guide the search, as with AO* [5]. The key theoretical
contribution of this paper is a new algorithm,PAO*, which
updates the heuristic value of states throughout the state
space in such a way as to reduce the required computation
considerably.

II. D ETERMINISTIC DECISION PROBLEMS WITH HIDDEN

STATE

This section describes the basicDecision Problems with
Hidden State(DPHS) framework as applied to robotic path
planning, beginning with a brief review on deterministic
decision problems. We go on to discuss how such problems
can be reduced to a search over the space of their hidden state
component.

A. Deterministic Decision Problems

A Deterministic Decision Problem (DDP) consists of the
following components:

• States. The state of the DDP is denoted byx. At any point
in time, the state is fully observable. In path planning
the state corresponds to the position of the robot in the
environment.

• State transitions. The states of the system are related
through an adjacency list. An agent may transition be-
tween the current state and any adjacent state in a
deterministic manner.

• Cost Function. DDP’s need some measure of the cost
of transitioning between two adjacent states,Cost(x, y),



i
i

i i
i

i i
i

i

i

Fig. 1. A gradient map of an outdoor environment generated by a helicopter. Several pinch points are shown in green (and circled in black). The gray scale
value of each cell reflects the cell’s traversability: the darker the cell, the more difficult the terrain (with black cellsrepresenting obstacles). The displayed
area is 300× 700 meters. Data courtesy of Omead Amidi and Ryan Miller.

which is usually computed from the terrain costs of the
cells associated with the two states.

The central problem in path planning DDPs is to calculate
a path from a start states to a goal stateg while minimizing
the overall cost incurred. The overall cost of a cellx is defined
as:

Cost(x, g) = min
y∈nbrs(x)

Cost(x, y) + Cost(y, g). (1)

To solve for the cost of an individual states a fast A* based
focussed propagation of values can be performed [6].

B. Hidden State

The DPHS model allows for the incorporation of hidden
state into the DDP framework. The extension is as follows:

• Hidden state. We deal withp elements comprising our
hidden state (known as ‘pinch points’). In our path
planning application, each relates to a particular cell
in the environment which may betraversable or un-
traversable. Not only is there uncertainty associated with
the traversability of these cells, but there are great conse-
quences if they are untraversable (i.e., an alternative route
holds a much higher cost). Each hidden state element
holds a probability distribution over its possible values
(for us a single number corresponding to its probability
of beinguntraversable). The elements are assumed static:
their true values are fixed throughout.

• Observations. The true value of a hidden state element
may be observed by an agent. We assume noiseless
observations through a proximity sensor which allows
the agent to determine the value of a pinch point from
any adjacent cell in the environment. A proximity sensor
approximates the near range navigation sensors typically
employed by indoor and outdoor robots.

The hidden state thus relates the DPHS framework to Par-
tially Observable Markov Decision Problems (POMDP’s)[7].
However, under the current model there is no uncertainty in
robot action and all observations are noiseless. As we will see,
these characteristics allow us to use heuristic search algorithms
over state spaces intractable with POMDP’s [8].

C. DPHS Information States

An information stateis the state of knowledge an agent
may have concerning the true state of the environment, both
the known and the hidden elements. An information state in
a DPHS is written as(x,H), wherex is the observable state
andH = {v(h1), v(h2), . . . , v(hp)} is the agent’s knowledge
concerning the hidden state. Each hidden state element may be
known to betraversable(v(hi) = t), known to be anobstacle
(v(hi) = o), or unknownto the agent (v(hi) = u). Thus, given
a DPHS with anm · n known state space (planning grid) and
p pinch points, the number of information states ism · n · 3p.

The noiseless nature of our observations thus restricts the
resulting information state space to be finite, allowing us to
perform discrete search to achieve an optimal result. However,
this state space grows exponentially with the number of hidden
state elements. Planning over the entire space is therefore
prohibitively expensive.

Fortunately, there are a few key properties of our problem
which enable us to substantially reduce the amount of com-
putation required.

