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ABSTRACT 

Cyanobacteria are a diverse group of oxygenic photosynthetic bacteria that inhabit 
in a wide range of environments. They are versatile and multifaceted organisms with 
great possibilities for different biotechnological applications. For example, 
cyanobacteria produce molecular hydrogen (H2), which is one of the most important 
alternatives for clean and sustainable energy. Apart from being beneficial, 
cyanobacteria also possess harmful characteristics and may become a source of threat 
to human health and other living organisms, as they are able to form surface blooms 
that are producing a variety of toxic or bioactive compounds. The University of 
Helsinki Culture Collection (UHCC) maintains around 1,000 cyanobacterial strains 
representing a large number of genera and species isolated from the Baltic Sea and 
Finnish lakes. The culture collection covers different life forms such as unicellular and 
filamentous, N2-fixing and non-N2-fixing strains, and planktonic and benthic 
cyanobacteria. 

In this thesis, the UHCC has been screened to identify potential strains for 
sustainable biohydrogen production and also for strains that produce compounds 
modifying the bioenergetic pathways of other cyanobacteria or terrestrial plants. 
Among the 400 cyanobacterial strains screened so far, ten were identified as high H2-
producing strains. The enzyme systems involved in H2 metabolism of cyanobacteria 
were analyzed using the Southern hybridization approach. This revealed the presence 
of the enzyme nitrogenase in all strains tested, while none of them are likely to have 
contained alternative nitrogenases. All the strains tested, except for two Calothrix 
strains, XSPORK 36C and XSPORK 11A, were suggested to contain both uptake and 
bidirectional hydrogenases. Moreover, 55 methanol extracts of various cyanobacterial 
strains were screened to identify potent bioactive compounds affecting the 
photosynthetic apparatus of the model cyanobacterium, Synechocystis PCC 6803. The 
extract from Nostoc XPORK 14A was the only one that modified the photosynthetic 
machinery and dark respiration. The compound responsible for this effect was 
identified, purified, and named M22. M22 demonstrated a dual-action mechanism: 
production of reactive oxygen species (ROS) under illumination and an unknown 
mechanism that also prevailed in the dark.  

During summer, the Baltic Sea is occupied by toxic blooms of Nodularia spumigena 
(hereafter referred to as N. spumigena), which produces a hepatotoxin called nodularin. 
Long-term exposure of the terrestrial plant spinach to nodularin was studied. Such 
treatment resulted in inhibition of growth and chlorosis of the leaves. Moreover, the 
activity and amount of mitochondrial electron transfer complexes increased in the leaves 
exposed to nodularin-containing extract, indicating upregulation of respiratory reactions, 
whereas no marked changes were detected in the structure or function of the 
photosynthetic machinery. Nodularin-exposed plants suffered from oxidative stress, 
evidenced by oxidative modifications of various proteins. Plants initiated strategies to 
combat the stress by increasing the levels of α-tocopherol, mitochondrial alternative 
oxidase (AOX), and mitochondrial ascorbate peroxidase (mAPX). 
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1. INTRODUCTION 

1.1. Ecology and diversity of cyanobacteria 

Cyanobacteria are photosynthetic prokaryotes that possess chlorophyll (Chl) a and 
convert solar energy into chemical energy using water as an electron donor, and release 
oxygen (O2) as a by-product during photosynthesis. The presence of phycocyanin in 
most cyanobacteria leads to the bluish colour of the organisms; thus, they are also 
known as blue-green algae. Cyanobacteria have a long evolutionary history. They are a 
morphologically diverse group of organisms and they exist as unicellular (e.g. 
Chroococcus), filamentous (e.g. Anabaena), or colonial forms (e.g. Gloeothece) 
(Whitton and Potts 2000). The early forms of unicellular and filamentous 
cyanobacteria formed 3.5 billion years ago, and the endolithic forms about 1.5 billion 
years ago (Wilmotte 1994). It is widely accepted that the cyanobacteria are responsible 
for the formation of atmospheric O2 and that they have given rise to the present-day 
chloroplasts of algae and green plants (Miyagishima 2005; Mulkidjanian et al. 2006). 
Their long evolutionary history contributes to their successful adaptation to aquatic 
(e.g. freshwater, seawater, and brackish water), terrestrial and extreme environments 
(e.g. hot deserts, geothermal vents, hypersaline lakes, and polar regions with glaciers 
and ice-capped lakes) (Gademann and Portmann 2008). In aquatic environments, they 
are found both as floating planktonic and benthic forms in the sediment (Shilo 1989). 
For example, in the Baltic Sea, one of the largest brackish water basins in the world, 
several planktonic species such as N. spumigena and Anabaena spp. and also benthic 
forms of Anabaena, Nostoc, and Calothrix have been reported. About 1,000 different 
strains have been isolated from the Baltic Sea and Finnish lakes, and these strains are 
maintained in the UHCC. 

1.2.  Good and bad cyanobacteria  

Our knowledge of the diversity and physiology of cyanobacteria from past research 
serves as an excellent platform for exploring their biotechnological applications for 
human welfare. They have been widely explored as an alternative energy source to 
replace the depleting fossil fuel resources (Asada and Miyake 1999). Cyanobacteria are 
also a promising and rich source of bioactive compounds (Borowitzka 1995) including 
antibacterial (Jaki et al. 2000), antifungal (Kajiyama et al. 1998), antiviral (Patterson et 
al. 1994), anticancer (Gerwick et al. 1994), and immunosuppressive agents (Koehn et 
al. 1992). Spirulina plantensis has been found to produce γ-linolenic acid, a medically 
important compound, which functions in lowering of blood pressure and lipid 
metabolism (Cohen 1999). Some cyanobacteria have the capacity to convert fixed 
carbon dioxide (CO2) into biodegradable thermoplastic polyhydroxyalkanoates (PHAs) 
under nitrogen (N2)-limiting conditions (Sudhesh et al. 2002). In addition to this, 
cyanobacteria can be used as biofertilizers because of their ability to fix atmospheric 
N2, which improves the fertility of the soil in the tropical rice fields (Capone et al. 
2005). Moreover, strains of Spirulina, Anabaena, and Nostoc are consumed as human 
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food in many countries, including Chile, Mexico, Peru, and the Philippines, as they are 
rich in proteins and β-carotene, thiamine, and riboflavin and are considered to be one 
of the richest sources of vitamin B12 (Abed et al. 2009). 

At the same time, due to the growing human population and human activities, the 
ecosystem has been enriched with phosphorus and N2 (Schindler 1977; Smith 1983). 
These nutrients trigger the formation of harmful algal blooms or toxic cyanobacteria, 
up to 1 m thick scum mats (Zohary and Roberts 1989; Dow and Swoboda 2000). There 
are two types of harmful algal blooms: toxin-producing, which cause human illness 
through drinking of contaminated water or consumption of seafoods exposed to toxins, 
and non-toxin-producing, which can cause harm through the development of scums, 
depletion of O2 when blooms decay, or destruction of habitats for fish, shellfish, or sea 
animals (Anderson et al. 2002). 

