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motions with distinct characteristics. Another interesting potential application isdecreasing the bandwidth in transmission of dynamic image sequences: if compactrepresentation of the motion between successive images could be found, only thiscomponent would need to be transmitted instead of full images.The goal of a robust non-rigid motion estimation algorithm can be seen as thefollowing: in the absence of any prior information other than 3D images beforeand after motion, recover some meaningful compact representation of the observedmotion. Let us point out the three essential requirements of this scenario:1. Correspondence between points, or other features, in images is assumed un-known. As part of its job, the algorithm must recover the correspondence,but it is not the only objective of the algorithm.2. No prior shape information, nor any information about the physical proper-ties, is available.3. The algorithm must not be limited to speci�c points in objects with somefavorable properties.The problem of unknown correspondence lies at the heart of non-rigid motionestimation. In some cases, it may be decoupled from the motion estimation, in thatthe results of an algorithm providing only correspondence can be later used by amotion estimation algorithm that assumes known correspondence. For this reasonwe also consider the \correspondence only" algorithms in the current investigation.The second requirement prompts us to leave out the physically-based methodsas well as the methods utilizing global shape topology. The rationale here isthat using a model from an inappropriate domain may lead to erroneous modelestimation, which would severely hamper motion analysis. Finally, the requirementfor applicability to arbitrary points rules out the techniques that are looking for\feature points", such as points with high curvature, etc.Comprehensive coverage of non-rigid motion estimation techniques can befound in two literature reviews published in the mid-90's [1, 9]. Experimentalcross-evaluation of such techniques, to our knowledge, is the �rst of a kind. Dueto space constraints and heterogeneity of existing algorithms we are only able tocover a small subset thereof. Nonetheless we hope that the �ndings of this workprovide a useful insight in development of more advanced techniques.2 Generic Framework for Non-rigid Motion andCorrespondence EstimationThe abstract setting of the problem of non-rigid motion and correspondence esti-mation can be seen as follows: given two sets of n-dimensional points: P = fpkgand P 0 = fp0kg, for each point of interest pi 2 P �nd the index j of the corre-sponding point p0j and the motion function s(p) such that p0j = pi + s(pi). For 3Dimages, dimensionality of p is obviously 3. In the classical rigid registration prob-lem correspondence is trivial, i.e., i = j, and the motion function s(p) = Rp + tfor some rotation matrix R and translation vector t. In non-rigid registration cor-respondence is continuous, and the motion function is either a�ne with full 12



degrees of freedom or non-linear, i.g., [11]. Even a non-linear function, however,may not be powerful enough to accurately model the transformation, or it mayrequire prohibitively large time to compute. To cope with this predicament, a localmotion function si may be sought for each point of interest.It is known from Helmholtz mechanics that in�nitesimal transformation canalways be represented as a composition of translation, rotation and non-rigid trans-formation: s(p) = Kp + t, where K = R + D or K = RD, D being a non-rigidtransformation matrix. The recovery of R and D is possible, however, only fora symmetric (in the additive representation), or a positive-de�nite (in the multi-plicative representation) matrix D [4].In an attempt to overcome the limitations on the kind of deformation, thelocal topology of an object can be used. In order to do so, we make a simplifyingassumption that the objects under investigation are surfaces in 3D. The parametricrepresentation of a surface can be recovered by �tting a second degree polynomial[2, 8], and the di�erential-geometric information thus obtained can be used toestimate motion and correspondence.Consider the point p0 on S, the surface before motion. The problem of �ndingthe counterpart of p0 naturally precedes modeling the motion between the two.Thus the generic procedure of estimating correspondence and motion can be seento have the following two steps:1. Find the point p0k on S0 so as to minimize some correspondence errorEc(p0; p0j)among some candidate points p0j .2. Recover the motion model between p0 and p0k.One pair of corresponding points may not be enough to uniquely recover themotion. In this case one can consider small neighborhoods around the pointsof interest and model motion between these neighborhoods. The correspondenceerror function can also be formulated in terms of the neighborhoods in question.Within this abstract framework, the di�erences between individual algorithmslie in the kind of the correspondence error function Ec and in the estimation ofthe motion model (if any) given the corresponding neighborhoods of interest.3 Brief Review of Selected AlgorithmsWe now present a brief review of the algorithms selected in our study. Our goalhere is to highlight the features of these algorithms which, in our opinion, havecritical impact on their performance in our evaluation. Details can be found inthe cited sources.3.1 Iterative Closest Point AlgorithmThe Iterative Closest Point (ICP) algorithm was developed by Besl and McKayfor registration of 3D shapes [3]. It has become a popular tool in 3D registrationand has received some extensions [5, 6].To adapt the ICP algorithm to our generic framework we proceed as follows.Let P be the set of points in the neighborhood of the point of interest p0 on S,



