PAO* for Planning with Hidden State

Dave Ferguson Anthony Stent, and Sebastian Thrtin

f Robotics Institute ¥ Computer Science Department
Carnegie Mellon University Stanford University
Pittsburgh, PA, USA Stanford, CA, USA

Abstract— We describe a heuristic search algorithm for gen- the possibility that the cell turns out to be untraversalid a
erating optimal plans in a new class of decision problem, the robot must find an alterior path to the goal. The cost of

characterised by the incorporation of hidden state. The approas nis alterior path is a global property and cannot be derived
exploits the nature of the hidden state to reduce the state space ooty f the t . t of th i i
by orders of magnitude. It then interleaves heuristic expansion irectly from the terrain cost or the cell In question.

of the reduced space with forwards and backwards propagation ~ This paper explores a family of problems that extend
phases to produce a solution in a fraction of the time required classical deterministic path planning problems with a tédi

by other techniques. Results are provided on an outdoor path type of hidden state (discussed below), enabling us to model
planning application. exactly the above type of uncertainty. This family enconspas
several key application problems, in particular mobileatob
navigation in environments with detectable state (such as

The path planning problem has been addressed extensiialjoor environments with doors which may be open or closed,
by the robotics research community. A number of approach@soutdoor environments with gaps that may turn out to be too
exist to solve the planning problem in deterministic dorsaimarrow to pass through). It also includes the graph-thaalet
(e.g. A*). Recently, incremental approaches have beenldevganadian Traveller's Problem, which consists of planning a
oped which allow for corrections to the original cost valuegute through a graph where edges may be untraversable [4].
associated with state transitions [1], [2]. These algotgtare \We present a solution to such problems which performs
both optimal and efficient given the information they aseribsearch in a reduced information state space using a heuristi
to. However, they are unable to cope optimally with uncertaio guide the search, as with AO* [5]. The key theoretical
apriori information. contribution of this paper is a new algorithfRAO*, which

Consider a robot navigating outdoors equipped with ajpdates the heuristic value of states throughout the state
overhead map of the surrounding area (generated by satelipace in such a way as to reduce the required computation
or an aerial vehicle). The resolution of the map may hsonsiderably.
much lower than the resolution used by the robot to navigate.

Due to this low resolution, there is some uncertainty as tdl. DETERMINISTIC DECISION PROBLEMS WITH HIDDEN
whether portions of the terrain are traversable or not. As a STATE

result, certain cells in the final map will hold incomplete
information: the robot knows some information about Whef-tli
the terrain is like in the general vicinity but not the exact
value at the particular cell. Some of these cells may be aruc
for the robot’s planning task, such as those residing inawarr
passageways.

Current planners deal with such cells in one of two ways [
[1]. Firstly, they may assign a default value to all suchsell
Typically, this method (known as “assumptive planning”)[3]
allows the robot to update the information about cells as it A Deterministic Decision Problem (DDP) consists of the
moves, so that it can plan using the actual terrain of the c&dlowing components:
when it comes close enough to determine it. Alternatively, « States The state of the DDP is denoted byAt any point
they may compute an expected value of the cell. Given some in time, the state is fully observable. In path planning

I. INTRODUCTION

This section describes the badiecision Problems with
dden State(DPHS) framework as applied to robotic path
lanning, beginning with a brief review on deterministic
decision problems. We go on to discuss how such problems
can be reduced to a search over the space of their hidden state
2Tomponent.

A. Deterministic Decision Problems

probability density function over possible terrains, oranc the state corresponds to the position of the robot in the
compute the expected terrain of the cell and plan using this environment.
expectation. « State transitions The states of the system are related

However, neither of these methods makes use of the infor- through an adjacency list. An agent may transition be-
mation provided to act optimally. If the cell has a non-zero tween the current state and any adjacent state in a
probability of being untraversable, then planning using th deterministic manner.
expected terrain (or terrain cost) will not in general proglu « Cost Function. DDP’s need some measure of the cost
the best path. This is because the cost of the cell must reflect of transitioning between two adjacent stat€sst(z, y),