Toxic cyanobacteria produce a wide range of secondary metabolites with potent 
inhibitory effects on the growth, photosynthesis, respiration, carbon uptake, and 
enzyme activity of other algae or eukaryotic organisms growing in the same 
environment. Some of the secondary metabolites have generally been called 
cyanotoxins, which can cause acute and possibly chronic health problems in humans 
and fatal poisonings in mammals, fish, and birds (Carmichael 1992, 2001; Onodera et 
al. 1997; Liu et al. 2002). Cyanotoxins have been classified according to the symptoms 
they cause in humans and vertebrates: hepatotoxins (such as microcystin (MC), 
nodularin, and cylindrospermopsin), neurotoxins (such as anatoxin-a, anatoxin-a(S), 
and saxitoxins), and irritant-dermal toxins (Sivonen and Jones 1999; Carmichael 2001).  
Cyanobacterial toxins have, however, also been classified based on their chemical 
structures: cyclic peptides (MCs and nodularins), alkaloids (anatoxin-a, anatoxin-a(s), 
cylindrospermopsins, and saxitoxins), lipopolysaccharides, and polyunsaturated fatty 
acids (PUFAs) and their derivatives (2,4-heptadienal and 2,4-octadienal) (Leflaive and 
Ten-Hage 2007). Of all the toxins mentioned, cyclic hepatotoxic peptides such as MCs 
and nodularin are the most commonly found, and their toxicity to vertebrates, aquatic 
organisms, and higher plants etc. has been extensively reviewed (Wiegand and 
Pflugmacher 2005; van Apeldoorn et al. 2007). 

1.3.  Cyanobacteria as an alternative fuel source 

Due to the rapid depletion of fossil fuels and their associated problems such as 
environmental pollution, global warming, acid rain, and other multiplicative effects, 
more research is being focused on the development of clean and sustainable energy 
resources. Harvesting of solar energy to produce biological H2 is considered to be one 
of the best approaches to developing clean and renewable energy resources. 
Photosynthetic microalgae convert light (solar) energy into chemical energy through 
photosynthesis. Under certain conditions, these photosynthetic microorganisms redirect 
the electrons originating from solar energy to the enzymes that mediate H2 production. 
Cyanobacteria possess three enzymes that are directly involved in H2 production such 
as nitrogenase, uptake hydrogenase, and bidirectional hydrogenase. 
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1.3.1  Nitrogenases 

Nitrogenase catalyzes biological N2 fixation, where the formation of H2 

accompanies ammonia production (Burris 1991) according to the following equation: 

N2+ 8H+ + 8e- + 16ATP → 2NH3 + 16ADP + 16Pi + H2 

This reaction is highly endergonic, requiring metabolic energy in the form of ATP. 
The nitrogenase complex consists of two proteins: dinitrogenase (Mo-Fe protein or 
protein I) and dinitrogenase reductase (Fe protein or protein II). Dinitrogenase is a α2β2 
heterotetramer of about 240-kDa and encoded by the nifD and nifK genes (Bothe et al. 
2010). Dinitrogenase reductase, encoded by nifH, is a homodimer of about 64-kDa and 
mediates electron transfer from either a ferredoxin or a flavodoxin to the dinitrogenase 
(Bothe et al. 2010). Nitrogenases are sensitive to O2. Cyanobacteria have developed 
various mechanisms, such as temporal or spatial separation of N2 fixation and O2 
evolution, to protect their N2-fixing machinery not only from atmospheric O2 but also 
from the intracellularly generated O2 (Fay 1992; Wolk 1996; Mulholland and Capone 
2000). Several filamentous cyanobacteria possess specialized cells called heterocysts 
for the spatial separation process (Wolk 1996; Thiel and Pratte 2001). Filamentous 
non-heterocystous (e.g. Oscillatoria and Trichodesmium) (Stal and Krumbein 1987) 
and non-filamentous cyanobacteria (Cyanothece) utilize a temporal separation 
mechanism, with photosynthesis performed in the light and N2 fixation in the dark 
(Bergman et al. 1997; Misra and Tuli 2000). The heterocyst provides a microaerobic 
environment due to lack of active PSII, high respiration rate, and a thick envelope 
limiting the diffusion of O2 through the cell wall (Fay 1992; Wolk et al. 1994). The 
heterocyst undergoes differention during the expression of nitrogenase genes, and the 
process has been well studied in Anabaena variabilis (hereafter referred to as A. 
variabilis) (Brusca et al. 1989) and Anabaena PCC 7120 (Carrasco et al. 2005). 

In addition to the conventional nitrogenase (referred as nifHDK1), heterocystous 
cyanobacteria have been found to contain different alternative nitrogenases: 

1.  Second molybdenum (Mo)-containing nitrogenase: The conventional Mo-Fe 
nitrogenase occurs only in the heterocysts. The alternative Mo-containing 
enzyme is encoded by a separate nifHDK (referred as nifHDK2) genes and 
functions in vegetative cells. This enzyme has been described in A. variabilis, 
but strictly under N2-fixing and anaerobic conditions (Thiel et al. 1995, 1997). 

2.  Vanadium (V)-containing nitrogenase: This enzyme is encoded by the vnfDGK 
cluster and expressed under conditions of Mo depletion, in the presence of V. 
This enzyme has been studied extensively in A. variabilis (Kentemich et al. 
1991; Thiel 1993) and catalyzes the following reaction: 

N2+ 12H+ + 12e- + 24ATP → 2NH3 + 24ADP + 24Pi + 3H2 

Importantly, the rate of H2 evolution and acetylene reduction is higher when 
cyanobacteria are grown in the presence of V as compared to Mo-containing medium 
(Kentemich et al. 1988) 
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3.  Iron (Fe)-containing nitrogenase: This enzyme does not contain Mo nor V at the 
active site, and it is encoded by an anfHDGK cluster, which was cloned and 
sequenced from Clostridium pausterianum (Zinoni et al. 1993), Rhodobacter 
capsulatus (Schüddekopf et al. 1993), and Azotobacter vinelandii (Joerger et al. 
1989). Although physiological evidence for the occurrence of this enzyme has 
been reported in A. variabilis (Kentemich et al. 1991), the complete genome 
sequence did not reveal the genes coding for Fe nitrogenase (Pratte et al. 2006). 
The overall reaction catalyzed by this enzyme is as follows: 

