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Abstract— We propose a new localized structure, namely,
Incident MST and RNG Graph (IMRG), for topology control and
broadcasting in wireless ad hoc networks. In the construction
algorithm, each node first builds a modified relative neighborhood
graph (RNG’), and then informs its one-hop neighbors its incident
edges in RNG’. Each node then collects all its one-hop neighbors
and the two-hop neighbors who have RNG edges to some of its
one-hop neighbors, and builds an Euclidean minimum spanning
tree of these nodes. Each node u keeps an edge uv only if uv is in
the constructed minimum spanning tree. We analytically prove
that the node degree of the IMRG is at most 6, it is connected and
planar, and more importantly, the total edge length of the IMRG
is within a constant factor of that of the minimum spanning tree.
To the best of our knowledge, this is the first algorithm that
can construct a structure with all these properties using small
communication messages (at most 13n total messages, each with
O(log n) bits) and small computation cost, where n is the number
of wireless nodes. Test results are corroborated in the simulation
study.

I. INTRODUCTION

We consider a wireless ad hoc network composed of n
nodes distributed in a two-dimensional plane. We assume
that all wireless nodes have distinctive identities and each
static wireless node knows its position information either
through a low-power Global Position System (GPS) receiver
or through some other way. More specifically, it is enough for
our protocol that each node knows the relative position of its
one-hop neighbors. The relative position of neighbors can be
estimated by the direction of arrival and the strength of signal.
We assume that each wireless node has an omni-directional
antenna and a single transmission of a node can be received
by any node within its vicinity which, we assume, is a unit
disk centered at this node. A wireless node can receive the
signal from another node if it is within the transmission range
of the sender. Otherwise, they communicate through multi-
hop wireless links by using intermediate nodes to relay the
message. Consequently, each node in the wireless network also
acts as a router, forwarding data packets for other nodes. By
one-hop broadcasting, each node u can gather the location
information of all nodes within the transmission range of
u. Consequently, all wireless nodes together define a unit-
disk graph (UDG), which has an edge uv if and only if the
Euclidean distance ‖uv‖ is less than one unit.

Wireless ad hoc networks require special treatment as they
intrinsically have unavoidable limitations as compared with
wired networks. For example, wireless nodes are often pow-

ered by batteries only, and they often have limited memories.
So wireless ad hoc networks prefer localized and power-
efficient algorithms. A transmission by a wireless device is
often received by many nodes within its vicinity, called broad-
casting. We utilize this broadcasting property to reduce the
communications needed to send some information. Through-
out this paper, a local broadcast by a node means it sends the
message to all nodes within its transmission range; a global
broadcast by a node means it tries to send the message to all
nodes in the network by the possible relaying of other nodes.
Since the main communication cost in wireless networks is
to send out the signal while the receiving cost of a message
is neglected here, a protocol’s message complexity is only
measured by how many messages are sent out by all nodes.

In recent years, many research efforts focus on topology
control for wireless ad hoc networks [1], [2], [3], [4], [5].
These algorithms are designed for different objectives: mini-
mizing the maximum link length while maintaining the net-
work connectivity [3]; bounding the node degree [5]; bounding
the spanning ratio [1], [2]; constructing planar spanner locally
[1]. Here a structure H is a spanner of UDG if, for any two
nodes, the length of the shortest-path connecting them in H
is no more than a constant factor of the length of the shortest-
path connecting them in the original UDG. Planar structures
are used by several localized routing algorithms [6], [7]. Li and
Wang [8] recently also proposed the first localized algorithm
to construct a bounded degree planar spanner.

A structure is called low weight if its total edge length is
within a constant factor of the total edge length of the mini-
mum spanning tree (MST). However, no localized algorithm is
known to construct a low-weighted structure. It was recently
shown in [9] that a broadcasting based on MST consumes
energy within a constant factor of the optimum.

The best distributed algorithm [10], [11] can compute MST
in O(n) rounds using O(m + n log n) communications for a
general graph with m edges and n nodes. Since the relative
neighborhood graph, the Gabriel graph, and the Yao graph
all have O(n) edges and contain the Euclidean MST, we can
construct the minimum spanning tree of UDG in a distributed
manner using O(n log n) messages. Unfortunately, even for a
wireless network modelled by a ring, the O(n log n) number
of messages is still necessary for constructing MST of UDG.

Recently, Li, Hou, and Sha [12] proposed a novel MST-
based method for topology control. Each node u uses its one-
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hop neighbors to build a local minimum spanning tree. They
call the final graph local minimum spanning tree (LMST).
They prove that the graph is connected, and has bounded
degree 6. However, it can be shown that LMST is not a low
weight structure.

We present the first efficient localized method to construct
a bounded degree planar connected structure Incident MST
and RNG Graph (IMRG) whose total edge length is within a
constant factor of MST. The degree of each node is at most
6. The total communication cost of our method is at most
13n, and every node only uses its partial two-hop information
to construct such structure. It was shown in [13], [14] that
some two-hop information is necessary to construct any low-
weighted structure. We also studied the application of this
structure in efficient broadcasting in wireless ad hoc networks.

Energy conservation is a critical issue in ad hoc wireless
network for the node and network life, as the nodes are pow-
ered by batteries only. In the most common power-attenuation
model, the power needed to support a link uv is ‖uv‖β ,
where ‖uv‖ is the Euclidean distance between u and v, β
is a real constant between 2 and 5 dependent on the wireless
transmission environment.