Firstly, we can reduce the computation to consider only the
hidden state elements. If a cellk in the environment holds a
cost to each of the hidden state elements (computedwithout
passing through any other hidden state element) and to the
goal, then the overall cost of that cell in any information state
I can be computed given the overall costs of each hidden
state element inI. In particular, since we are planning from



a start states we need only compute the cost for this single
cell in the single information state the agent starts in. We
thus simplify our information state description to the agent’s
knowledge concerning the hidden state,H. Secondly, because
the true values of the hidden state elements are fixed, we know
that an agent will only ever gain information. In other words,
because our environment is static, once an agent observes a
pinch point to be traversable/untraversable it will never again
be uncertain of that pinch point’s true value. So our planning
space is without cycles. Finally, because each unknown hidden
state element in an information state can turn out to be only
either traversable or untraversable, we are presented witha
natural admissible heuristic to use for searching the restricted
information space (that is, assume all unknown hidden state
elements aretraversable).

III. SOLVING THE DPHS

As mentioned previously, our solution exploits the fact
that we can reduce the problem to a search over just the
space of the hidden state component. To do this, we reduce
the environment to an adjacency graph between hidden state
elements.

A. The Face Graph

Each pinch point in a planning environment may have a
number offaces, which consist of adjacent cells opening out
into different cost regions of the environment. These faces
can be thought of as different entrances and exits associated
with the pinch point (see Figure 2). Each neighboring (non-
obstacle) cell to a pinch point resides on exactly one of the
pinch point’s faces.

The adjacency graph (Face Graph) links up these faces to
one another and, in doing so, provides a compact representa-
tion of the hidden state elements of the environment. Figure1
illustrates an environment with 10 pinch points and Figure 2
shows a section of its corresponding face graph. The cost of
an arc between two faces represents the lowest cost associated
with moving along an optimal (pinch-point free) pathbetween
the faces and is used to propagate values from one face to
another.

1) Creating the Face Graph:In order to produce the
appropriate arcs and arc costs associated with the face graph,
we run an initial cost propagation through our environment
(using prioritized sweeping [9]) which determines, for each
cell in the planning grid, the cost to each different face
and the cost to the goal. For this propagation we treat each
pinch point as if it were an obstacle, so that we ascertain
which faces are directly accessible to one another. Then, given
some facef1 and its corresponding costs to each other face
Cost(f1, f2)...Cost(f1, fn), we create an arc to each facefi

for which Cost(f1, fi) < ∞ and label it with its associated
cost. Similarly, an arc is created to the goal if it is accessible
(i.e., if Cost(f1, Goal) <∞).

After this pass, we then compute the cost between
faces associated with the same pinch point. This cost (la-
belled CostThru(fi, fj)) is then used in information states

Fig. 2. The lowest cost arcs between a subset of the faces in the previous
traversability map. Each pinch point has a number of faces attached to it,
corresponding to its different general entries. Here the pinch points are in
green, enlarged slightly to aid in illustration, and the cost arcs are in blue.

which have the respective pinch point holding the valuet

(traversable).
After constructing our face graph, we have reduced the

planning DPHS to the graph-theoretic Canadian Traveller’s
Problem (CTP) concerning the hidden state elements. We now
introduce four methods for solving this problem. The first
three draw from ideas common to the planning and MDP
communities. The final approach involves our novel algorithm:
PAO*.

B. The Complete Solution

The first approach we consider uses the monotonicity of
the agent’s information concerning the hidden state to derive
an iterative solution to the CTP. Ultimately, we are trying to
compute an optimal path for an agent which starts out in the
information stateH = {u, u, . . . , u}. However, the cost values
of each face in our graph at this state can be recovered directly
from the costs of the faces in the information states which
haveexactly onepinch point of known value. These face costs
in turn can be computed from the costs of the faces in the
information states which havetwo known pinch points, and
so on.

The reason for this is as follows. As soon as the agent moves
to a face associated with a pinch point which is of valueu,
the agent learns (through its proximity sensor) what the actual
value of that pinch point is. As a result, our agent is constantly
increasing its knowledge of the state of the environment, one
pinch point at a time. To solve for the values of information
state i we must have the values of every information state
which is reachable fromi. These are exactly the information
states which have one more pinch point of known value.

In short, we iterate from the base-case information states
where the environment is completely deterministic (all pinch
points are of known values) up to information states with
increasing numbers of pinch points holding the valueu.