Fig. 1. A gradient map of an outdoor environment generated bgliadpter. Several pinch points are shown in green (andecirm black). The gray scale
value of each cell reflects the cell's traversability: thekeéa the cell, the more difficult the terrain (with black cetlpresenting obstacles). The displayed
area is 300x 700 meters. Data courtesy of Omead Amidi and Ryan Miller.

which is usually computed from the terrain costs of the The hidden state thus relates the DPHS framework to Par-
cells associated with the two states. tially Observable Markov Decision Problems (POMDP's)[7].
The central problem in path planning DDPs is to calculatdowever, under the current model there is no uncertainty in
a path from a start stateto a goal statg; while minimizing robot action and all observations are noiseless. As we ed| s
the overall cost incurred. The overall cost of a eels defined these characteristics allow us to use heuristic searchitiges

as: over state spaces intractable with POMDP’s [8].
Cost(z,g) = min Cost(x,y) + Cost(y, g). (1) ©C- DPHS Information States
yenbrs(z) An information stateis the state of knowledge an agent
To solve for the cost of an individual statea fast A* based may have concerning the true state of the environment, both
focussed propagation of values can be performed [6]. the known and the hidden elements. An information state in

. a DPHS is written agz, H), wherex is the observable state
B. Hidden State .)
and H = {v(hi1),v(h2),...,v(hp)} is the agent’s knowledge

The DPHS model allows for the incorporation of hiddegoncerning the hidden state. Each hidden state element enay b

state into the DDP framework. The extension is as follows:known to betraversable(v(h;) = t), known to be arobstacle

« Hidden state We deal withp elements comprising our (v(h;) = o), or unknownto the agent«(h;) = u). Thus, given
hidden state (known as ‘pinch points’). In our patta DPHS with anm - n known state space (planning grid) and
planning application, each relates to a particular cell pinch points, the number of information statessis n - 37.
in the environment which may b&aversableor un- The noiseless nature of our observations thus restricts the
traversable Not only is there uncertainty associated witlesulting information state space to be finite, allowing ais t
the traversability of these cells, but there are great conggerform discrete search to achieve an optimal result. Hewev
quences if they are untraversable (i.e., an alternativierothis state space grows exponentially with the number oferidd
holds a much higher cost). Each hidden state elemestate elements. Planning over the entire space is therefore
holds a probability distribution over its possible valueprohibitively expensive.

(for us a single number corresponding to its probability Fortunately, there are a few key properties of our problem
of beinguntraversablg The elements are assumed statiavhich enable us to substantially reduce the amount of com-
their true values are fixed throughout. putation required.

« Observations The true value of a hidden state element Firstly, we can reduce the computation to consider only the
may be observed by an agent. We assume noiselbésdden state elements. If a céllin the environment holds a
observations through a proximity sensor which allowsost to each of the hidden state elements (compuiitttbut
the agent to determine the value of a pinch point fromassing through any other hidden state element) and to the
any adjacent cell in the environment. A proximity sensagoal, then the overall cost of that cell in any informatioatst
approximates the near range navigation sensors typicallycan be computed given the overall costs of each hidden
employed by indoor and outdoor robots. state element i. In particular, since we are planning from

a start states we need only compute the cost for this singl
cell in the single information state the agent starts in. W
thus simplify our information state description to the atsen
knowledge concerning the hidden statt, Secondly, because
the true values of the hidden state elements are fixed, we kn
that an agent will only ever gain information. In other wards g
because our environment is static, once an agent observess
pinch point to be traversable/untraversable it will nevgaia

be uncertain of that pinch point’s true value. So our plagnir
space is without cycles. Finally, because each unknowrehidd g
state element in an information state can turn out to be on=r——=
either traversable or untraversable, we are presented awithg
natural admissible heuristic to use for searching theiotstt

information space (that is, assume all unknown hidden stai@- 2. The lowest cost arcs between a subset of the faceiprévious
| ts aréraversabl traversability map. Each pinch point has a number of faceshathto it,

elements aréraversablg. corresponding to its different general entries. Here thelpipoints are in

green, enlarged slightly to aid in illustration, and thetcags are in blue.