Minimum-energy broadcast/multicast routing in ad hoc net-
work environments is addressed in [15], [16]. To assess the
complexities one at a time, the nodes in the network are as-
sumed to be randomly distributed in a two-dimensional plane,
and there is no mobility. Three centralized greedy heuristics
(as opposed to distributed) algorithms were presented in [16],
namely, MST (minimum spanning tree), SPT (shortest-path
tree), and BIP (broadcasting incremental power). For illustra-
tion purposes, another slight variation of BIP, called BAIP,
was discussed in detail in [9]. Wan, et al. [9] showed that
the approximation ratio of MST-based approach is between
6 and 12, which is the best known method theoretically.
Unfortunately, MST cannot be constructed in a localized
manner, i.e., each node cannot determine which edge is in
the defined structure by purely using the information of the
nodes within some constant hops. The relative neighborhood
graph was used for broadcasting in wireless ad hoc networks
[17]. It is well-known that MST ⊆ RNG. The ratio of the
weight of RNG over the weight of MST could be O(n) for n
points set [18]. As shown in [13], [14], the total energy used by
the global broadcasting based on RNG could be about O(nβ)
times optimum.

Notice that a structure with low-weight cannot guarantee
that the broadcasting based on it consumes energy within a
constant factor of the optimum. The energy consumption using
our new structure IMRG is within O(nβ−1) of the optimum.
This improves the previously best known “lightest” structure
RNG by an O(n) factor. Our extensive simulations show that
the energy consumption of broadcasting based on structure
IMRG is within a small constant factor of that based on
the MST and has significant improvement over the energy
consumption based on RNG.

The rest of the paper is organized as follows. In Section II,
we review the related work on network topology control and

minimum energy broadcasting. In Section III, we present our
communication and computation efficient localized method
that can construct a connected, planar, bounded degree, low-
weight structure IMRG. The total communication cost to
build it is at most 13n. We compare the performance of this
structure with previously best-known structures in Section IV.
We conclude our paper with a discussion of possible future
research directions in Section V.

II. RELATED WORK

Before reviewing the related work, we first introduce the
formal definition of low weight. Given a structure G over a
set of points, let ω(G) be the total length of the links in G
and ωβ(G) be the total power needed to support all links in
G, i.e., ωβ(G) =

∑
uv∈G ‖uv‖β . Then, a structure G is called

low weight if ω(G) is within a constant of ω(MST ).

A. Topology Control

Recently, topology control for wireless ad hoc networks has
attracted considerable attention [3], [19], [20], [21], [22], [23],
[24]. Rajaraman [25] conducted an excellent survey. Several
geometrical structures are used for topology control. Here we
review the definitions of some of them.

The relative neighborhood graph, denoted by RNG, is a
geometric concept proposed by Toussaint [26]. It consists of
all edges uv such that there is no point w with uw and wv
satisfying ‖uw‖ < ‖uv‖ and ‖wv‖ < ‖uv‖. Let disk(u, v)
be the disk with diameter uv. Then, the Gabriel graph [27]
(GG) contains an edge uv from G if and only if disk(u, v)
contains no other vertex w inside. It is easy to show that
RNG is a subgraph of the Gabriel graph GG. For unit disk
graph, the relative neighborhood graph and the Gabriel graph
only contain the edges in UDG and satisfying the respective
definitions. Both GG and RNG are used as network topology
in wireless ad hoc networks.

The Yao graph with an integer parameter k ≥ 6, denoted
by

−−→
Y Gk, is defined as follows. At each node u, any k

equally-separated rays originated at u define k cones. In each
cone, choose the shortest edge uv, if there is any, and add a
directed link −→uv. Ties are broken arbitrarily or by the smallest
ID. The resulting directed graph is called the Yao graph.
Some researchers used a similar construction named θ-graph
[28]. Recently, the Yao structure was re-discovered by several
researchers for topology control in wireless ad hoc networks
of directional antennas.

Li, et al. [18] extended the definitions of these structures
on top of any given graph G. They proposed to apply the
Yao structure on top of the Gabriel graph structure, and
apply the Gabriel graph structure on top of the Yao structure.
These structures are sparser than the Yao structure and the
Gabriel graph, and they still have a constant bounded power
stretch factor. These two structures are connected graphs.
Wattenhofer, et al. [24] also proposed a two-phased approach
that consists of a variation of the Yao graph followed by a
variation of the Gabriel graph.
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Li, et al. [21] proposed a structure that is similar to the
Yao structure for topology control. Each node u finds a power
pu,α such that in every cone of degree α surrounding u, there
is some node that u can reach with power pu,α. Notice that
the number of cones to be considered in the traditional Yao
structure is a constant k. However, unlike the Yao structure,
for each node u, the number of cones needed to be considered
in the method proposed in [21] is about 2n, where each node
v could contribute two cones on both side of segment uv.
Then the graph Gα contains all edges uv such that u can
communicate with v using power pu,α. They proved that,
if α ≤ 5π

6 and the UDG is connected, then graph Gα is a
connected graph. Unlike the Yao structure, the final topology
Gα is not necessarily a bounded degree graph.

Li, et al. [18] also proposed another structure called YaoYao
graph

−−→
Y Y k by applying a reverse Yao structure on

−−→
Y Gk. They

proved that the directed graph
−−→
Y Y k is strongly connected

if UDG is connected and k > 6. In [5], Wang, et al.
considered another undirected structure, called symmetric Yao
graph Y Sk. An edge uv is selected if and only if both directed
edges −→uv and −→vu are in the

−−→
Y Gk. Then it is obvious that the

maximum node degree is k. They showed that the graph Y Sk

is strongly connected if UDG is connected and k ≥ 6.

Recently, Li, Hou, and Sha [12] proposed a novel local
MST-based method for topology control. Each node u first
collects its one-hop neighbors N1(u). Node u then computes
the minimum spanning tree MST (N1(u)) of the induced unit
disk graph on its one-hop neighbors N1(u). Node u keeps a
directed edge uv if and only if uv is an edge in MST (N1(u)).
They call the union of all directed edges of all nodes the local
minimum spanning tree, denoted by G0. If only symmetric
edges are kept, then the graph is called G−

0 , i.e., it has an
edge uv if and only if both directed edge uv and directed
edge vu exists. If we ignore the directions of the edges in G0,
they call the graph G+

0 , i.e., it has an edge uv if and only if
either directed edge uv or directed edge vu exists. They prove
that the graph is connected, and has bounded degree 6.