and let X be the set of points around a candidate point p0j on S0.1 We run theICP algorithm on P and X until convergence (usually not more than 5 iterations),and use the resulting registration error as the value of Ec(p0; p0j). The processis repeated for all other candidate correspondence points. The point with thesmallest registration error is chosen as the correct correspondence, and the rigidtransformation associated with this registration is chosen as the motion model.Despite the use of the rigid model, the main advantage of the ICP algorithmis that instead of assuming a trivial correspondence it proceeds iteratively, byselecting the subset of the closest points, estimating motion, and applying themotion to the initial point set P at each iteration. This idea is similar to Ullman'sincremental rigidity scheme [12] known for its ability to approximate small non-rigid deformations.Since this algorithm has been used in a variety of applications it was interestingto investigate its performance in our framework.3.2 Homothetic Motion AlgorithmA number of algorithms naturally �tting into our generic framework has been pro-posed for restricted classes of non-rigid motion2. The homothetic motion repre-sents uniform expansion/contraction of the surface, characterized by the stretchingcoe�cient �. Since our neighborhoods of interest are, in general, small, homoth-etic motion may be a reasonably close approximation of the undergoing non-rigidmotion. The optimal stretching coe�cient can be computed from the values of theGaussian curvature in the neighborhoods � and �0 before and after motion [7]:� =sPi2�;�0 KiK 0iPi2�0(K 0i)2 :Once the stretching coe�cient is estimated, the correspondence error can be com-puted as: Ec = Xi2�;�0(Ki � �2K 0i)2:The candidate point with the smallest error is selected as the true correspondence,and the respective � as the motion model.3.3 Unit Normal AlgorithmAnother di�erential-geometric algorithm is based on the relationship between theunit normals before and after small deformation3. Let n and n0 denote the unitnormals to the surface before and after deformation. Then the following relationis known from classical di�erential geometry [14]:n0 = n� n� rot s; (1)1The notation of [3] is directly followed in this exposition. Our implementation uses theoriginal quaternion formulation without acceleration.2A more detailed discussion on this topic can be found in [9].3The original version of this algorithm was proposed in [8]. We present here { withoutderivation { a modi�ed, computationally more e�cient version.



where rot s denotes the curl of the motion function s. Assuming the a�ne motionfunction s = au+ bv + c;one can de�ne the error function as the discrepancy of Eq. (1). For the neighbor-hood of interest, this error can be shown to be:� =Pi2�;�0 ��ni + 1Ei (ni � a)(ru)i + 1Gi (ni � a)(rv)i� : (2)Minimizing the squared error (� � �) over the neighborhood around the point ofinterest, one can obtain the system of linear equations in which unknowns are themotion parameters a and b:�Pi2� 1Ei ninTi 00 Pi2� 1Gi ninTi ��ab� = � �Pi2�;�0 1Ei (�ni � (ru)i) niPi2�;�0 1Gi (�ni � (rv)i) ni� : (3)The unit normal algorithm proceeds as follows:1. Fit second degree polynomials z(x; y) to 3D data tuples (xi; yi; zi) in theneighborhoods of interest before and after motion.2. By letting u � x, v � y, construct the parametric representation r(u; v) �(u; v; z(u; v)): In this representation compute the partial derivatives ru �(1; 0; zu) and rv � (0; 1; zv), unit normals n = ru � rv=jru � rv j, and thecoe�cients of the �rst fundamental form E = (ru � ru), G = (rv � rv).3. Decompose the left-hand side matrix using SVD or LU decomposition4.4. For each candidate correspondence point p0j on the surface after motion,back-substitute the right-hand side vectors obtained from the neighborhoodof p0j (�n is the only parameter that depends on the surface after motion).Evaluate the hypothesis by plugging the motion model (aj ; bj) in Eq. (2).5. Select the motion model and the correspondence with the smallest error.3.4 Amini's AlgorithmAmini and Duncan addressed the problem of estimation of correspondences in thesequences of 3D images of left ventricle [2]. Their algorithm is inspired by theidealized thin-plate model, that can be adapted to modeling bending deforma-tion, and by the conformal motion model corresponding to non-uniform stretchingdeformation. The combined bending/stretching energy is de�ned as�ik = �bef((�1)i � (�01)k)2 + ((�2)i � (�02)k)2g+ �st��EiE0k � FiF 0k�2 + � EiE0k � GiG0k �2 + � FiF 0k � GiG0k�2� ; (4)where �1 and �2 are the principal curvatures, E;F;G are coe�cients of the �rstfundamental form, �be and �st are non-negative constants.4Notice that the expression ninTi denotes an open product of 3D vectors which is a 3 � 3matrix block.