The costs of each face in the deterministic information states
(there are2p such states forp pinch points) are solved using
standard value iteration (VI), since we are solving for all faces



Compute CostC[fk, i]:
Cost← Cost(fk, Goal)
v ← v(h(fk))

If v = u
Cost← p(h(fk) = o) · C[fk, io] + p(h(fk) = t) · C[fk, it]

Cost← min(Cost, min
fi∈f

(C[fi, i] + Cost(fk, fi)))

Cost← min(Cost, min
fi∈a(fk)

(C[fi, i] + CostThru(fk, fi)))

Else

If v = t

Return Cost

Fig. 3. General value iteration algorithm to compute cost of face fk in
information statei.

at once1. Each face has its cost initialized to its arc cost to
the goal. If no such arc exists (i.e. the face has no path to the
goal without needing to traverse some hidden state element),
the cost is initialized to infinity.

Once the costs of these states have been determined, the
costs of faces of subsequent information states can be solved
using the modified value iteration algorithm in Figure 3.

In this generalized algorithm,C[fk, i] represents the cost
of face fk in information statei, h(fk) is the pinch point to
which facefk belongs,v(hj) is the value of pinch pointhj

in information statei (one of t, o, or u), io and it are the
information states similar toi in all respects except thath(fk)
is of valueo and t, respectively, anda(fk) is the set of all
faces associated with pinch pointh(fk).

The algorithm works by finding the complete set of suc-
cessor faces (combined with information states) from a given
face fk. If fk is attached to a pinch point with valueu (in
our information statei), then we use the probability measure
associated with this pinch point to generate an expected cost
of the current face. This expected cost combines the values
of the face in the information statesio and it. If the pinch
point is known, then we update our current cost to be the
minimum of the cost associated with moving to any adjacent
face (and the goal, if reachable). If the pinch point is known
and is traversablethen we can add to our contention the faces
on the other side of the current pinch point as these, too, are
available successors.

The cost computation is performed for each face in the
information state repeatedly until convergence.

C. Reachability Analysis

A major drawback of the above approach is thateverypos-
sible information state is examined and solved for, including
states that can never be realized given the initial state theagent
resides in.

Consider a robot navigating outdoors. If there are a number
of pinch points that the robot cannot directly reach (i.e.,
without going through some other pinch point), it does not
make sense for it to process any information states where

1If we were only interested in the value of one face it would makesense
to use A* rather than value iteration.

it holds information concerning these pinch points without
knowing the values of the pinch points it would have to pass
through to get this information. Such states are impossible
given the initial position and information state of the robot.

Reachability analysis has been used extensively by the
Markov Decision Processes community (and others) to restrict
computation to information states which are physically reach-
able from the initial state [10], [11]. The idea is to propagate
outwards from the initial state, marking each subsequent state
as reachable. All states left unmarked can be ignored in our
solution derivation.

Incorporating reachability considerations, the algorithm de-
scribed above changes in two ways. Firstly, an initial propa-
gation step is performed, branching out from the initial state,
to mark all the reachable states. Secondly, the iteration phase
only considers the states marked in the first step, thus ignoring
the irrelevant areas of our information space.

D. AO*

The number of examined states can be further reduced by
performing heuristic-based search over the information space.
AO* is a classic search algorithm which performs such a
heuristic search over an AND-OR graph [5], [12]. An AND-
OR graph contains two types of nodes: AND nodes obtain
their values from combiningall their child nodes, while OR
nodes compute their values from choosinga single nodefrom
their children.

The planning CTP can be represented as an AND-OR
graph as follows. Each node in the graph corresponds to a
face in a particular information state. The root of the graph
(an OR node) is the start cells in the information state
H = {u, u, . . . , u}. The next level of the graph corresponds
to all the faces which have arcs tos (and each node at this
level has information stateH). These are AND nodes: each
has two children representing the two possible information
states realizable from visiting the node. These two children
each have the same face as their parent but reside in different
information states (one has the hidden state element associated
with the face of valuet, the othero). These children are OR
nodes, the next level are AND nodes, and so on.

Intuitively, from s the agent can choose to move to any
adjacent face or directly to the goal (if clear). Thus, its cost
is a function of theminimumcost of the adjacent faces. Once
it has moved to one of these faces, it learns the true value of
the hidden state element associated with the face. It does not
choose this value: it is taken from the range of possibilities
(in our case just{traversable, obstacle}) according to the
hidden state element’s probability measure. Thus, the cost
of the parent node is a combination of the cost ofboth its
children.