Here, we also show that graph G−
0 is actually planar. For

the sake of contradiction, assume that G−
0 is not a planar graph

and two edges uv and xy intersect each other. Assume that the
clockwise order of these four nodes are u, y, v, x. Obviously,
one of the four angles ∠uxv, ∠xvy, ∠vyu, and ∠yux is at
least π/2. Without loss of generality, assume that ∠uxv ≥
π/2. Thus, edge uv is the longest edge among triangle �uvx.
Thus, in the local minimum spanning tree MST (N1(u)), edge
uv cannot appear since there is already a path uxv whose
edges are all shorter than uv. Similarly, graph G+

0 is a planar
graph (by replacing the undirected edges with directed edges
in the above proof).

Inspired by the local minimum spanning tree structure in
[12], we propose another structure, called IMRG, that has an
additional property: the total edge length of the structure is no
more than a constant factor of that of the minimum spanning
tree. We call this property low weight. Notice that the total
edge length is related to the total power of all nodes used

to keep the network connected. It is not difficult to construct
an example such that the structure G−

0 and G+
0 are not low-

weight (the same example in [13], [14] for RNG). We also
show that our structures IMRG+ and IMRG− are always
subgraphs of the structures G+

0 and G−
0 constructed in [12].

B. Power Assignment

Assume that each node can adjust its transmission power
according to its neighbors’ positions for a possible energy
conservation. A natural question is then how to assign the
transmission power for each node such that the wireless
network is connected with the optimization criteria being min-
imizing the maximum or total transmission power assigned.

A transmission power assignment on the vertices in V is
a function f from V into real numbers. The communication
graph, denoted by Gf , associated with a transmission power
assignment f , is a directed graph with V as its vertices and
has a directed edge −−→vivj if and only if ||vivj ||β + c ≤ f(vi).
We call a transmission power assignment f complete if the
communication graph Gf is strongly connected. Here c is the
fixed overhead cost of a node receiving and processing the
signal, which is assumed to be same for all nodes.

The maximum-cost of a transmission power assignment f
is defined as mc(f) = maxvi∈V f(vi). And the total-cost of
a transmission power assignment f is defined as sc(f) =∑

vi∈V f(vi). The min-max assignment problem is then to
find a complete transmission power assignment f whose cost
mc(f) is the least among all complete assignments. The min-
total assignment problem is to find a complete transmission
power assignment f whose cost sc(f) is the least among all
complete assignments.

Given a graph H = (V,E), we say the power assignment
f is induced by H if

f(v) = max
(v,u)∈E

||vu||β + c,

where E is the set of edges of H . In other words, the power
assigned to a node v is the largest power needed to reach all
neighbors of v in H . Clearly, when graph H is connected, the
induced power assignment f is complete.

Transmission power control is well-studied. Monks, et al.
[29] conducted simulations which show that implementing
power control in a multiple access environment can improve
the throughput of the non-power controlled IEEE 802.11 by
a factor of 2. Therefore, it provides a compelling reason
for adopting the power controlled MAC protocol in wireless
network.

The min-max assignment problem was studied by several
researchers [3], [30]. Let EMST be the Euclidean minimum
spanning tree over a point set V . Both [3] and [30] use the
power assignment induced by EMST. It was proved in [3]
that the longest edge of the Euclidean minimum spanning tree
EMST is always the critical link for min-max assignment.
Here, for an optimum transmission power assignment fopt,
call a link uv the critical link if ||uv||β + c = mc(fopt). Both
algorithms presented in [3] and [30] compute the minimum
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spanning tree from the fully connected graph with possible
very large communication cost. Notice that the best distributed
algorithm [10], [11], [31] can compute the minimum spanning
tree in O(n) rounds using O(m + n log n) communications
for a general graph with m edges and n nodes. Using the fact
that RNG, GG and the Y Gk all have O(n) edges and contain
the EMST, a simple O(n log n) time complexity centralized
algorithm can be developed and can be implemented efficiently
in a distributed manner.

The min-total assignment problem was studied by Kiroustis,
et al. [32] and by Clementi, et al. [33], [34], [35]. Kiroustis,
et al. [32] first proved that the min-total assignment problem
is NP-hard when the mobile nodes are deployed in a three-
dimensional space. A simple 2-approximation algorithm based
on the Euclidean minimum spanning tree was also given in
[32]. The algorithm guarantees the same approximation ratio
in any dimensions. Clementi, et al. [33], [34], [35] proved that
the min-total assignment problem is still NP-hard when nodes
are deployed in a two dimensional space.

So far, we generate asymmetric communication graph from
the power assignment. For the symmetric communication,
several methods also guarantee a good performance. It is
easy to show that the minimum spanning tree method still
gives the optimum solution for the min-max assignment and
a 2-approximation for the min-total assignment. Recently,
Cǎlinescu, et al. [36] gave a method that achieves better
approximation ratio 5

3 by using an idea from the minimum
Steiner tree. Like the minimum spanning tree method, it works
for any power definition.