IIl. SoLVING THE DPHS

As mentioned previously, our solution exploits the fa?‘/hich have the respective pinch point holding the value

Faversable).
Ctter constructing our face graph, we have reduced the
trfri'1t5nning DPHS to the graph-theoretic Canadian Traveller’s
Problem (CTP) concerning the hidden state elements. We now
A. The Face Graph introduce four methods for solving this problem. The first
. L . . three draw from ideas common to the planning and MDP
Each pinch point in a planning environment may have a " . . .
.) : . ommunities. The final approach involves our novel algamith

number offaces which consist of adjacent cells opening ou
: ; . ; AO*
into different cost regions of the environment. These faces
can be thought of as different entrances and exits assdciaée
with the pinch point (see Figure 2). Each neighboring (non-
obstacle) cell to a pinch point resides on exactly one of theThe first approach we consider uses the monotonicity of
pinch point’s faces. the agent’s information concerning the hidden state tovderi

The adjacency graptFéace Graph links up these faces to an iterative solution to the CTP. Ultimately, we are tryimg t
one another and, in doing so, provides a compact represef@mpute an optimal path for an agent which starts out in the
tion of the hidden state elements of the environment. Figurénformation statef/ = {u, v, ...,u}. However, the cost values
illustrates an environment with 10 pinch points and Figure @ each face in our graph at this state can be recovered lgtirect
shows a section of its corresponding face graph. The costfiim the costs of the faces in the information states which
an arc between two faces represents the lowest cost agsbciaveexactly ongpinch point of known value. These face costs
with moving along an optimal (pinch-point free) patatween in turn can be computed from the costs of the faces in the
the faces and is used to propagate values from one facedni@rmation states which havevo known pinch points, and
another. SO on.

1) Creating the Face Graph:In order to produce the The reason for this is as follows. As soon as the agent moves
appropriate arcs and arc costs associated with the facé,grdp a face associated with a pinch point which is of valye
we run an initial cost propagation through our environmeiite agent learns (through its proximity sensor) what thaaict
(using prioritized sweeping [9]) which determines, for leacvalue of that pinch point is. As a result, our agent is cortgtan
cell in the planning grid, the cost to each different fac#creasing its knowledge of the state of the environmeng, on
and the cost to the goal. For this propagation we treat egainch point at a time. To solve for the values of information
pinch point as if it were an obstacle, so that we ascertastate: we must have the values of every information state
which faces are directly accessible to one another. Theangi which is reachable from. These are exactly the information
some facef; and its corresponding costs to each other fasgates which have one more pinch point of known value.
Cost(f1, f2)...Cost(f1, fn), we create an arc to each fage In short, we iterate from the base-case information states
for which Cost(f1, f;) < oo and label it with its associated where the environment is completely deterministic (allopin
cost. Similarly, an arc is created to the goal if it is acdassi points are of known values) up to information states with
(i.e., if Cost(f1,Goal) < o). increasing numbers of pinch points holding the value

After this pass, we then compute the cost betweenThe costs of each face in the deterministic informatiorestat
faces associated with the same pinch point. This cost (f@ghere are2? such states fop pinch points) are solved using
belled CostThru(f;, f;)) is then used in information statesstandard value iteration (VI), since we are solving for afids

that we can reduce the problem to a search over just
space of the hidden state component. To do this, we red
the environment to an adjacency graph between hidden s
elements.

The Complete Solution

Compute CostC|fj,i: it holds information concerning these pinch points without
Cost— Cost(fx, Goal) knowing the values of the pinch points it would have to pass
v e v(h(fk)) through to get this information. Such states are impossible
i given the initial position and information state of the rabo
v =U age . .
_) _) Reachability analysis has been used extensively by the
E(I:OSU_ p(h(f) = 0) - Clfisiol + p(h(fi) =) - Clfisit] \rarcov Decision Processes community (and others) to oéstri
Se
. . ‘ computation to information states which are physicallychea
l(IEOSt:mm(COSt }?ér}(c[fi’z} + Cost(fx, f1))) able from the initial state [10], [11]. The idea is to propga
v = . e .
. . , outwards from the initial state, marking each subsequerté st
Coste— min(Cost fiéﬁlﬁk)(c[f“” + CostThru(fk. £:))) as reachable. All states left unmarked can be ignored in our
Return Cost solution derivation.
Incorporating reachability considerations, the algaonitte-
Flfg 3. Genera}l value iteration algorithm to compute costaufeff; i gcribed above changes in two ways. Firstly, an initial propa
information state. gation step is performed, branching out from the initiatesta

to mark all the reachable states. Secondly, the iterati@seh

at oncé. Each face has Its cost initialized to its arc cost t nly considers the states marked in the first step, thus iiggor
the goal. If no such arc exists (i.e. the face has no path to & irrelevant areas of our information space

goal without needing to traverse some hidden state element
the cost is initialized to infinity. D. AO*