N2+ 21H+ + 21e- + 42ATP → 2NH3 + 42ADP + 42Pi + 7.5H2 

1.3.2.  Uptake hydrogenases 

The uptake hydrogenase catalyzes consumption of H2 produced by nitrogenase, and 
has been found in almost all the N2-fixing cyanobacteria analyzed so far (Lambert and 
Smith 1981; Houchins 1984; Tamagnini et al. 2000). Exceptionally, unicellular non-
N2-fixing Anacystis nidulans (Synechococcus strain PCC 6301) may also possess an 
uptake hydrogenase enzyme (Boison et al. 1996), but N2-fixing Synechococcus does 
not (Ludwig et al. 2006). The uptake hydrogenase has various functions such as (1) O2 
removal from the heterocysts via the respiratory oxyhydrogen (Knallgas) reaction, (2) 
regaining of ATP used in H2 production during nitrogenase reaction, and (3) supply of 
electrons to N2 fixation and other metabolic processes of the cell (Bothe et al. 1977; 
Howarth and Codd 1985; Weisshaar and Böger 1985). Uptake hydrogenase is a nickel 
(Ni)-containing enzyme; it is encoded by the hupSL operon, where hupS codes for the 
small subunit of 35-kDa and hupL codes for the large subunit of 60-kDa (Carrasco et 
al. 1995; Happe et al. 2000; Lindberg et al. 2000). The localization of uptake 
hydrogenase still remains controversial. An immunological study revealed that it may 
be associated with the thylakoid membrane in N2-fixing non-heterocystous Lyngbya 
majuscula CCAP 1446/4 and present in both heterocysts and vegetative cells in Nostoc 
punctiforme (hereafter referred to as N. punctiforme) (Seabra et al. 2009). Recently, 
Camsund et al. (2011) reported expression of the hupSL operon exclusively in the 
heterocysts of N. punctiforme. In most of the heterocystous cyanobacteria, the hupL 
gene undergoes genetic rearrangement during the late stage of heterocyst 
differentiation, whereby excision of a 9.5-kb element is catalyzed by the recombinase 
Xis C (Carrasco et al. 2005). The expression of the hupSL operon is regulated by the 
N2 transcriptional regulator (NtcA) (Weyman et al. 2008), the availability of Ni 
(Axelsson and Lindblad 2002), and O2 (Kovacs et al. 2005). In some microorganisms, 
a third hup gene, hupC, has been identified and found to be located downstream of the 
hupSL operon (Van Soom et al. 1993; Vignais and Toussaint 1994). 

1.3.3. Bidirectional hydrogenases 

Bidirectional or reversible hydrogenase catalyzes both H2 uptake and H2 evolution 
(Lambert and Smith 1981). This NAD(P)H-dependent enzyme (Schmitz et al. 1995) 
exists both in N2-fixing and non-N2 fixing cyanobacteria (Kentemich et al. 1989, 1991; 
Serebryakova et al. 2000; Hansel and Lindblad 1998; Tamagnini et al. 2002) and it 



Introduction 

13 

 

functions as a safety valve during the dark-light transition (Appel et al. 2000). The 
localization of the enzyme is still under debate. It possesses a pentameric structure and 
is encoded by the hoxEFUYH operon. The hoxYH genes code for the hydrogenase part, 
which contains the motif for binding to both Ni-Fe-S and Fe-S centres, while the 
hoxFU genes code for the diaphorase part that transfers the electrons to NAD(P)+ and 
has binding sites for NAD(P)+, flavin mononucleotide (FMN), and Fe-S centres 
(Schmitz et al. 1995; Boison et al. 1996, 1998; Appel and Schulz 1998). The hoxE 
gene codes for a subunit that co-purifies with the active bidirectional enzyme (Schmitz 
et al. 2002). Recently, the whole enzyme was purified from Synechocystis PCC 6803 
under aerobic conditions, as a functional heteropentameric protein (Germer et al. 
2009). In Synechocystis sp. PCC 6803, the hoxEFUYH genes are co-transcribed with 
the transcription start point located 168 bp upstream of the start codon (Gutekunst et al. 
2005; Oliveira and Lindblad 2005). In recent years, several significant transcription 
factors such as LexA-related protein (Gutekunst et al. 2005; Oliveira and Lindblad 
2005) and two members of the AbrB-like family (Oliveira and Lindblad 2008) were 
identified and found to be activators of bidirectional hydrogenase. 

1.3.4.  Mutational approaches with hydrogenase and nitrogenase enzymes to improve 
cyanobacterial H2 production 

The function of uptake hydrogenase during N2 fixation and H2 consumption activity 
of bidirectional hydrogenase are the major challenges when utilizing the cyanobacterial 
H2 production system. In recent years, there have been several attempts by various 
laboratories to overcome these barriers, mainly using mutational approach. Various 
targeted mutants have been created with reduced or no uptake hydrogenase activity. 
Uptake hydrogenase-deficient mutants of A. variabilis (Happe et al. 2000), N. 
punctiforme (Lindberg et al. 2002), Nostoc sp. PCC 7120 (Lindblad et al. 2002; 
Masukawa et al. 2002a; Carrasco et al. 2005), and Nostoc sp. PCC 7422 (Yoshino et al. 
2007) were generated and shown to produce H2 at a higher rate than wild type (WT) 
strains. Except for N. punctiforme, other strains possess both bidirectional hydrogenase 
and H2 uptake enzymes. Masukawa and co-workers produced a hox-defective mutant 
(ΔhoxH) and a mutant deficient in both hydrogenases (ΔhupL/ΔhoxH), and showed 
that the double mutant produced H2 at a rate similar to other uptake hydrogenase-
deficient mutants whereas the bidirectional hydrogenase-deficient mutant (ΔhoxH) 
produced less H2 than the WT (Masukawa et al. 2002b). Very recently, an alternative 
nitrogenase (nifD2) was generated using chemical mutagenesis and by replacing valine 
with isoleucine at the NifD2 α-75 site. This resulted in four-fold higher H2 production 
in a N2 atmosphere than in the WT, and as much H2 production as in an argon 
atmosphere (Weyman et al. 2010). 
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1.4.  Effects of cyanobacterial secondary metabolites on photosynthetic 
organisms 

The secondary metabolites produced by cyanobacteria have been shown to target 
bioenergetic pathways such as photosynthesis and respiration, leading to modification 
of the electron transport chain and generation of harmful ROS. 