C. Minimum Energy Broadcasting

Minimum-energy broadcast/multicast routing in an ad hoc
network environment is addressed in [15], [16]. Any broadcast
routing is viewed as an arborescence (a directed tree) T ,
rooted at the source node of the broadcasting, that spans all
nodes. Let fT (p) denote the transmission power of the node
p required by T . For any leaf node p of T , fT (p) = 0. For
any internal node p of T , fT (p) = maxpq∈T ‖pq‖β , i.e., the
β-th power of the longest distance between p and its children
in T . The total energy required by T is

∑
p∈V fT (p). Thus,

the minimum-energy broadcast routing problem is different
from the conventional link-based minimum spanning tree
problem. Indeed, while the MST can be solved in polynomial
time by algorithms such as Prim’s algorithm and Kruskal’s
algorithm, it is known [37] that the minimum-energy broadcast
routing problem cannot be solved in polynomial time if P �=
NP . Three greedy heuristics were proposed in [16] for the
minimum-energy broadcast routing problem: MST (minimum
spanning tree), SPT (shortest-path tree), and BIP (broadcasting
incremental power). For a pure illustration purpose, another
variation of BIP (called BAIP) was discussed in detail in [9].
Wan, et al. [9] showed that the approximation ratio of the
MST based approach is between 6 and 12; the approximation
ratio of the BIP is between 13

2 and 12; on the other hand,
the approximation ratios of SPT and BAIP are at least n

2 and

4n
ln n −o (1) respectively, where n is the number of nodes. The
following lemma was proved in [9].

Lemma 1: For any point set V in the plane, the total
energy required by any broadcasting among V is at least
ωβ(MST )/Cmst, where 6 ≤ Cmst ≤ 12 is a constant related
to the geometry minimum spanning tree.

RNG is used for broadcasting in wireless ad hoc networks
[17]. Obviously, the ratio of the total edge length of RNG over
that of MST could be O(n) for n points set [18]. An example
was given in [13], [14] to show that the total energy used
by broadcasting on RNG could be about O(nβ) times of the
minimum-energy used by an optimum method. We can prove
that the ωβ(IMRG) ≤ O(nβ−1) ·ωβ(MST ) which improves
the previously known structure RNG by O(n) factor.

III. CONSTRUCT LOW WEIGHTED STRUCTURE LOCALLY

In this section, we present our efficient localized method to
construct a connected, low-weighted, bounded degree planar
structure.

A. Modified RNG

Let ‖xy‖ denote the Euclidean distance between two points
x and y. A disk centered at a point x with radius r, denoted
by disk(x, r), is the set of points whose distance to x is at
most r, i.e., disk(x, r) = {y | ‖xy‖ ≤ r}. Let lune(u, v)
defined by two points u and v be the intersection of two
disks with radius ‖uv‖ and centered at u and v respectively,
i.e., lune(u, v) = disk(u, ‖uv‖)∩ disk(v, ‖uv‖). The relative
neighborhood graph [26], denoted by RNG, consists of all
edges uv such that the interior of lune(u, v) contains no
point w ∈ V . Notice here if only the boundary of lune(u, v)
contains a point from V , edge uv is still included in RNG. A
minimum spanning tree of a set of points V is a connected
graph whose weight is the minimum among all connected
graphs spanning V . It is known that the relative neighbor-
hood graph always contains the minimum spanning tree as a
subgraph.

Our low-weight structure is based on a modified relative
neighborhood graph. Notice that, traditionally, the relative
neighborhood graph will always select an edge uv even if there
is some node on the boundary of lune(u, v). Thus, RNG may
have unbounded node degree, e.g., considering n − 1 points
equally distributed on the circle centered at the nth point v,
the degree of v is n − 1. Notice that for the sake of lowing
the weight of a structure, the structure should contain as less
edges as possible without breaking the connectivity. Li [13],
[14] then naturally extended the traditional definition of RNG
as follows.

The modified relative neighborhood graph consists of all
edges uv such that (1) the interior of lune(u, v) contains no
point w ∈ V and, (2) there is no point w ∈ V with ID(w) <
ID(v) on the boundary of lune(u, v) and ‖wv‖ < ‖uv‖, and
(3) there is no point w ∈ V with ID(w) < ID(u) on the
boundary of lune(u, v) and ‖wu‖ < ‖uv‖, and (4) there is no
point w ∈ V on the boundary of lune(u, v) with ID(w) <
ID(u), ID(w) < ID(v), and ‖wu‖ = ‖uv‖. See Figure
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1 for an illustration when an edge uv is not included in the
modified relative neighborhood graph. Li called such structure

w

vu

w

vu

w

vu

w

vu

Fig. 1. Four cases when edges are not in the modified RNG.

by RNG’. Obviously, RNG’ is a subgraph of traditional RNG.
It was proved in [13], [14] that RNG’ has a maximum node
degree 6 and still contains a MST as a subgraph. However,
RNG’ is still not a low weight structure.

Obviously, graph RNG’ still can be constructed using n
messages. Each node first locally broadcasts its location and
ID to its one-hop neighbors. Then every node decides which
edge to keep solely based on the one-hop neighbors’ location
information collected. Since the definition is still symmetric,
the edges constructed by different nodes are consistent, i.e.,
an edge uv is kept by a node u if and only if it is also kept by
node v. The computational cost of a node u is still O(d log d),
where d is its degree in UDG. A simple edge by edge testing
method has time complexity O(d2).

B. Bound the Weight

We now peovide a communication efficient method to
construct a sparse topology from RNG’ whose total edge
weight is within a constant factor of ω(MST ). In [13], [14],
Li gave the first localized method to construct a structure with
weight O(ω(MST )) using total O(n) local-broadcast mes-
sages, but the computation at each node is expensive. Notice
that it is well-known that the communication complexity of
constructing a minimum spanning tree of a n-vertex graph G
with m edges is O(m + n log n); while the communication
complexity of constructing MST for UDG is O(n log n) even
under the local broadcasting communication model in wireless
networks. It was shown in [13], [14] that it is impossible
to construct a low-weighted structure using only one hop
neighbor information.

We first review the localized algorithm given in [14] that
constructs a low-weighted structure using only some two hops
information.

Algorithm 1: Construct Low Weight Structure LRNG

1) All nodes together construct the graph RNG’ in a
localized manner.