Once the costs of these st.ates haye been determined, th]ene number of examined states can be further reduced by
costs of faces of subsequent information states can bedso'}ﬁ%rforming heuristic-based search over the informaticacep
using the modified value iteration algorithm in Figure 3. A5+ is a classic search algorithm which performs such a

In this generalized algorithm('[fy,] represents the costy. ristic search over an AND-OR graph [5], [12]. An AND-
of face f;. in information statei, h(/x) is the pinch point 0 o granh contains two types of nodes: AND nodes obtain
Wh_'Ch face_fk be'O”QS’“(hﬂ‘) is the value .Of pII’IC'h poink;; their values from combiningll their child nodes, while OR
in information statei (one oft, o, or u), i, andi, are the hqq4eg compute their values from choosingingle noddrom
information states similar toin all respects except thay f;) their children.
is of valueo andt, respectively, and:(fx) is the set of all The planning CTP can be represented as an AND-OR

faces associated with pinch poinfy). graph as follows. Each node in the graph corresponds to a

The algorithm works by finding the complete set of SUG, e in 4 particular information state. The root of the graph
cessor faces (combined with information states) from amgiVéan OR node) is the start cell in the information state

face_fk. If f,_C is attaphed to a pinch point With_ yalue(i” = {u,u,...,u}. The next level of the graph corresponds
our information state), then we use the probability measurg, 5 the faces which have arcs to(and each node at this

of the current face. This expected cost combines the valygss v children representing the two possible information
of the face in the information states and ;. If the pinch gateq realizable from visiting the node. These two childre
point is known, then we update our current cost to be the - have the same face as their parent but reside in differen

minimum of the cost associated with moving to any adjaceptormation states (one has the hidden state element assdci
face (and the goal, if reachable). If the pinch point is knowg;, the face of valug, the othero). These children are OR
and is traversablehen we can add to our contention the fac

. . X &Sodes, the next level are AND nodes, and so on.

on t.he other side of the current pinch point as these, too, arqntuitively, from s the agent can choose to move to any
available suceessors. -~ - . _adjacent face or directly to the goal (if clear). Thus, itstco

_ The cost computation is performed for each face in the 5 fynction of theminimumcost of the adjacent faces. Once
information state repeatedly until convergence. it has moved to one of these faces, it learns the true value of
C. Reachability Analysis the hidden state element associated with the face. It does no
choose this value: it is taken from the range of possibditie
(in our case just{traversable, obstaclg according to the
hidden state element’'s probability measure. Thus, the cost

A major drawback of the above approach is tee¢rypos-
sible information state is examined and solved for, incigdi

staFes th_at can never be realized given the initial statagleat of the parent node is a combination of the costboth its
resides in. children

Consider a robot navigating outdoors. If there are a numberA * searches an AND-OR graph by gradually building a

of pinch points that the robot cannot directly reach ("eS’qution graph from the start state through two alternating

without going through some other pinch point), it does nOthases. First, it grows the best partial solution by expandi

make sense for it to process any information states wh ofie of the non-terminal leaf nodes and assigning admissible

1if we were only interested in the value of one face it would makase heuristic costs to its children. -I_—h_en it uses the new'V Cdkmbu
to use A* rather than value iteration. costs to propagate cost revisions to the parent node and

1) The initial solution graph consists solely of the start
node,s, in the original information staté/. (@ @
V_a_\
| —

2) While the solution graph has some nonterminal leaf
node:

(a) Expand best partial solutiorExpand a nonterminal
leaf node and compute heuristic values for its two
children. Add the children to the solution graph,
noting whether they are nonterminal.