1.4.1.  Photosynthesis 

The photosynthetic reactions are divided into two steps: light reactions and fixation 
of CO2. Light-driven photosynthetic electron transport converts solar energy into 
chemical energy of reducing equivalents in the form of NAD(P)H and energy 
equivalents in the form of ATP, using water as an electron donor. Next, the Calvin-
Benson cycle enzymes use reducing and energy equivalents produced in the light 
reactions to assimilate CO2 into triose phosphates (Bräutigam and Weber 2011). The 
schemes of photosynthetic electron transport reactions in cyanobacteria and higher 
plants are presented in Fig. 1. The light reactions of photosynthesis occur at the special 
internal membrane system called thylakoids, both in cyanobacteria and chloroplasts. 
Photosynthesis involves a flow of electrons through three major multisubunit protein 
complexes, namely photosystem (PS) II, cytochrome (cyt) b6f, and PSI (Nelson and 
Ben-Shem 2004), all of which are embedded in the thylakoid membrane. The light 
reactions begin with absorption of light by the antenna pigments. The excitation energy 
is transferred to PSII and PSI reaction centres, where charge separation occurs and 
photosynthetic electron transport is initiated. The electrons extracted from water 
splitting in PSII are transferred via the PSII reaction centre, plastoquinone (PQ), cyt b6f 
complex, and plastocyanin (PC) to PSI. Concomitantly, during this process a proton 
gradient (ΔpH) is formed, which is further used for ATP synthesis by ATP synthase. 
At the same time, electron transfer also results in the generation of NAD(P)H, the 
process termed linear electron transport (LET). Sometimes the electrons are recycled 
from NAD(P)H or ferredoxin (Fd) to PQ in a process called cyclic electron transport 
(CET), whereby ΔpH can be generated without any production of NAD(P)H. 
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a) 

 

 

b) 

 

Fig. 1. Cyanobacterial (a) and plant (b) photosynthetic electron transport chain showing the 
linear electron transport (marked with heavy arrows). The asterisk denotes the superoxide 
radical produced by the Mehler reaction. The pathways for formation of ROS (marked with a 
dashed circle) and scavenging of ROS are also shown. See text for details and abbreviations. 
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1.4.2.  Photosynthesis-related ROS metabolism 

Aerobic organisms such as cyanobacteria, green algae, and higher plants use O2 as a 
terminal electron acceptor, capable of giving rise to harmful reactive free radicals and 
derivatives called ROS.  An imbalance between the excessive formation of ROS and 
limited antioxidant defences may result in a condition called oxidative stress (Halliwal 
and Gutteridge 1999). Higher plants generate ROS, including singlet oxygen (1O2), 
superoxide ions (O2

-), and hydrogen peroxide (H2O2) in chloroplasts and peroxisomes 
(Apel and Hirt 2004) (Fig. 1b). In both cyanobacteria and plants, 1O2 is generated at 
PSII by interaction between the triplet state of P680 (3P680*) and O2 (Telfer et al. 
1994) (Fig. 1). O2

- is produced at the acceptor side of PSI (Mehler 1951) and 
subsequently dismutated to H2O2 by superoxide dismutase (SOD) in higher plants 
(Asada et al. 1974). In the cyanobacteria, the heterodimer of A-type flavodiiron 
proteins, Flv1/Flv3, mediates the photo-reduction of O2 directly to water without 
generating ROS downstream of PSI (Helman et al. 2003; Allahverdiyeva et al. 2011) 
(Fig. 1a). However, under certain conditions, the plant-like Mehler reaction may also 
occur in cyanobacteria (Latifi et al. 2009). 

ROS-scavenging mechanisms include non-enzymatic and enzymatic systems. The 
enzymatic system has been characterized best in higher plants. These include the 
water-water cycle, ascorbate (AsA)-glutathione (GSH) cycle, and thioredoxin (Trx)-
dependent pathway (Asada 1999). The major non-enzymatic ROS-scavenging systems 
in cyanobacterial thylakoid membranes and plant chloroplasts include ascorbate (AsA), 
glutathione (GSH), β-carotene, and α-tocopherol. The 1O2 generated at PSII is 
efficiently quenched by xanthophylls (Dall'Osto et al. 2007), β-carotene in both 
cyanobacteria and higher plants (Telfer 2005; Trebst 2003), and α-tocopherol (Krieger-
Liszkay and Trebst 2006). 

In higher plants, photo-reduction of O2 at the acceptor side of PSI leads to the 
formation of O2

-, which is called the Mehler reaction (Mehler 1951). 
Disproportionation of O2

- to H2O2 is catalyzed by thylakoid-bound SOD, and the final 
disproportionation of H2O2 catalyzed by thylakoid-bound AsA-dependent ascorbate 
peroxidase (tAPX) leads to the formation of O2 and water. This process is called the 
water-water cycle (Asada 2000). The O2

- that escapes this cycle and diffuses into the 
stroma is scavenged by SOD and the AsA-GSH cycle, peroxiredoxin (PRX), and 
glutathione peroxidase (GPX) localized in the stroma. The AsA-GSH cycle generally 
utilizes AsA as a specific electron donor to reduce H2O2 to water, with the concomitant 
generation of monodehydroascorbate (MDA), a univalent oxidant of AsA. This 
reaction is catalyzed by APX. MDA is spontaneously converted to AsA and 
dehydroascorbate (DHA), and may be rapidly reduced to AsA by the action of an 
NAD(P)H-dependent MDA reductase. DHA reductase (DHAR) utilizes GSH to reduce 
DHA, and thereby regenerates AsA. GSH is regenerated from oxidized glutathione, 
also called glutathione disulphide (GSSG), by the action of glutathione reductase (GR) 
using NAD(P)H as a reducing power (Fig. 1b). Another important antioxidant system 
in the chloroplast is PRX and GPX, which function in cooperation with the Trx-
dependent cycle. PRX and GPX utilize reduced Trx to reduce H2O2, and oxidized Trx 
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is regenerated by the action of either Ferredoxin-Trx reductase (FTR) or NAD(P)H-
dependent Trx reductase (NTR). GPXs can use both GSH and Trx as reducing 
substrates, to reduce H2O2 (Herbette et al. 2002) (Fig. 1b). 

1.4.3.  Respiration 

In both cyanobacteria and higher plants, the process of cellular respiration is 
essentially the reverse of photosynthesis. Respiration is the process in which the 
oxidation of carbohydrates (CH2O) leads to the formation of CO2 and water. This 
process releases a large amount of free energy, much of which is coupled to the 
conversion of ADP and Pi to ATP (Taiz and Zeiger 1991). Cyanobacterial respiration 
occurs in both plasma membrane and thylakoid membrane, the latter one sharing the 
components of oxygenic photosynthesis. Cyanobacteria possess complexes specific for 
respiration, e.g. bacterial-type complex I (NAD(P)H dehydrogenase), complex II 
(succinate dehydrogenase), complex III (cytochrome c reductase), and the terminal 
oxidase (cytochrome oxidase), whereas PQ, cyt b6f, and soluble electron carriers like 
PC and cyt c6 are shared by both the respiratory and photosynthetic electron transport 
pathways (Cooley and Vermaas 2001; Peschek et al. 2004). In higher plants, 
respiration occurs in a special compartment at the inner membrane of mitochondria 
(Fig. 2).  