2) Each node u locally broadcasts its incident edges in
RNG’ to its one-hop neighbors. Node u listens to the
messages from its one-hop neighbors.

3) Assume node u received a message informing existence
of edge xy ∈ RNG′ from its neighbor x. For each edge
uv ∈ RNG′, if uv is the longest among uv, xy, ux,
and vy, node u removes edge uv. Ties are broken by
the label of the edges. Here assume that uvyx is the
convex hull of u, v, x, and y.

4) Let LRNG be the final structure formed by all remain-
ing edges in RNG’.

Obviously, if an edge uv is kept by node u, then it is also
kept by node v. It was shown in [13], [14] that the structure
LRNG has total edge length Θ(ω(MST )).

Clearly, the communication cost of Algorithm 1 is at most
7n: initially each node spends one message to tell its one-hop
neighbors its position information, then each node uv tells its
one-hop neighbors all its incident edges uv ∈ RNG′ (there
are at most total 6n such messages since RNG′ has at most 3n
edges). The computational cost of Algorithm 1 could be high
since for each link uv ∈ RNG′, node u has to test whether
there is an edge xy ∈ RNG′ and x ∈ N1(u) such that uv is
the longest among uv, xy, ux, and vy. We continue to present
our new algorithms that improve the computational complexity
of each node while still maintains low communication costs.

Algorithm 2: Construct Low Weight Structure by MST of
2-hop Neighbors

1) Each node u collects its two hop neighbors informa-
tion N2(u) using a communication efficient protocol
described in [38].

2) Each node u computes the Euclidean minimum spanning
tree MST (N2(u)) of all nodes N2(u), including u
itself.

3) For each edge uv ∈ MST (N2(u)), node u tells node v
about this directed edge.

4) Node u keeps an edge uv if uv ∈ MST (N2(u)) or
vu ∈ MST (N2(v)). Let LMST+

2 be the final structure
formed by all edges kept. 1

We then prove that structures LMST+
2 and LMST−

2 are
connected, planar, low-weighted, and has bounded node degree
at most 6.

Lemma 2: MST is a subgraph of LMST−
2 and LMST+

2 .
Proof. We prove MST is a subgraph of LMST−

2 by induction
on the length of the edges in MST.

Consider the shortest edge uv in the original unit disk graph.
Clearly, the edge uv belongs to MST, and uv belongs to
MST (N2(w)) for any node w. Thus, uv belongs to LMST−

2 .
Assume that the first kth shortest edges from MST are

in LMST−
2 . Then consider the (k + 1)th shortest edge

uv from MST. For the sake of contradiction, assume that
some node w removes edge uv because uv does not belong
to MST (N2(w)) and u ∈ N1(w). From the property of
minimum spanning tree, we know that there is a path in the
unit disk graph formed on N2(w) connecting u and v using

1It keeps an edge if either node u or node v wants to keep it. Another
option is to keep an edge only if both nodes want to keep it. Let LMST−

2
be the structure formed by such edges.
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edges with length at most ‖uv‖ (ties are broken by rank).
Clearly, these edges are also in the original UDG and thus it
is a contradiction to the fact that uv belongs to MST. Thus,
edge uv is also kept LMST−

2 .
Thus, MST is a subgraph of LMST−

2 . Since LMST−
2 is

a subgraph LMST+
2 , MST is a subgraph of LMST+

2 .

The above lemma immediately implies that
Lemma 3: Structures LMST−

2 and LMST+
2 are con-

nected.
Lemma 4: Structures LMST−

2 and LMST+
2 are subgraphs

of RNG′.
Proof. We prove the above by contradiction. Assume that a
node u adds an edge uv �∈ RNG′ to LMST2. Since edge uv �∈
RNG′, there is a node w inside the lune defined by segment
uv or a node w on the boundary of the lune with smaller
ID. Remember that the minimum spanning tree of the node
set N1(u) can be constructed by adding edges in ascending
order (using IDs to break the ties) whenever it does not create a
cycle with previously added edges. Clearly, when we try to add
edge uv, there is already a path connecting u and w and a path
connecting w and v since uw and wv are not longer than uv (or
have same length but with smaller IDs). It implies that node u
cannot have edge uv in its MST (N2(u)). Consequently, both
graph LMST+

2 and graph LMST−
2 are subgraphs of RNG’.

Since RNG’ is a planar graph with bounded node degree at
most 6, the above lemma immediately implies that

Lemma 5: Structures LMST−
2 and LMST+

2 are planar
graphs and with bounded node degree at most 6.

To prove that structure LMST+
2 is low-weighted, we need

the following result proved in [13], [14].
Lemma 6: A subgraph G of RNG’ is low-weighted if for

any two edges uv ∈ G and xy ∈ G, neither uv nor xy is the
longest edge of quadrilateral uvyx.

We then prove following lemma.
Lemma 7: Structures LMST−

2 and LMST+
2 are low-

weighted.
Proof. Consider any quadrilateral uvyx formed by two edges
uv ∈ LMST+

2 and xy ∈ LMST+
2 . W.l.o.g, assume that uv

is the longest edge, then ‖ux‖ ≤ 1, ‖yv‖ ≤ 1. Thus, the
four edges of quadrilateral uvyx are in the UDG induced
on N2(u). Consequently, edge uv will be removed when
constructing the local minimum spanning tree MST (N2(u)).
Together with Lemma 6, we know that LMST+

2 is low-
weighted. Structure LMST−

2 is low-weighted directly from
LMST−

2 ⊆ LMST+
2 .

Although the constructed structures LMST−
2 and LMST+

2

have several nice properties such as being bounded degree,
planar, and low-weighted, the communication cost of Algo-
rithm 2 could be very large to save the computational cost of
each node. The large communication costs are from collecting
the two hop neighbors information N2(u) for each node u,
although the total communication of the protocol described in
[38] is O(n), the hidden constant is large.