(b) Propagate cost changes and update solutibom- ()
pute an updated cost estimate of the original leaf A Cosis
node given the costs of its children. If its coskRa=5 cRb)=10 CRO=
has changed, update its parent’s cost to reflect thigRr,d)=20 C(a,b)=10 C(c,b)=
change. If the parent is an OR node, the currefffd:2)=10 C(b.G)=10
child may be replaced if it no longer provides thg,
minimum cost. Continue propagating up the graph @
until a node is reached whose cost does not change.

3) Return the optimal solution graph.

Fig. 4. The AO* algorithm @ @

5+20 10+10 15+20 20+2(10+0 inf
onwards up the graph. The full algorithm as used is illusttat © @ ® g
in Figure 4.

w

The efficiency of AO* is obtained through its use of a

heuristic to limit the amount of the AND-OR graph that is ex @ @ @ @ ﬁ @ @

amined. The resulting solution graph can often be constduct

through observing only a fraction of the complete graph. IA*20 (51(1+ 15+20 20+2 (155++ (512+ (1155++ (1%0:

our case, th_e heuristic value of a new nodds computed inf/2) inf/2) inf/2) infl2) inf/2)

through solving a VI over the ‘heuristic counterpart’ of

the deterministic state characterized by the best-p@ssibe Fig- 5. Sample planning problem involving a robot, a goal, &t doors

values the hidden state elementsiinould have. For elementSWhICh may be open or closed. Some sample arc costs between deerdiad

- ¢ : points of interest are shown in (b). The first two expansionthe AO* and

already known im (i.e. elementsh, such thatv(h,) = ¢ or PAO* solution graphs are shown in (c) and (d). The values uedeh node

v(hp) = 0) the elements are left untouched. Elements stigpresent the parent's cost to the node plus the cost of tHe itself. The
. . resulting AO* and PAO* solution graphs after propagating tost change

unknqwn (withv(h,) = u) are assigned th_e yalue The fom (d) are shown in (e) and (f).

resulting values are guaranteed to be admissible and the VI

over the deterministic state is very fast. makes full use of all received information and thus allows

E PAO* for more informed decisions to be made at each stage of the

: process.

AO* works very well in certain situations, typically where The key insight behind PAO* is that cost changes are rarely
most of the reachable states are clearly undesirable. $hissolated. If a node updates its cost based on an altered child
because its use of a heuristic allows it to focus its searayawcost, it is likely this update will affect the costs assoethtvith
from highly sub-optimal faces. However, given the currenhat node’s neighbors. Consider the simple scenario destri
problem domain and heuristic, it is possible for the aldgonit in Figure 5, where a robot (at the positidt) must navigate
to examine far more states than necessary. Furthermore, foea goal within an environment containing 4 doors. Each
cause the partial solution graph is altered during the @afs door may be open or closed and the robot is equipped with
the algorithm, AO* can re-expand the same state severabtima proximity sensor to tell, upon reaching a doorway, which
In the worst case, this can result in execution times thaiems possibility prevails. For clarity we have only dealt witheth
the complete solution by orders of magnitude (see results)four reachable faces from the robot's initial position and

PAO*, short for Propagating AO* is an algorithm which have shown only relevant arc costs. We have slightly abused
attempts to capture the clear benefits of using a heuristimtation and used’(b;, G) to express the cost between face
based search while minimizing the possible drawbacks bfand the goal (assuming there is no doob)at
using partial solution graphs. It does this by propagatiost ¢ Initially, all the faces have heuristic cost values asdecia
changes not only upwards to parents in the partial solutigvith them, corresponding to their lowest possible costshis
graph, but sideways to neighbors (in the complete AND-Oparticular scenario, all these costs correspond to patbsgh
graph), and downwards to children. The resulting approatdceb. As explained previously, these heuristic values are the

result of a value iteration over the state of the environment1) The initial solution graph consists solely of the start
where all the doors are open. Given these initial face costs, node,s, in the original information statéf.

the best successor frol is b, giving R an initial cost of

C[R] = C(R,b) + C[b] = 20. Sob is placed as the child of 2) While the solution graph has some nonterminal leaf

R in the partial solution graph (see Figure 5(c)). node:

After a single further expansion of the graph, the cost asso- (a) Generate fringe nodeStarting from the root, tra-
ciated withb changes dramatically. Its two possible outcomes verse down the solution graph until a nonterminal
are computed and its resulting cost is forced to reflect the leaf node is encountered. Along the way, update
possibility that the adjacent doorway may be blocked, inclhi obstacle child states to have their face costs lower
case no path to the goal is possible. However, AO* only uses bounded by their parent states.
this new information to update the value of the root node, () Expand best partial solutionExpand the nonter-
which in turn chooses a new child (one of the faces whose cost minal leaf node and compute cost values for the
is the original heuristic value - see Figure 5(e)). This deets information states of its children. Traversable child
make effective use of the information gained in the previous states are given heuristic costs. Obstacle child states
expansion. Because all the faces depent tmreach the goal, inherit their parents’ cost values as lower bounds
their costs are affected by any cost changes associatedwith then perform limited VI's over their heuristic coun-
By ignoring this, AO* ends up expanding each of the faces terparts to potentially increase these values. Add the
reachable from R one by one in order to arrive at the same children to the solution graph, noting whether they
cost values that could have been computed directly from this are terminal.
initial expansion. _ _) (c) Propagate cost changes and update solutiGom-

PAO* propagates information concerning updated costs pute an updated cost of the original leaf node given
more thoroughly through the information state space. The the costs of its children. If the node’s cost has
complete algorithm is given in Figure 6. There are four key changed, update the cost estimates for eitgire
differences between its operation and that of AO*. information stateand update its parent’s cost to

The first difference allows PAO* to overcome the difficulty reflect these changes. If the parent is an OR node,
AO* faces in domains such as our simple robot navigation the current node may be replaced if it no longer pro-
example of Figure S. In its propagation of cost changes, PAO* vides the minimum cost. If the node is a traversable
propagates the updated child cost through émeire child child, update the costs associated with the entire
information state, so that dependencies between facedavill parent state to be lower bounded by the current state.
reflected in their costs and the parent will be able to use the Continue propagating up the graph until a node is
most accurate information possible in determining its owstc reached whose cost does not change.

and (currently) optimal child (see Figure 5(f)).
Secondly, PAO* propagates cost valud@wn the solution
graph. Given an AND node with two children corresponding Fig. 6. The PAO* algorithm
to the two possible true values of the node’s pinch point
(traversable and obstacle), the cost of the parent nodddshou
never be greater than the cost of the obstacle child nodlee position marked but rather in the room blocked by the
Similarly, the parent should never have a lower cost than tAeors attached to faces and c. Let's assume further that
traversable child. This makes intuitive sense: if the trakig the robot initially expands the face on the other side of the
of a given pinch point is known to be traversable, then wéoor froma (call this face&). If it then chooses to expand
are certainly in at least as desirable a state as if we did b traversablechild of &, it will receive an updated value
know anything about that pinch point’s true value. Howevefor face b which takes into account its probability of being
because a face in a given information state can be reachidraversable and precluding any solution. When it propegat
through a number of different paths, often this will not holghis information back to its parent and on up to noale
for a given parent and child combination. It is even moreljike suddenly the traversable child ef has a higher cost than its
thatotherfaces in the same information state as the face of te@stacle child, since the obstacle child still uses the ibgar
child/parent node will have unrealistic costs. To take atige cost of each unexpanded face (includisjg PAO* propagates
of this piece of intuition, PAO* updates the face costs of thi&e updated information to the obstacle child on its nexspas
states associated with obstacle nodes so that they are lod@wn the graph and, as a result, arrives at a much better
bounded by their parent state values. The update looks ht eheuristic estimate of its cost.
face in the child state and assigns it the maximum of the costsThe relationship works both ways, however, and PAO* also
assigned to it by the two respective states, parent and.chilghdates the face costs parentinformation states from their
PAO* performs this update as it traverses down the solutidraversablechild states. It performs this update as part of its
graph to select the next nonterminal node for expansion. propagation of cost changes back up the solution graph.eThes
As an example, consider again the simple environment givemo propagation steps combine to allow information gained a
in Figure 5(a). Assume this time the robot starts not fromne end of the solution graph to be accessible at the other.

3) Return the optimal solution graph.