 

Fig. 2. Scheme of the respiratory oxidative pathway of higher plants showing the route of 
normal electron transport (marked with heavy arrows) and the alternative electron transport 
route (marked with dotted arrows). The pathways for formation of ROS (marked with a dashed 
circle) and removal of ROS in mitochondria are also shown. See text for details and 
abbreviations. 
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Plant mitochondrial respiration consists of four integral multiprotein complexes 
(complexes I to IV) (Nicholls and Ferguson 1992; Trumpower and Gennis 1994) (Fig. 
2). Complex I (NADH ubiquinone oxidoreductase) is an NADH dehydrogenase, which 
oxidizes the NADH generated in the mitochondrial matrix by the tricarboxylic acid 
(TCA) cycle and transfers the electrons to ubiquinone. Complex II 
(succinate:ubiquinone oxidoreductase), the only TCA cycle enzyme (succinate 
dehydrogenase) present in the membrane, catalyzes the oxidation of succinate to 
fumarate in the TCA cycle, transferring the electrons to ubiquinone. Complex III 
(ubiquinone:cytochrome c oxidoreductase or bc1 complex) oxidizes the ubiquinone 
reduced by complexes I and II and transfers the electrons to cytochrome c. Reduced 
cytochrome c is oxidized by complex IV (cytochrome c oxidase), the terminal electron 
transfer complex in the series. At complexes I, III, and IV, protons are translocated 
across the inner membrane to generate the proton motive force that drives ATP 
synthesis. Although, the F0Fl-ATP synthase is not part of the electron transfer chain 
because of its role in oxidative phosphorylation, it is referred as complex V (Hatefi 
1985). Plant mitochondria differ from other eukaryotic mitochondria by the presence of 
four NAD(P)H dehydrogenases, two internal (facing the intermembrane space) (NDin) 
and two external (facing the matrix) (NDex) in addition to complex I (Møller and Lin 
1986; Douce and Neuburger 1989). It appears that the NAD(P)H dehydrogenase facing 
the matrix competes with complex I for oxidation of the NADH generated during the 
TCA cycle, and probably acts as an NAD(P)H dehydrogenase in situ (Rasmusson and 
Møller 1990, 1991). Moreover, plant mitochondria also contain an additional terminal 
oxidase, the AOX, which is insensitive to inhibitors of the bc1 complex and 
cytochrome c oxidase such as myxothiazol, antimycin, and cyanide (Moore et al. 
2002). 

1.4.4. Production of ROS in plant mitochondria 

As already mentioned, in green tissues, higher plants generate ROS in chloroplasts 
and peroxisomes (Apel and Hirt 2004) (Fig. 1b), whereas in the non-green tissues and 
in the dark, ROS are generated in the mitochondria (Navrot et al. 2007) (Fig. 2). In 
mitochondria, the major sites of ROS production are complex I (Chance et al. 1979; 
Turrens and Boveris 1980) and the ubisemiquinone in complex III (Turrens et al. 
1985); this generates O2

-, which is futher disproportionated to H2O2 by Mn-SOD (Fig. 
2). The H2O2 is finally disproportioned to water and O2 by the enzymatic system 
(water-water cycle, AsA-GSH cycle, and Trx-dependent pathway) and the non-
enzymatic system (AsA and GSH) by a mechanism similar to the ROS-scavenging 
system in the chloroplast. The plant-specific AOX is also involved in controlling the 
production of ROS, mostly O2

- and H2O2, by diverting the electron flow from the 
cytochrome oxidase pathway (Moore et al. 2002; Juszczuk and Rychter 2003; 
McDonald 2008; Noguchi and Yoshida 2008; Rasmusson et al. 2009). Recently, ROS 
have been shown to be signaling molecules involved in the activation of the stress 
response and defence pathways (Desikan et al. 2001; Knight and Knight 2001). Thus, 
the steady-state level of ROS used for the signal transduction has to be tightly 
controlled because increases in ROS, often as a result of environmental changes, may 
result in cell death through peroxidation of membrane lipids, protein oxidation, DNA 
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damage, etc. (Apel and Hirt 2004). This delicate balance is determined by the 
cooperation between the ROS-producing and ROS-scavenging mechanisms.  

1.4.5. Effect of cyanobacterial secondary metabolites on photosynthesis 

Several cyanobacterial secondary metabolites, including toxins, are known to 
interact with other prokaryotic cyanobacteria or eukaryotic algae, collectively called 
microalgae, eventually affecting their growth and metabolism (Leflaive and Ten-Hage 
2007). These compounds are generally known as algicides or antialgal compounds. 
Most of the algicides that have been characterized are found to target photosynthesis, 
and are thus termed natural herbicides (Smith and Doan 1999). As photosynthesis is 
shared by both cyanobacteria and algae, it can be a reasonable target for the antialgal 
producer organism to compete out other such organisms in the same habitat (Smith and 
Doan 1999). 

Cyanobacterin, a compound produced by Scytonema hofmanni (Mason et al. 1982), 
possess the specific site of action near PSII, on the oxidizing side of the QB site 
(Gleason and Paulson 1984). It has been reported that this site of action is different 
from the 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) - binding site (Gleason et 
al. 1986). Other compounds that have been reported to inhibit PSII are fischerellin A 
(Flores and Wolk 1986; Gross et al. 1991; Srivastava et al. 1998) and fischerellin B 
(Papke et al. 1997), both of which are produced by Fischerella muscicola, and 
cyanobacterin LU-1 and LU-2 (Gromov et al. 1991; Vepritskii et al. 1991), which are 
produced by Nostoc linckia.  

a)     b) 

    

 

Fig. 3. The structure of nodularin (a) and microcystin (b) (Kurmayer and Christiansen 2009). 

The action of toxic secondary metabolites has also been studied extensively in 
higher plants, either in terrestrial or aquatic plants depending on the habitat of the toxin 
producer. Terrestrial plants growing on the shore may be exposed to cyanotoxins 
during the formation of blooms, and crop plants can be exposed to toxins or toxin 
producers when the surface water used for irrigation is contaminated with toxic 
cyanobacteria (Abe et al. 1996; Codd et al. 1997). Nodularin inhibits serine-threonine 
type 1 (PP1) and 2A (PP2A) protein phosphatases in animals and plants (Honkanen et 
al. 1991; MacKintosh et al. 1990; Matsushima et al. 1990). Most research has focused 
on the effects of the well-studied cyanotoxin MC (Fig. 3) variants on terrestrial and 
aquatic plants. 
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Toxins such as MCs inhibit germination, growth, and photosynthesis of various 
plants, e.g. Spinacia oleracea (Siegl et al. 1990; Pflugmacher et al. 2007a), Sinapsis 
alba (Kόs et al. 1995), Oryza sativa, Brassica napus (Chen et al. 2004), Zea mays, and 
Pisum sativum (Saqrane et al. 2008, 2009). Cylindrospermopsin inhibits protein 
synthesis and hinders germination of Nicotiana tabacum pollen (Metcalf et al. 2004), 
while anatoxin-a inhibits germination and root growth of Medicago sativa seedlings 
(Pflugmacher et al. 2006). At the same time, association of cyanotoxins with aquatic 
plants grown in the same locality has also been studied (Babica et al. 2006). Exposure 
of aquatic macrophytes such as Ceratophyllum demersum, Myriophyllum spicatum, 
Lemna minor, and Wolffia arrhiza (Pflugmacher et al. 1999; Weiss et al. 2000; 
Pflugmacher 2002; Mitrovic et al. 2005) to MC variants resulted in uptake of MC and 
subsequent growth inhibition, reduction in photosynthetic oxygen production, and 
changes in pigment patterns.  