AO* searches an AND-OR graph by gradually building a
solution graph from the start state through two alternating
phases. First, it grows the best partial solution by expanding
one of the non-terminal leaf nodes and assigning admissible
heuristic costs to its children. Then it uses the newly computed
costs to propagate cost revisions to the parent node and



1) The initial solution graph consists solely of the start
node,s, in the original information stateH.

2) While the solution graph has some nonterminal leaf
node:

(a) Expand best partial solution: Expand a nonterminal
leaf node and compute heuristic values for its two
children. Add the children to the solution graph,
noting whether they are nonterminal.

(b) Propagate cost changes and update solution: Com-
pute an updated cost estimate of the original leaf
node given the costs of its children. If its cost
has changed, update its parent’s cost to reflect this
change. If the parent is an OR node, the current
child may be replaced if it no longer provides the
minimum cost. Continue propagating up the graph
until a node is reached whose cost does not change.

3) Return the optimal solution graph.

Fig. 4. The AO* algorithm

onwards up the graph. The full algorithm as used is illustrated
in Figure 4.

The efficiency of AO* is obtained through its use of a
heuristic to limit the amount of the AND-OR graph that is ex-
amined. The resulting solution graph can often be constructed
through observing only a fraction of the complete graph. In
our case, the heuristic value of a new noden is computed
through solving a VI over the ‘heuristic counterpart’ ofn:
the deterministic state characterized by the best-possible true
values the hidden state elements inn could have. For elements
already known inn (i.e. elementshp such thatv(hp) = t or
v(hp) = o) the elements are left untouched. Elements still
unknown (with v(hp) = u) are assigned the valuet. The
resulting values are guaranteed to be admissible and the VI
over the deterministic state is very fast.

E. PAO*

AO* works very well in certain situations, typically where
most of the reachable states are clearly undesirable. This is
because its use of a heuristic allows it to focus its search away
from highly sub-optimal faces. However, given the current
problem domain and heuristic, it is possible for the algorithm
to examine far more states than necessary. Furthermore, be-
cause the partial solution graph is altered during the course of
the algorithm, AO* can re-expand the same state several times.
In the worst case, this can result in execution times that surpass
the complete solution by orders of magnitude (see results).

PAO*, short for Propagating AO*, is an algorithm which
attempts to capture the clear benefits of using a heuristic-
based search while minimizing the possible drawbacks of
using partial solution graphs. It does this by propagating cost
changes not only upwards to parents in the partial solution
graph, but sideways to neighbors (in the complete AND-OR
graph), and downwards to children. The resulting approach

R Goalb

a

c d

R

a b c d

15+20 20+205+20 10+10

bt bo

R

a b c d

15+20 20+205+20

0.5 0.5

10+0 inf

XG

inf/2)
(5 + 
10 +

R

a b c d

5+20 15+20 20+20

inf/2)
(5 + 

inf/2)
(15 +

inf/2)
(15 +

inf/2)
(15 +

R

a b c d

10 +5 + 15 + 20 +

(a)

Arc Costs
C(R,a)=5 C(R,b)=10 C(R,c)=15
C(R,d)=20 C(a,b)=10 C(c,b)=10
C(d,b)=10 C(bt,G)=10

(b)

(c)

(d)

(e) (f)

Fig. 5. Sample planning problem involving a robot, a goal, andfour doors
which may be open or closed. Some sample arc costs between door faces and
points of interest are shown in (b). The first two expansions of the AO* and
PAO* solution graphs are shown in (c) and (d). The values under each node
represent the parent’s cost to the node plus the cost of the node itself. The
resulting AO* and PAO* solution graphs after propagating the cost change
from (d) are shown in (e) and (f).

makes full use of all received information and thus allows
for more informed decisions to be made at each stage of the
process.

The key insight behind PAO* is that cost changes are rarely
isolated. If a node updates its cost based on an altered child
cost, it is likely this update will affect the costs associated with
that node’s neighbors. Consider the simple scenario described
in Figure 5, where a robot (at the positionR) must navigate
to a goal within an environment containing 4 doors. Each
door may be open or closed and the robot is equipped with
a proximity sensor to tell, upon reaching a doorway, which
possibility prevails. For clarity we have only dealt with the
four reachable faces from the robot’s initial position and
have shown only relevant arc costs. We have slightly abused
notation and usedC(bt, G) to express the cost between face
b and the goal (assuming there is no door atb).