For the �xed correspondence hypothesis j the error is computed by minimizingthe energy over the neighborhood of p0j and summing over the neighborhood of p0:Ec =Pi2� mink2�0j �ik: (5)The hypothesis minimizing the error (5) is chosen as correct correspondence.3.5 Wang's AlgorithmThe algorithm of Wang et al. [13] was proposed for 3D surface correspondence,with application to matching of brain images. The algorithm combines Euclideandistance information with the di�erential-geometric information. The latter, unlikesome of the previous methods that require 3D data, is estimated from 2D images.The error function utilized by Wang's algorithm is the following:Ec = dij � nij � fij : (6)The Euclidean distance measure dij is de�ned asdij = 1 +q(xi � xj)2 + (yi � yj)2 + (zi � zj)2:The unit normal match measure nij is de�ned asnij = 2� ni � nj :The feature match measure fij is a heuristic, curvature-based measure applicableonly to brain images. To make this algorithm suitable for our generic framework,we have de�ned a similar measure based on Gaussian curvature:fij = 1 + log10 � jKi�K0j jjKij + 1� :The diacritical feature of Wang's algorithm is the combination of three distinctmodalities of correspondence measure in a single multiplicative error function.4 Experimental ResultsOur experimental setup consists of three tiers:1. Arti�cial motion on analytical shapes. The shape is a 25�25 quadric 0:1u2+0:1v2 with 49 points of interest evenly spaced with step 2 around its apex.A�ne motion au + bv with parameters a = (0:001; 0:002; 0:003) and b =(0:003; 0:001; 0:002) is applied after an initial rotation by 5� and translationby 5% of the magnitude of the (x; y; z) vector of the point of interest. Thea�ne component is magni�ed with the parameter � in the range of 1 to 1000.2. Arti�cial motion on real shapes. The shape is a facial range image obtainedfrom a Cyberware scanner. Motion is applied in the same way as above.



(a) (b) (c) (d)Figure 1: Examples of 3D shapes with correspondence information: (a), (b) { 3Dimages before and after deformation; (c), (d) { visual images with correspondenceinformation before and after deformation.3. Real motion on real shapes. Motion between a pair of facial range imagesis estimated. The ground truth correspondence is obtained from the visualimages of the same shape with color markers (invisible to the range scanner)applied at points of interest. The examples of 3D shapes and their visualimages are given in Fig. 1.In the arti�cial motion experiments the true correspondence is trivial. Giventhe computed correspondence (uc; vc), and the true correspondence (�u; �v), thecorrespondence error is de�ned as p(uc � �u)2 � (vc � �v)2.One can see from Figures 2 and 3 that the algorithms exhibit di�erent behaviorwith respect to the motion magnitude. The error of the homothetic and the unitnormal algorithms increases with greater motion magnitude, whereas the otherthree algorithms are much less a�ected by it. One can also notice similarity ofthe accuracy of the ICP and Wang's algorithms { it turns out that the latter'serror function is dominanted by the distance component. Amini's algorithm hadpersistent problems in both experiments. This may be due to imbalance of its errorfunction consisting of two distinct terms representing di�erent types of motion.The balance between the terms can vary even across the same data set, and wehad to set both weights to 1 to avoid unjusti�ed bias.The real motion experiments were carried out on 7 data sets based on sequencesof 3D images from three subjects. Data sets 2 and 4 represent relatively largemotion. In our experiments the 180� 524 real images were sub-sampled by 2, andthe search window of size 7 was used.Three numerical criteria were used for evaluation. The correspondence errorwas de�ned earlier in this section. The relative image error is computed as jj�p0�p0cjjjj�p0�p0jj ;where p0 is the point of interest before motion, �p0 is the true corresponding point,and p0c is the computed corresponding point. The image error improvement ratiois computed as jj�p0�p01�1jj�jj�p0�p0cjjjj�p0�p01�1jj ; where p01�1 is the point after motion under



0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

log δ

E

Correspondence error

ICP algorithm
unit normal algorithm
Wang algorithm
Amini algorithm
Homothetic algorithm

Figure 2: Comparison of the algorithms on the analytical shape and arti�cialmotion.
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Figure 3: Comparison of the algorithms on the real shape and arti�cial motion.trivial correspondence. It shows the relative improvement of error over trivialcorrespondence. This measure is only applicable when the true correspondence isnot trivial; however, the latter occurs very rarely.The results are presented in Figure 4. One can see that the unit normal al-gorithm is signi�cantly more robust than the other 4 algorithms. On all but onedataset it exhibits the smallest correspondence error, and on all datasets the small-est relative image error and the largest improvement ratio. Also noteworthy is thatnone of the algorithms is even close to a sub-pixel correspondence error reportedon several occasions in biomedical image registration literature. This signi�es thatthe setup of the non-rigid motion/correspondence estimation for arbitrary pointsof interest is inherently more di�cult.
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Figure 4: Comparison of the algorithms in the real motion, 7 data sets.5 ConclusionsAmong the �ve considered algorithms, the unit normal algorithm seems to bethe most robust, especially on real data. Its rigorous di�erential-geometric back-ground is appealing, although it remains to be seen how critical the small motionassumption is on real data. The relative strength of Wang's algorithm suggeststhat multiplicative error function is a good idea for combining characterization ofdi�erent factors. The ICP algorithm can still be not the worst choice, although itis the slowest of the �ve.Overall, the accuracy of current algorithms has much room for improvement.The observed image error constitutes at least 50% of the motion, and the im-provement over the trivial correspondence is it at most 40%. Special e�ort mustbe made to perform intelligent hypothesis search: the simple window search usedin our experiments has problems with large motion due to quadratic growth of thecomputational e�ort.The future work we envision in this area would address more advanced methods
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