1.4.6. Effect of cyanotoxins on respiration 

Unlike photosynthesis, there have been very few studies on the mechanism(s) of 
action of cyanotoxins on the respiratory electron transport pathway. In particular, there 
have been no studies on the effect of nodularin on the plant respiration. Recently, it has 
been shown that MC-LR acts as an uncoupler, affecting the function of complex I and 
enhancing mitochondrial O2 consumption in isolated rat liver mitochondria (Jasionek et 
al. 2010). Zhao and co-workers reported that exposure of crucian carp liver to MCs 
significantly impaired the activities of mitochondrial complexes I, II, III, IV, and V and 
the expression of genes coding for complexes IV and V (Zhao et al. 2011). 
Furthermore, MC-LR strongly reduced the transmembrane potential as a consequence 
of inhibition of redox complexes in isolated mitochondria of kidney cells (La-Salete et 
al. 2008). MCs have been shown to induce apoptosis in mitochondria and subsequent 
cell death through loss of the mitochondrial membrane potential (MMP) in primary 
cultured rat hepatocytes (Ding et al. 1998, 2000), in rabbit liver and heart (Zhao et al. 
2008), in mice (Weng et al. 2007) and also in suspension cells of tobacco BY-2 (Huang 
et al. 2008). Exposure to MCs also resulted in morphological and ultrastructural 
changes such as necrosis, swelling of mitochondria, and loss of cristae in tobacco BY-2 
cells (Huang et al. 2009). 

1.4.7. Induction of ROS-scavenging systems by cyanotoxins 

It has been shown that cyanotoxins induce oxidative stress in terrestrial and aquatic 
plants as well as in cyanobacteria, which might cause serious cellular damage such as 
inhibition of protein synthesis, lipid peroxidation (LPO), genotoxicity, and modulation 
of apoptosis (Ding and Ong 2003; Esterbauer et al. 1991; Pflugmacher 2004). The 
uptake of MC-LR by an aquatic plant, Ceratophyllum demersum, increased the activity 
of microsomal and soluble glutathione S-transferase (GST) above a threshold 
concentration, whereas the activity of the same enzymes was inhibited at lower 
concentrations of MC (Pflugmacher et al. 1999). Similarly, the exposure of yet another 
aquatic plant, Lemna minor, to MC-LR increased the peroxidase (POD) activity after 5 
days of exposure (Mitrovic et al. 2005). MC-LR decreased the activity of SOD and 
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induced POD activity in Brassica napus whereas in Oryza sativa, it increased the 
activity of SOD, leaving the POD activity unaffected (Chen et al. 2004). MC-LR 
induced an oxidative stress response in Lepidium sativum through elevated activities of 
GPX, GST, and GR (Stüven and Pflugmacher 2007). Mitrovic and co-workers reported 
that anatoxin-a increased the activities of POD and GST after four days of exposure in 
the free-floating aquatic plant Lemna minor (Mitrovic et al. 2004). Exposure of 
Scenedesmus armatus to extract from a natural cyanobacterial bloom, composed of 
Microcystis and Aphanizomenon, elevated the POD activity and inhibited the activity 
of soluble GST (Pietsch et al. 2001). Moreover, MC-RR has been shown to increase 
ROS production by altering the levels of glutathione and GST activity in 
Synechococcus elongatus (Hu et al. 2005), and of many more antioxidant enzymes 
such as SOD, GPX, etc. in Synechocystis PCC 6803 (Li et al. 2009).  

1.4.8. N. spumigena, a toxin producer in the Baltic Sea 

N. spumigena was the first toxic cyanobacterium to be reported to cause animal 
poisoning in an Australian lake in 1878 (Francis 1878). It is a filamentous, N2-fixing 
heterocystous cyanobacterium occuring mainly in brackish and saline water around the 
world (Sivonen et al. 1989; Harding et al. 1995; Bolch et al. 1999). Nodularia are 
divided into benthic form lacking gas vacuoles and planktic community possessing gas 
vacuoles. Benthic cyanobacteria consist of non-toxic strains only whereas planktonic 
forms include both nodularin-producing N. spumigena and non-toxic strains 
(Laamanen et al. 2001). Nodularia blooms have been reported in coastal areas of Baltic 
Sea (Lindstrøm 1976; Persson et al. 1984; Edler et al. 1985; Gussmann et al. 1985), 
where they appear regularly during summer (Sivonen et al. 1989; Kononen et al. 1993). 
A hepatotoxin produced by N. spumigena, known as nodularin, was first isolated from 
New Zealand bloom material (Carmichael et al. 1988). Unlike MC, which is produced 
in various cyanobacterial species, nodularin has been shown to be produced by N. 
spumigena alone (van Apeldoorn et al. 2007). Nodularin is a non-ribosomal, cyclic 
pentapeptide (MW 824) with a structure cyclo-(D-Masp-L-Arginine-Adda-D-Glutamic 
acid-Mdhb), where Masp denotes D-erythro-β-methylaspartic acid, an unusual amino 
acid, Adda is (2S,3S,8S,9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-
dienoic acid, and Mdhb is N-methyl-dehydrobutyrine (Rinehart et al. 1988) (Fig. 3). In 
contrast to the MCs with more than sixty-five variants, only seven structural variants of 
nodularins have been reported to date (Namikoshi et al. 1994; Sivonen and Jones 1999; 
Beattie et al. 2000; de Silva et al. 1992). 

The function and action mechanism of nodularin has been studied extensively in 
mammalian systems (van Apeldoorn et al. 2007). It inhibits two key regulatory 
enzymes, PP1 and PP2A (Honkanen et al. 1991), in a manner similar to the diarrhoetic 
shellfish toxin, okadaic acid (Gehringer 2004). Nodularin binds to phosphatases by 
strong, non-covalent interaction, in contrast to MCs, which bind covalently to the 
target (Yoshizawa et al. 1990; Ohta et al. 1994; Annila et al. 1996). Phosphatases 
catalyze the reversibility of phosphorylation, which regulates various signaling 
processes from light responses in plants to muscle contraction in animals (Cohen 1989; 
MacKintosh and MacKintosh 1994). Nodularin has also been introduced as an 



Introduction 

22 

 

apoptogen (Fladmark et al. 1998) and as a direct carcinogen because of its ability to 
inhibit these phosphatases (Ohta et al. 1994). Nodularin-producing N.spumigena water 
blooms have also caused several episodes of animal poisoning in the Baltic Sea area 
(Edler et al. 1985; Nehring 1993).  