We could improve its communication cost of collecting
N2(u) by using a subset of two hop information without

sacrificing any properties. Define

NRNG′
2 (u) = {w | vw ∈ RNG′ and v ∈ N1(u)} ∪ N1(u).

We will first build RNG′ to collect NRNG′
2 (u) for each node

u, then apply local MST based on NRNG′
2 (u). We describe

our modified algorithm as follows.

Algorithm 3: Construct Low Weight Structure by 2-hop
Neighbors in RNG’

1) Each node u tells its position information to its one-
hop neighbors N1(u) using a local broadcast model. All
nodes together construct the graph RNG’ in a localized
manner.

2) Each node u locally broadcasts its incident edges in
RNG’ to its one-hop neighbors. Node u listens to the
messages from its one-hop neighbors.

3) Each node u computes the Euclidean minimum span-
ning tree MST (NRNG′

2 (u)) of all nodes NRNG′
2 (u),

including u itself.
4) For each edge uv ∈ MST (NRNG′

2 (u)), node u tells
node v about this directed edge.

5) Node u keeps an edge uv if uv ∈ MST (NRNG′
2 (u))

or vu ∈ MST (NRNG′
2 (v)). Let IMRG+ be the final

structure formed by all edges kept. Similarly, the final
structure is called IMRG− when edge uv is kept
if and only if uv ∈ MST (NRNG′

2 (u)) and uv ∈
MST (NRNG′

2 (v)). Here IMRG is the abbreviation of
Incident MST and RNG Graph.

Notice that in the algorithm, node u constructs the lo-
cal minimum spanning tree MST (NRNG′

2 (u)) based on the
induced UDG of the point sets NRNG′

2 (u). As seen later
(Lemma 8), the constructed structures are subgraphs of the
modified RNG graph. Thus, these structures are planar and
have at most 3n edges. In addition, the total communication
cost of Algorithm 3 is at most 13n when either structure
IMRG− or IMRG+ is needed; the total communication cost is
at most 7n if the directed structure IMRG is needed. (Step 1
takes n messages; Step 2 takes 6n messages since each edge
is broadcasted by at most its 2 end-points and the total number
of edges is at most 3n; similarly Step 4 takes 6n messages.)

Lemma 8: Structure IMRG is a subgraph of modified RNG.
Proof. Consider any edge uv �∈ RNG′. We show that node u
will not propose uv. From the definition of RNG’, we know
that there is a node w inside the lune defined by segment uv
and edge uw and wv has a label less than uv. Considering the
process of constructing MST (NRNG′

2 (u)), when we decide
whether to add edge uv after processing edges with smaller
label, there is already a path connecting u and w, and a path
connecting w and v. Thus, edge uv cannot be added by node
u to MST (NRNG′

2 (u)). This finishes the proof.

The above lemma immediately implies that all structures
IMRG+ and IMRG− are planar graph, and have bounded node
degree at most 6.

We then show that structures IMRG+ and IMRG− are
still connected and low-weighted. Clearly, the constructed
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structures are a supergraph of the previous structures, i.e.,
LMST+

2 ⊆ IMRG+ and LMST−
2 ⊆ IMRG−, since

Algorithm 3 uses less information than Algorithm 2 in con-
structing the local minimum spanning tree. If an edge uv is
removed from MST (NRNG′

2 (u)), it means that there is a
path connecting u and v using shorter edges when we process
uv. By simple induction, we can show that there is also a
path connecting u and v when we process uv in construct-
ing MST (N2(u)). Thus, these two structures IMRG+ and
IMRG− are still connected.

We then prove the following lemma.
Lemma 9: Structures IMRG− and IMRG+ are still low-

weighted.
Proof. We only need to prove that IMRG+ is still low-
weighted since IMRG− ⊆ IMRG+. Consider any quadri-
lateral uvyx formed by two edges uv ∈ IMRG+ and xy ∈
IMRG+. By the construction algorithm, we know that both
edges uv and xy are in RNG’. W.l.o.g, assume that uv is the
longest edge of the quadrilateral, then ‖ux‖ ≤ 1, ‖yv‖ ≤ 1.
Thus, the four edges of quadrilateral uvyx are in the UDG
induced on NRNG′

2 (u): node u will know the existence of
edge xy ∈ RNG′ through node x, node v will know the
existence of edge xy ∈ RNG′ through node y. Consequently,
edge uv will be removed when constructing the local minimum
spanning tree MST (N2(u)). Together with Lemma 6, we
know that IMRG+ is low-weighted. Structure IMRG− is
low-weighted directly from IMRG− ⊆ IMRG+.

Theorem 10: Algorithm 3 constructs structures IMRG−

or IMRG+ using at most 13n messages. The structures
IMRG− or IMRG+ are connected, planar, bounded degree,
and low-weighted. Both IMRG− and IMRG+ have node
degree at most 6.

We show that the constructed structure IMRG− is always
a subgraph of the structure G−

0 constructed in [12].
Lemma 11: The constructed structure IMRG− is always a

subgraph of the structure G−
0 constructed in [12].

Proof. Consider any edge uv from UDG that does not belong
to G−

0 . Remember that G−
0 contains an edge xy if and only

if the edge xy belongs to the local minimum spanning tree
MST (N1(u)) and MST (N2(u)). Without loss of generality,
assume that edge uv is removed because it is not in the local
minimum spanning tree MST (N1(u)). Thus, there is a path
connecting u and v in the induced unit disk graph on N1(u),
whose edges have length less than ‖uv‖ (Ties are broken by
IDs). Clearly, this path is still in the induced unit disk graph
on NRNG′

2 (u) since N1(u) ⊂ NRNG′
2 (u). Consequently,

edge uv cannot appear in the Euclidean minimum spanning
tree MST (NRNG′

2 (u)). It further implies that uv is not in
IMRG−.