Initially, all the faces have heuristic cost values associated
with them, corresponding to their lowest possible costs. Inthis
particular scenario, all these costs correspond to paths through
faceb. As explained previously, these heuristic values are the



result of a value iteration over the state of the environment
where all the doors are open. Given these initial face costs,
the best successor fromR is b, giving R an initial cost of
C[R] = C(R, b) + C[b] = 20. So b is placed as the child of
R in the partial solution graph (see Figure 5(c)).

After a single further expansion of the graph, the cost asso-
ciated withb changes dramatically. Its two possible outcomes
are computed and its resulting cost is forced to reflect the
possibility that the adjacent doorway may be blocked, in which
case no path to the goal is possible. However, AO* only uses
this new information to update the value of the root node,
which in turn chooses a new child (one of the faces whose cost
is the original heuristic value - see Figure 5(e)). This doesnot
make effective use of the information gained in the previous
expansion. Because all the faces depend onb to reach the goal,
their costs are affected by any cost changes associated withb.
By ignoring this, AO* ends up expanding each of the faces
reachable from R one by one in order to arrive at the same
cost values that could have been computed directly from this
initial expansion.

PAO* propagates information concerning updated costs
more thoroughly through the information state space. The
complete algorithm is given in Figure 6. There are four key
differences between its operation and that of AO*.

The first difference allows PAO* to overcome the difficulty
AO* faces in domains such as our simple robot navigation
example of Figure 5. In its propagation of cost changes, PAO*
propagates the updated child cost through theentire child
information state, so that dependencies between faces willbe
reflected in their costs and the parent will be able to use the
most accurate information possible in determining its own cost
and (currently) optimal child (see Figure 5(f)).

Secondly, PAO* propagates cost valuesdown the solution
graph. Given an AND node with two children corresponding
to the two possible true values of the node’s pinch point
(traversable and obstacle), the cost of the parent node should
never be greater than the cost of the obstacle child node.
Similarly, the parent should never have a lower cost than the
traversable child. This makes intuitive sense: if the true value
of a given pinch point is known to be traversable, then we
are certainly in at least as desirable a state as if we did not
know anything about that pinch point’s true value. However,
because a face in a given information state can be reached
through a number of different paths, often this will not hold
for a given parent and child combination. It is even more likely
thatother faces in the same information state as the face of the
child/parent node will have unrealistic costs. To take advantage
of this piece of intuition, PAO* updates the face costs of the
states associated with obstacle nodes so that they are lower
bounded by their parent state values. The update looks at each
face in the child state and assigns it the maximum of the costs
assigned to it by the two respective states, parent and child.
PAO* performs this update as it traverses down the solution
graph to select the next nonterminal node for expansion.

As an example, consider again the simple environment given
in Figure 5(a). Assume this time the robot starts not from

1) The initial solution graph consists solely of the start
node,s, in the original information stateH.

2) While the solution graph has some nonterminal leaf
node:

(a) Generate fringe node: Starting from the root, tra-
verse down the solution graph until a nonterminal
leaf node is encountered. Along the way, update
obstacle child states to have their face costs lower
bounded by their parent states.

(b) Expand best partial solution: Expand the nonter-
minal leaf node and compute cost values for the
information states of its children. Traversable child
states are given heuristic costs. Obstacle child states
inherit their parents’ cost values as lower bounds
then perform limited VI’s over their heuristic coun-
terparts to potentially increase these values. Add the
children to the solution graph, noting whether they
are terminal.

(c) Propagate cost changes and update solution: Com-
pute an updated cost of the original leaf node given
the costs of its children. If the node’s cost has
changed, update the cost estimates for itsentire
information stateand update its parent’s cost to
reflect these changes. If the parent is an OR node,
the current node may be replaced if it no longer pro-
vides the minimum cost. If the node is a traversable
child, update the costs associated with the entire
parent state to be lower bounded by the current state.
Continue propagating up the graph until a node is
reached whose cost does not change.

3) Return the optimal solution graph.

Fig. 6. The PAO* algorithm

the position markedR but rather in the room blocked by the
doors attached to facesa and c. Let’s assume further that
the robot initially expands the face on the other side of the
door from a (call this facea′). If it then chooses to expand
the traversablechild of a′, it will receive an updated value
for face b which takes into account its probability of being
untraversable and precluding any solution. When it propagates
this information back to its parent and on up to nodea′,
suddenly the traversable child ofa′ has a higher cost than its
obstacle child, since the obstacle child still uses the heuristic
cost of each unexpanded face (includingb). PAO* propagates
the updated information to the obstacle child on its next pass
down the graph and, as a result, arrives at a much better
heuristic estimate of its cost.