Approach | Complete| Reachability AO* PAO*
Examined
Min 59048 19684 5 5
Max 59048 59048 59048 2146
Avg 59048 52924.8 25272.0 | 405.8
Expanded
Min 2 2
Max 26748382| 3150
Avg 5794832.5| 314.8
Run Time
Min 1.3278 0.4749 0.0004 | 0.0002
Max 2.8071 2.5056 1011.5316| 0.2827
Avg 1.8250 1.3594 232.5929 | 0.0302

Fig. 8. The results of our four approaches applied to a tesbs&00
pinch point environments. The three criterion displayed thee number of
information states examined, the number of states expandetigicase of
AO* and PAO*) and the run time required to find the optimal salnti

_ the other. Each environment was0 x 200 cells in size. The

Fig. 7. An example fractal terrain used in testing. 10 pincimgowere time t_aken for the |_n|t|al arc COjSt p_ropagatmn IS mdepMde_

manually selected from each environment. of which approach is used and is highly dependent on the size
of the environment, so it has been left out of our comparison.

n average, this propagation took about 6 seconds. All times

The final difference resides at the node expansion sta&e.)
P eported are for a 1.4 GHz Pentium IIl Processor.

In the AO* expansion of a nonterminal node, indifference) o o
We used 10 pinch points in our analysis in order to keep

is shown towards the nature of the two children. Both arﬁ b q Alth h th lati f f h
assigned initial heuristic values and these values areubked the numbers down. Although the relative performance of eac

to update the parent. However, it is possible to exploit tfi?Proach alters slightly given an increased quantity ofiénd
relationship between the face costs of parent and chilesta?ia€ (the advantage of reachability analysis over the Emp
described above to produce more realistic values for at leS8!ution. for example, will increase), we found that 10 pinc
one of the two children. PAO* allows the obstacle child state PCINtS was enough to portray the general trend.

inherit the values of the parent state, then performs a Vi ove 11€ first criteria used to evaluate the approaches was the
the heuristic counterpart of the obstacle state which aliyef Number of information states examined. For the complete
ensures the resulting costs are not less than the parest cGdtProach, this is a fixed number, as it exhaustively solves
This is done by initializing each face with the cost of its arach information state from the deterministic cases upsvard

to the goal (if one exists), then performing standard valfgeachability analysis allows us to reduce the number of
iteration. If, at any point during the VI, the cost of a pautir examined states quite considerably. AO* at times examines

face becomes less than that face’s cost in the parent siate, QY @ fraction of the states, however on occasion it*waﬁd)rc
face has its cost fixed to the parent cost for the remaindergfdeal with the complete information space. PAO* was able
the value iteration. This inheritance allows all the infation 0 keep the number of considered states extremely low, on

concerning the parent state to be retained and utilised dy ferage looking at only 406 (out of a state space of 59048).
obstacle child state. To compare PAO* with AO* more thoroughly, we gen-
erated results for the number of states expanded during the
IV. RESULTS run of each algorithm. This corresponds to the number of
Figure 8 compares the performance of PAO* to all 3 altef[lnge elements which were further processed to produde the

native approaches discussed here. The algorithms weglte c[aversable and obstacle children. Because the partialicol

over 20 different fractally generated environméntsach with graph maintained t.)y these approaches is continually updgte
10 pinch points (selected manually from the environmen nd reshaped, a single state can be expanded several times.
Each fractal environment was generated using a diﬁereﬂtus’ the number of _ex_panded states can be much larger than
density to simulate varying degrees of terrain difficultar F the total number of distinct s.tates examined. AQ* on average
y ying aeg » 4 *
each environment we varied the probabilities associate¢d W?xpanded more tha_hs 10 t|_mes as many states as I.DAO)
each pinch point randomly to produce 10 different test cases The enormous difference 'T state expansions carried over
In each case, the task was to find the optimal path giver{néo the run time results. AO performed on average T““Ch
e poorly than the complete solution, although certain en

start state at one end of the environment and a goal state, .)
vironments it was able to solve very quickly. PAO* performed
2see [1] for details of the fractal generation process. Wel asgain of 20 considerably petter than any of the other approaches, with a
and varied the number of levels from 1 to 20. average run time of 0.03 seconds.

Fig. 9. A simulated traverse (in blue) of the outdoor environtrghown in Figure 1.