Similarly, the constructed structure IMRG+ is always a
subgraph of the structure G+

0 constructed in [12].
In summary, we have the following relations among these

structures:

MST ⊆ LMST2 ⊆ IMRG ⊆ G0 ⊆ RNG′ ⊆ RNG

MST ⊆ LMST2 ⊆ IMRG ⊆ LRNG ⊆ RNG′ ⊆ RNG

C. Bound the Longest Edge Length

Notice that the min-max assignment problem is basically
to find a connected structure whose longest edge is minimum.
It was proved in [3] that the longest edge of the Euclidean
minimum spanning tree is always the critical link for min-
max assignment. However, it is communication expensive
to construct MST in a distributed manner. Thus, it is natural
to ask whether we can construct a structure in a localized
manner such that the longest edge of this structure is within
a constant factor of that of MST.

We show by example that there is unfortunately no such
deterministic localized algorithm. Assume that there is such
a deterministic localized algorithm A that uses k-hop infor-
mation. Figure 2 illustrates such an example that algorithm
A cannot approximate the longest edge of the MST within a
constant factor. In the example, the distance between nodes u

y

u v

x y

u v

x

(a) (b)

Fig. 2. No localized algorithm approximates the longest edge.

and x is more than k hops. Then algorithm A will have the
same information at node u for both configurations (a) and
(b). If A decides to keep edge uv, then the the longest edge
kept by A could be arbitrarily larger than that of MST for
configuration (a). If A decides not to keep edge uv, then the
structure constructed by A is not connected for configuration
(b).

Thus, we have the following theorem.
Theorem 12: It is impossible to have a deterministic local-

ized algorithm to construct a connected structure such that
the maximum node power based on this structure is within a
constant factor of that based on MST.

IV. EXPERIMENTS

We conducted extensive simulations to study the perfor-
mance of our structure in terms of the longest edge length
and the total edge length. Although network throughput is an
important performance metric, it is influenced by many other
factors such as the MAC protocol, routing protocol and so
on. Therefore, most related work does not test the throughput
performance. As almost all previously related work did, we
will use the following metrics to compare the performance:

1) Total Messages: In wireless networks, less messages to
construct a topology will saves energy consumption. We
already showed that the total messages of IMRG is at
most 13n.

2) Max Messages: We also test what is the maximum
number of messages a node will send in building this
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Fig. 3. Different structures from a UDG.

structure. A large number of messages at some node will
delay the topology updating and drain out its battery
power quickly.

3) Average Node Degree: A smaller average node degree
often implies less contention and interference for signal
and thus a better frequency spatial reuse, which in turn
will improve the throughput of the network.

4) Max Node Degree: We also test the maximum node
degree. A larger node degree at some node will cause
more contention and interference for signal, and also
may drain out its battery power quickly. Here, in all our
simulations, we set the constant β = 2, so that the power
needed to support a link uv is ‖uv‖2.

5) Max Node Power: Notice that each user u will set its
transmission range equal to the length of the longest
edge incident on u, called node power. Thus, a smaller
node power will always save the power consumption.
The max-node-power captures the maximum power used
by all nodes. It is known that the maximum node
power based on MST is the optimum to guarantee
the network connectivity. We would like to compare
the maximum node power induced from our structure
IMRG− compared with that based on MST.

6) Total Node Power: The total node power approximates
the total power used by all nodes to keep the connectiv-
ity.

7) Total Node Power for Broadcasting: The total node
power approximates the total power used by doing
broadcasting. The difference with total node power is
not considering the powers of leaves.

8) Total Edge Length: We proved that all structures
proposed have the total edge length within a constant
factor of MST, while no previously known structures

having this property.
9) Total Link Power: It was also proved in [9] that a

broadcasting based on MST consumes energy within a
constant factor of the optimum. We thus compare the
total link power used by our structure with previously
known structures.

In the simulations, since we already showed that structure
IMRG− is a subgraph of IMRG+ and LMST−

2 is a
subgraph of LMST+

2 , we will only test the performances
of structure IMRG− and LMST−

2 , compare them with
previously known structure LRNG in [13], [14], G−

0 in [12],
RNG in terms of the above metrics. The reason for only
selecting G−

0 and RNG is that in [12], their simulations already
show that G−

0 out-performs other previously known structures
in terms of the node degree, max node power, and the total
node power. Hereafter, we use LMST, LMST2 and IMRG
instead of G−

0 , LMST−
2 and IMRG− in the experiments,

if it is clear from the context.
In the first simulation, we randomly generate 100 nodes

uniformly in a 1000m× 1000m region. The maximum trans-
mission range of each node is set as 250m for all the
nodes. The topology (i.e., UDG) derived using the maximum
transmission power, MST, RNG, LMST (i.e., G−

0 ), LMST2

(i.e., LMST−
2 ), LRNG, and IMRG (i.e., IMRG−) are shown

in Figure 3 respectively. To make the performance testing
precise, we generate 100 samples of 100-node sets and com-
pute the performance metrics accordingly. The corresponding
performances are illustrated in the following Table IV. Here
for max node degree, max message and max node power, we
show both the maximum and average values over the 100 sets.

As we proved, our structures LMST2 and IMRG out-
perform the structure LMST in all aspects except the number
of messages used. The maximum node power used to guar-
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TABLE I

THE PERFORMANCES COMPARISON OF SEVERAL STRUCTURES. NUMBER OF MESSAGES WITH ∗ DOES NOT COUNT MESSAGES FOR COLLECTING 2-HOP

NEIGHBORS WHEN BUILDING LMST2 .