The relationship works both ways, however, and PAO* also
updates the face costs ofparent information states from their
traversablechild states. It performs this update as part of its
propagation of cost changes back up the solution graph. These
two propagation steps combine to allow information gained at
one end of the solution graph to be accessible at the other.



Fig. 7. An example fractal terrain used in testing. 10 pinch points were
manually selected from each environment.

The final difference resides at the node expansion stage.
In the AO* expansion of a nonterminal node, indifference
is shown towards the nature of the two children. Both are
assigned initial heuristic values and these values are thenused
to update the parent. However, it is possible to exploit the
relationship between the face costs of parent and child states
described above to produce more realistic values for at least
one of the two children. PAO* allows the obstacle child stateto
inherit the values of the parent state, then performs a VI over
the heuristic counterpart of the obstacle state which carefully
ensures the resulting costs are not less than the parent costs.
This is done by initializing each face with the cost of its arc
to the goal (if one exists), then performing standard value
iteration. If, at any point during the VI, the cost of a particular
face becomes less than that face’s cost in the parent state, the
face has its cost fixed to the parent cost for the remainder of
the value iteration. This inheritance allows all the information
concerning the parent state to be retained and utilised by the
obstacle child state.

IV. RESULTS

Figure 8 compares the performance of PAO* to all 3 alter-
native approaches discussed here. The algorithms were tested
over 20 different fractally generated environments2, each with
10 pinch points (selected manually from the environment).
Each fractal environment was generated using a different
density to simulate varying degrees of terrain difficulty. For
each environment we varied the probabilities associated with
each pinch point randomly to produce 10 different test cases.

In each case, the task was to find the optimal path given a
start state at one end of the environment and a goal state at

2see [1] for details of the fractal generation process. We used a gain of 20
and varied the number of levels from 1 to 20.

Approach Complete Reachability AO* PAO*
Examined

Min 59048 19684 5 5
Max 59048 59048 59048 2146
Avg 59048 52924.8 25272.0 405.8

Expanded
Min 2 2
Max 26748382 3150
Avg 5794832.5 314.8

Run Time
Min 1.3278 0.4749 0.0004 0.0002
Max 2.8071 2.5056 1011.5316 0.2827
Avg 1.8250 1.3594 232.5929 0.0302

Fig. 8. The results of our four approaches applied to a test set of 200
pinch point environments. The three criterion displayed arethe number of
information states examined, the number of states expanded (inthe case of
AO* and PAO*) and the run time required to find the optimal solution.

the other. Each environment was200× 200 cells in size. The
time taken for the initial arc cost propagation is independent
of which approach is used and is highly dependent on the size
of the environment, so it has been left out of our comparison.
On average, this propagation took about 6 seconds. All times
reported are for a 1.4 GHz Pentium III Processor.

We used 10 pinch points in our analysis in order to keep
the numbers down. Although the relative performance of each
approach alters slightly given an increased quantity of hidden
state (the advantage of reachability analysis over the complete
solution, for example, will increase), we found that 10 pinch
points was enough to portray the general trend.

The first criteria used to evaluate the approaches was the
number of information states examined. For the complete
approach, this is a fixed number, as it exhaustively solves
each information state from the deterministic cases upwards.
Reachability analysis allows us to reduce the number of
examined states quite considerably. AO* at times examines
only a fraction of the states, however on occasion it was forced
to deal with the complete information space. PAO* was able
to keep the number of considered states extremely low, on
average looking at only 406 (out of a state space of 59048).

To compare PAO* with AO* more thoroughly, we gen-
erated results for the number of states expanded during the
run of each algorithm. This corresponds to the number of
fringe elements which were further processed to produce their
traversable and obstacle children. Because the partial solution
graph maintained by these approaches is continually updated
and reshaped, a single state can be expanded several times.
Thus, the number of expanded states can be much larger than
the total number of distinct states examined. AO* on average
expanded more than1.8 · 104 times as many states as PAO*.