The effectiveness of each approach is highly dependent & are also looking at how we can replan efficiently when
the nature of the environment in which we wish to plan. Wepdated information is received concerning the terrainasf-n
have been interested in solving the navigation problem fpinch point areas of the environment (as in [1], [2]).
outdoor environments and generated our range of test sesnar ACKNOWLEDGMENTS
accordingly. However, for different environments, particly
indoor scenarios, the relative performance of the appemc

may be a little different. In particular, in run time valudwet

approaches would be even more separated, as only a frac%fék was sponsored by the U.S. Army Research Laboratory,

of the information states are reachable when the order of & ni: cc:nrt]rar:;]tk) ?oszzﬁlg%?goégque T_(rarc]:hnﬁlovey A:‘h:h N
adjacency list between faces is small (a typical charatienf TO rac ut o€ d4in this d ;)- the € fstr? Ct?]
indoor environments), and the inter-dependencies betvasen cuslgns C(tm ane mt thls f(f)_cgr:wenl_gre osedo € aut or?
costs are even stronger. These changes do not affect thadlov&" U%ng represent € ofmcial policies or endorsements o
performance advantage of PAO*, however, which dominaté - Government.
every criterion in every environment we tested (includinogne
indoor scenarios which have not been reported). _ _ o

We have included in Figure 9 one possible resulting traverdé! A- Stentz, “The focussed D* algorithm for real-time repiang,” in Pro-

. . . ; ceedings of the International Joint Conference on Artifitielligence
for an agent planning optimally in the outdoor environment jcai), 1995.
shown earlier. In this particular example, the probaleiiti [2] S. Koenig and M. Likhachev, “Incremental A*” iddvances in Neural
i i i ; i Information Processing SystemsMIT Press, 2002.

associated Wlth each pinch point being untraversable waire 3] I. Nourbakhsh and M. Genesereth, “Assumptive planning execution:
to 0.5 and their actual V?-|Ues were Q?nerated random_ly- ThE 4 simple, working robot architectureAutonomous Robots Jourpal
agent started on the left side of the environment (showntik da vol. 3, no. 1, pp. 49-67, 1996. _ _
blue) and made its way to the goal at the far right (shown iff] A. Bar-Noy and B. Schieber, “The Canadian Traveller Reah in

. . . Proceedings of the second annual ACM-SIAM Symposium oneésc
red). It encountered three pinch points, one of which turned A|gorithmsglggl' pp. 261 — 270. ymp

The authors would like to express their thanks to Ryan
r?\/Iiller and Omead Amidi for the outdoor terrain data. This

REFERENCES

out to be untraversable. [5] C. Chang and J. Slagle, “An admissible and optimal algoritfor
searching AND-OR graphsAtrtificial Intelligence vol. 2, pp. 117 —
V. CONCLUSION 128, 1971.

. . . . [6] N. Nilsson,Principles of Artificial Intelligence Tioga Publishing, 1980.
We have described a new algorithm, PAO*, which applie$7] L. Kaebling, M. Litman, and A. Cassandra, “Planning ardirag in

heuristic search to AND-OR graphs. It is similar to AO* in its partially observable stochastic domainasrtificial Intelligence vol. 101,

maintenance o_f a partial solution graph but differs in itditgb [8] J. Pineau, G. Gordon, and S. Thrun, “Point-based valesation: An
to update heuristic values across the full AND-OR state@pac anytime algorithm for POMDPs," iProceedings of the International

We have presented comparisons between PAO* and three other Joint Conference on Artificial Intelligence (IJCARQO03.
h d t | kind of decisi bl r|[]9] A. Moore and C. Atkeson, “Prioritized sweeping: reinfement learning
approaches used 1o solve a new Kind of GeCISIon Problem,” i, jess data and less timeylachine Learningvol. 13, 1993.

characterized by the incorporation of hidden state. [10] C. Boutilier, R. Brafman, and C. Geib, “Structured realgttity analysis
A number of promising directions exist for future research, _ for MDPs," in Uncertainty in Artificial Intelligence1998.

In thi h dealt with . t h th . Ell] A. Blum and M. Furst, “Fast planning through graph asay in Pro-

n : IS paper, we have ea_ _W' environments w ?re dpln ceedings of the Fourteenth International Joint ConfereaneAtrtificial

points are manually specified. We are currently investiggti Intelligence Montreal, 1995, pp. 1636 — 1642.