MST RNG LMST LMST2 LRNG IMRG
MaxMaxMsg - 1.00 5.00 5.00∗ 5.00 9.00
AvgMaxMsg - 1.00 4.50 4.50∗ 4.92 8.42

TotMsg - 100.00 305.72 299.88∗ 334.76 538.68
MaxMaxDeg 4.00 4.00 4.00 4.00 4.00 4.00
AvgMaxDeg 3.50 3.92 3.50 3.50 3.92 3.50

AvgDeg 1.98 2.35 2.06 2.00 2.30 2.04
MaxMaxNPow 4.13 5.40 4.69 4.13 5.40 4.69
AvgMaxNPow 2.93 4.17 3.77 3.03 4.17 3.55

TotNPow 79.85 122.80 92.79 82.56 119.69 90.10
TotNPowBrdcst 66.48 118.21 83.26 70.08 114.74 79.43

TotLength 132.79 183.59 144.86 135.55 175.52 141.99
TotLPow 112.47 187.37 131.85 116.56 177.29 127.13

antee the network connectivity by structure LMST is higher
than those by our structure LMST2 and IMRG. The total
node power used to guarantee the network connectivity by
LMST is also much higher than that by LMST2 and IMRG in
average. Among the structures LMST2 and IMRG, we prefer
IMRG in practice though its power consumption is slightly
higher. The reason is that the construction of LMST2 has large
communication costs (it is still O(n) but the hidden constant
here is large). Notice in the experiments, we do not count the
number of messages used to collect the information of 2-hop
neighbors when building LMST2. Notice, if we simply ask
each node to broadcast its one-hop neighbors to collect the
two-hop neighbors, it will cost

∑
di messages, where di is

the number of one-hop neighbors of node vi in the UDG.
Clearly,

∑
di = 2m, where m is the number of links in

UDG, which could be as large as n2 for dense graphs. The
total number of messages used by this simple approach clearly
could be much higher than those by IMRG and LMST. On the
other hand, even the method given in [38] can collect two-
hop neighbors for all nodes with total O(n) messages using
geometry information, the hidden theoretical constant could
be as large as several hundreds.

We then vary the number of nodes in the region from 50
to 500. The transmission range of each node is still set as
250m. We plotted the performances of all structures in Figure
4. We observed that our structure has the best performance
among all locally constructed structures such as LMST, RNG,
and IMRG. For example, the broadcasting based on RNG
consumes almost twice the energy than that based on structure
IMRG. More importantly, the broadcasting based on structure
IMRG is almost as good as that based on MST. Remember
that it is proven in [9] that the broadcasting based on MST
consumes energy no more than 12 times of the optimum.

Finally, we fix the number of nodes in the region as 500
and grow the transmission range of each node from 100m to
300m. We plotted the performances of all structures in Figure
5. We found that our structures still out-perform the previously
best known structures significantly.

All the results show that IMRG has better performance than
LMST and RNG. In other words, IMRG has less length cost

and power cost for broadcasting; it has smaller node power to
keep the connectivity. The messages used for construction of
IMRG are slightly more than the one of LMST. The simulation
results confirm all of our theoretical analysis. Remember
that IMRG maybe spend O(nβ−1) times of power of the
optimum for broadcasting. However, our simulations show that
the energy consumption of broadcasting based on IMRG is
within a small constant factor (about 10% more) of that based
on the MST and is much better than the energy consumed
based on RNG, or LMST. In summary, the IMRG is the
best among all these known local structures; additionally, it
can approximate MST theoretically and be used for energy
efficient broadcasting.

V. CONCLUSION

We consider a wireless network composed of a set of n
wireless nodes distributed in a two dimensional plane. We pre-
sented the first localized method to construct a bounded degree
planar connected structure IMRG− whose total edge length is
within a constant factor of that of the minimum spanning tree.
The total communication cost of our method is at most 13n,
and every node only uses its partial two-hop information to
construct such structure. Notice that some two-hop information
is necessary to construct any low-weighted structure [13], [14].
We conducted extensive simulations to study the performance
of our structures compared with previously known structures
and it out-performs all previously known structures (with small
message overhead).

The constructed structure is planar, and has bounded de-
gree, low-weight. Li and Wang [40], [14] recently gave an
O(n log n)-time centralized algorithm constructing a bounded
degree, planar, and low-weighted spanner. However, we do
not have a distributed algorithm using O(n) communications
without sacrificing the spanner property. On the other hand, we
[8] showed how to construct a planar spanner with bounded
degree in a localized manner (using O(n) messages) for
unit disk graph. However, the constructed structure does not
seem to have low-weight. It remains open how to construct
a bounded degree, planar, and low-weighted spanner in a
distributed manner using only O(n) communications under
the local broadcasting communication model.
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Fig. 4. Results when the number of nodes in the networks are different (from 50 to 500). Here the transmission range is set as 250m. Number of messages
with ∗ does not count messages for collecting 2-hop neighbors when building LMST2.

For topology control of the wireless network, there are
two objectives: either minimize the maximum node power
or minimize the total node power needed to guarantee the
network connectivity. We showed that it is impossible to have
a deterministic localized algorithm to construct a connected
structure such that the maximum node power based on this
structure is within a constant factor of optimum. Our structure
IMRG has total edge length within a small constant factor
of that MST. However, its total link power (or node power)
could still be O(nβ−1) times of the optimum to guarantee the
network connectivity. We leave it as future research whether
there is a deterministic localized algorithm to construct a
connected structure whose total link power (or node power) is
within a constant factor of that of MST.
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[36] Gruia Cǎlinescu, I. Mandoiu, and A. Zelikovsky, “Symmetric connectiv-
ity with minimum power consumption in radio networks,” in IFIP-TCS,
2002, To appear.

[37] A. Clementi, P. Crescenzi, P. Penna, G. Rossi, and P. Vocca, “On
the complexity of computing minimum energy consumption broadcast
subgraphs,” in 18th STACS, LNCS 2010, 2001, pp. 121–131.
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