The enormous difference in state expansions carried over
into the run time results. AO* performed on average much
more poorly than the complete solution, although certain en-
vironments it was able to solve very quickly. PAO* performed
considerably better than any of the other approaches, with an
average run time of 0.03 seconds.



��
�� ��

����
��

��
��

��
��

��
��

��
��

��
�� ��

��

��
��

Fig. 9. A simulated traverse (in blue) of the outdoor environment shown in Figure 1.

The effectiveness of each approach is highly dependent on
the nature of the environment in which we wish to plan. We
have been interested in solving the navigation problem for
outdoor environments and generated our range of test scenarios
accordingly. However, for different environments, particularly
indoor scenarios, the relative performance of the approaches
may be a little different. In particular, in run time values the
approaches would be even more separated, as only a fraction
of the information states are reachable when the order of the
adjacency list between faces is small (a typical characteristic of
indoor environments), and the inter-dependencies betweenface
costs are even stronger. These changes do not affect the overall
performance advantage of PAO*, however, which dominated
every criterion in every environment we tested (including some
indoor scenarios which have not been reported).

We have included in Figure 9 one possible resulting traverse
for an agent planning optimally in the outdoor environment
shown earlier. In this particular example, the probabilities
associated with each pinch point being untraversable were set
to 0.5 and their actual values were generated randomly. The
agent started on the left side of the environment (shown in dark
blue) and made its way to the goal at the far right (shown in
red). It encountered three pinch points, one of which turned
out to be untraversable.

V. CONCLUSION

We have described a new algorithm, PAO*, which applies
heuristic search to AND-OR graphs. It is similar to AO* in its
maintenance of a partial solution graph but differs in its ability
to update heuristic values across the full AND-OR state space.
We have presented comparisons between PAO* and three other
approaches used to solve a new kind of decision problem,
characterized by the incorporation of hidden state.

A number of promising directions exist for future research.
In this paper, we have dealt with environments where the pinch
points are manually specified. We are currently investigating
the automatic extraction of pinch points from outdoor data.

We are also looking at how we can replan efficiently when
updated information is received concerning the terrain of non-
pinch point areas of the environment (as in [1], [2]).

ACKNOWLEDGMENTS

The authors would like to express their thanks to Ryan
Miller and Omead Amidi for the outdoor terrain data. This
work was sponsored by the U.S. Army Research Laboratory,
under contract “Robotics Collaborative Technology Alliance”
(contract number DAAD19-01-2-0012). The views and con-
clusions contained in this document are those of the authors
and do not represent the official policies or endorsements of
the U.S. Government.

REFERENCES

[1] A. Stentz, “The focussed D* algorithm for real-time replanning,” in Pro-
ceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), 1995.

[2] S. Koenig and M. Likhachev, “Incremental A*,” inAdvances in Neural
Information Processing Systems. MIT Press, 2002.

[3] I. Nourbakhsh and M. Genesereth, “Assumptive planning and execution:
a simple, working robot architecture,”Autonomous Robots Journal,
vol. 3, no. 1, pp. 49–67, 1996.

[4] A. Bar-Noy and B. Schieber, “The Canadian Traveller Problem,” in
Proceedings of the second annual ACM-SIAM Symposium on Discrete
Algorithms, 1991, pp. 261 – 270.

[5] C. Chang and J. Slagle, “An admissible and optimal algorithm for
searching AND-OR graphs,”Artificial Intelligence, vol. 2, pp. 117 –
128, 1971.

[6] N. Nilsson,Principles of Artificial Intelligence. Tioga Publishing, 1980.
[7] L. Kaebling, M. Littman, and A. Cassandra, “Planning and acting in

partially observable stochastic domains,”Artificial Intelligence, vol. 101,
1998.

[8] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: An
anytime algorithm for POMDPs,” inProceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 2003.

[9] A. Moore and C. Atkeson, “Prioritized sweeping: reinforcement learning
with less data and less time,”Machine Learning, vol. 13, 1993.

[10] C. Boutilier, R. Brafman, and C. Geib, “Structured reachability analysis
for MDPs,” in Uncertainty in Artificial Intelligence, 1998.

[11] A. Blum and M. Furst, “Fast planning through graph analysis,” in Pro-
ceedings of the Fourteenth International Joint Conferenceon Artificial
Intelligence, Montreal, 1995, pp. 1636 – 1642.

[12] E. Rich and K. Knight,Artificial Intelligence. McGraw-Hill, 1992.