The impact of transport of nodularin through the food web has been of great interest 
in the last decade. The bioaccumulation of nodularin and subsequent induction of 
oxidative stress have also been reported in important food sources for humans or 
aquatic species such as mussels (Sipiä et al. 2002; Davies et al. 2005), flounder (Sipiä 
et al. 2001, 2002; Persson et al. 2009), Atlantic cod (Sipiä et al. 2001), three-spined 
stickleback (Kankaanpää et al. 2001), prawns (Van Buynder et al. 2001), mysid 
shrimps (Engström-Öst et al. 2002), and clams (Lehtonen et al. 2003; Sipiä et al. 
2002). Few studies have been done on the accumulation of nodularin and induction of 
oxidative stress in algae (Pflugmacher et al. 2007b, 2010).  
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2.  AIMS OF THE STUDY 

I am interested in using cyanobacteria for the biotechnological production of H2, a 
potential source of energy in the future. For H2 production, the biodiversity of 
cyanobacteria has not been well studied. The Baltic Sea and Finnish lakes comprise of 
morphologically and physiologically diverse set of cyanobacterial strains. More than 
1,000 different strains have been isolated and are maintained in UHCC. This gave me 
an excellent opportunity to investigate the potential diversity in cyanobacteria for H2 
production. As a biologist, I have also paid attention to the growing cyanobacterial 
blooms in the Baltic Sea and Finnish lakes every summer and decided to study the 
effects of cyanobacterial secondary metabolites on the bioenergetic systems of other 
cyanobacteria and terrestrial plants. 

The specific aims of my study are: 

(1)  To explore superior H2 producing cyanobacterial strains from natural diversity in 
the Baltic Sea and Finnish lakes and to further characterize the best H2 producers 
at the molecular level.  

(2)  To identify novel bioactive compounds and reveal their mechanism of action on 
the bioenergetic pathways of the model cyanobacterium, Synechocystis PCC 
6803.  

(3)  To study the bioenergetic responses of terrestrial plants to nodularin-producing 
Nodularia blooms. 
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3.  MATERIALS AND METHODS 

3.1.  Cyanobacterial and plant material 

3.1.1. Cyanobacterial strains 

In my PhD study, several cyanobacterial strains from PCC, ATCC, and UHCC were 
used. The strains and growth conditions of the strains are listed in the following table. 

Strains Growth conditions Strain 
characteristics 

Publications  

400 strains from UHCC 7 µmol photons m-2 s-1, Z8 
or Z8x or Z8xS, 22ºC 

Unicellular, non-
N2-fixing; 
filamentous, N2-
fixing, 
heterocystous;  and 
filamentous, non-
N2-fixing, non-
heterocystous 

Paper I 

Calothrix 336/3 
Calothrix XPORK 5E 
Nostoc XHIID A6 

7 µmol photons m-2 s-1, 
Z8x, 22ºC or  
20 µmol photons m-2 s-1, 
Z8x, 25ºC 

N2-fixing and 
heterocystous 

Papers I & II 

Calothrix BECID 33 
Nodularia TRO31 
Nodularia AV33 
Nostoc BECID 19 
Anabaena XSPORK 7B 
Calothrix XSPORK 36C 
Calothrix XSPORK 11A 

7 µmol photons m-2 s-1, 
Z8xS, 22ºC or 20 µmol 
photons m-2 s-1, Z8xS, 25ºC

N2-fixing and 
heterocystous 

Papers I & II 

Anabaena PCC 7120 
WT, ΔhupL, ΔhupL/ 
ΔhoxH and ΔhoxH 

40 µmol photons m-2 s-1, 
BG-11o, 25ºC 

N2-fixing and 
heterocystous 

Papers I & II 

N. punctiforme PCC 73102 
(ATCC 29133) 
WT and ΔhupL 

40 µmol photons m-2 s-1, 
BG-11 or BG-11o, 25ºC 

N2-fixing and 
heterocystous 

Papers I & II 

A. variabilis ATCC 29413 50 µmol photons m-2 s-1, 
BG-11, 30ºC 

N2-fixing and 
heterocystous 

Paper II 

Nodularin-producing    N. 
spumigena AV1 
non-nodularin-producing 
Nodularia sp. HKVV 

20 µmol photons m-2 s-1, 
Z8xS, 25ºC 

N2-fixing and 
heterocystous 

Papers IV & V 

Synechocystis sp. PCC 
6803 

50 µmol photons m-2 s-1, 
BG-11, 30ºC  

unicellular, non-
N2-fixing  

Papers II & III  

Z8x: Z8 medium (Kotai 1972) without added nitrogen; Z8xS: Z8 saline medium without added nitrogen; 
and BG-11o: BG-11 medium (Rippka et al. 1979) without added nitrogen 
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3.1.2.  Plant material 

Spinach (Spinacia oleracea L.) plants were grown under 250 µmol photons m-2 s-1, 
8 h photoperiod, and 23ºC. The seeds were sown on vermiculite, and the seedlings 
were transferred to soil after two weeks of germination (Papers IV & V).  

3.2.  Screening of UHCC for H2 production (Paper I) 

For preliminary screening, 400 cyanobacterial strains from UHCC were grown in 
Helsinki for two weeks in appropriate liquid Z8 medium (pH 7.5) at 22ºC under 
approximately 7 µmol photons m-2 s-1. The cells were harvested and resuspended in 50 
mL of fresh growth medium, transported to Turku, and H2 production assay was carried 
out on the next day. The strains selected for further study were cultivated in their 
respective medium with continuous bubbling of air under 40 µmol photons m-2 s-1. 

3.2.1.  H2 production assay and determination of H2 by gas chromatography  

The cyanobacterial strains harvested and resuspended in 5 mL of fresh medium 
were transferred to 20 mL gas chromatography (GC) vials with butyl-rubber septa. The 
vials were incubated for 24 h at 23°C under four different conditions: aerobic/light (70 
µmol photons m-2 s-1), aerobic/dark, microaerobic/light (70 µmol photons m-2 s-1), and 
anaerobic/dark. The gas phase of the vial was changed to argon for anaerobic 
conditions. The aerobic and anaerobic treatments were performed in parallel. The vials 
were kept under continuous shaking. 

Samples (150 µL) withdrawn from the headspace of the H2 assay vials using a gas-
tight syringe (Hamilton Co., USA) were injected into a Perkin Elmer Clarus 500 GC 
equipped with a thermal conductivity detector and a Molecular Sieve 5A column 
(60/80 mesh). Calibration was done with 0.5% H2 (AGA, Finland). The rate of H2 
production was calculated on the basis of the Chl content of the cells. Argon was used 
as a carrier gas. 

3.3.  Preparation of cyanobacterial extracts 

3.3.1. Nodularia cell extract (Papers IV & V) 

Nodularin-producing N. spumigena strain AV1 and non-nodularin-producing 
Nodularia sp. HKVV were harvested after four weeks of growth and washed once with 
tap water. The pellets were weighed and stored at -20ºC. The frozen pellets were 
repeatedly thawed and re-frozen several times to break up the cells in order to release 
the toxin. Just before use, the pellets were suspended in tap water. 

3.3.2. Nostoc XP14A extract and M22 (Paper III) 

Nostoc XPORK 14A cells were harvested after 80 days of growth, freeze dried, and 
extracted with methanol. Equal volumes of dichloromethane and water were added to 
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the extract, followed by manual shaking for 5 seconds to form an emulsion. The 
emulsion was centrifuged and the upper phase (water/methanol) was collected and 
evaporated. The final residue was dissolved in high-performance liquid 
chromatography (HPLC) eluent for the purification of M22 or in methanol to obtain 
crude methanol extract. To avoid the hazardous effect of methanol on Synechocystis, 
the methanol was replaced with dimethyl sulfoxide (DMSO) for further physiological 
experiments. 

Next, the crude methanol extract was injected into an Agilent 1100 Series LC/MSD 
Trap System HPLC (Agilent Technologies, USA) with an XCT Plus model ion trap as 
a mass detector and diode array UV detector. The column used was Phenomenex Luna 
C18 (2) (4.6 x 150 mm, particle size 5 μm), which was eluted isocratically at 1 mL 
min-1 with 45% ACN in water at ambient temperature. The M22 peak, eluting from 10 
to 11.75 min, was collected and evaporated to dryness. This part of the work was done 
at the University of Helsinki. 

3.4.  Treatments with cyanobacterial extracts 

3.4.1.  Treatment of Synechocystis PCC 6803 with Nostoc XPORK 14A methanol 
extract (Paper III) 

The Synechocystis PCC 6803 (hereafter referred to as Synechocystis) cells at mid-
logarithmic phase were diluted with fresh BG-11 medium to a final optical density of 
0.1 or 0.4 at 750 nm (OD750) for the treatments. For short-term treatment, the 
Synechocystis cells diluted to an OD750 of 0.4 were incubated with the Nostoc XPORK 
14A methanol extract (hereafter referred to as XPORK 14A extract), or with purified 
M22 (hereafter referred to as M22) solution for two days under standard growth 
conditions with air-level CO2 both in the light and in the dark. For long-term treatment, 
the Synechocystis cells diluted to an OD750 of 0.1 were grown in the presence of 
XPORK 14A extract for seven to eight days under standard growth conditions with air-
level CO2.  

3.4.2. Treatment of spinach with Nodularia cell extract (Papers IV & V) 

The spinach plants were divided into three groups and each group consisted of two 
pots, each containing four seedlings: (1) control plants, watered with tap water, (2) 
plants watered with tap water supplemented with Nodularia HKVV cell extract, and 
(3) plants watered with tap water supplemented with Nodularia AV1 cell extract 
containing 0.34 µM nodularin per plant. All three groups of plants were allowed to 
grow for five weeks. Watering with or without cell extracts were performed twice a 
week until the fifth week of growth or until generation of severe symptoms. Control 
plants were watered with tap water alone. 
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3.5.  Isolation of mitochondria and preparation of protein samples. 
Detection and analysis of proteins 

The chloroplast-free mitochondria from spinach leaves were isolated as described in 
Paper IV. Total leaf extract, thylakoid membranes, and soluble proteins were isolated 
from spinach leaves after frozen in liquid N2 as described in Papers IV & V. Thylakoid 
membrane proteins and crude cell extracts from Synechocystis cells were isolated as 
described in Paper III. The proteins were denatured and separated by one-dimensional 
SDS-PAGE. The western blotting was carried out by electroblotting the proteins onto 
polyvinylidene fluoride (PVDF) (Millipore, USA) or nitrocellulose membrane (Perkin 
Elmer, USA). The proteins of interest were detected by immunoblotting with 
appropriate antibodies. Oxidative modifications of proteins were studied using the 
OxyBlotTM Protein Oxidation Detection Kit (Chemicon International, USA). 

3.6.  Determination of Chl and protein amount 

The Chl content of the thylakoid membranes of spinach leaves was determined 
according to Porra et al. (1989) (Paper IV), and that of cyanobacterial cells was 
measured spectrophotometrically at 665 nm using 90% methanol (Meeks and 
Castenholz 1974) (Paper I & III). Protein content was measured as described by 
Bradford (1976) (Paper IV) and Lowry et al. (1951) (Paper III). 

3.7.  Measurement of photosynthetic electron transport properties 

The thylakoid membranes isolated from spinach leaf samples were used for the in 
vitro measurements (Paper IV). Leaf discs from spinach leaf samples (Paper IV) and 
Synechocystis cells harvested and resuspended in fresh BG-11 medium (Paper III) were 
used for the in vivo measurements. An appropriate volume of extracts was added to the 
culture in order to maintain the same growth environment for the cells as before the 
measurements (Paper III). 

3.7.1. Chl a fluorescence 

The single flash-induced increase in Chl a fluorescence yield and its subsequent 
relaxation (FF-relaxation) in darkness (Paper III) were determined with the FL3300 
dual-modulation fluorometer (Photon System Instruments, Czech Republic) after 3 min 
of dark adaptation of the Synechocystis cells, either in the presence or absence of 
DCMU (Allahverdiyeva et al. 2004). 

3.7.2. P700+ oxido-reduction  

The changes in the redox state of P700 in Synechocystis cells (Paper III) were 
measured by using DUAL-PAM-100 (Heinz Walz GmbH, Germany). P700 was 
oxidized in the presence of DCMU using red light applied from the actinic LED with 
intensity of 70 μmol photons m-2 s-1. Subsequent re-reduction of P700+ was recorded in 
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darkness. Redox changes in P700 in leaf discs from spinach plants exposed to 
nodularin-containing extract was monitored as described in Paper IV. 

3.7.3. Oxygen evolution measurements 

Steady-state rates of oxygen evolution were measured using a Hansatech DW1 
oxygen electrode under saturating light intensity. The net photosynthesis and PSII 
capacity of the Synechocystis cells were determined in the presence of 10 mM 
NaHCO3 and 2 mM 2,6-dichloro-p-benzoquinone (DCBQ), respectively, at 30°C 
(Paper III), whereas the PSII capacity of the thylakoid membranes isolated from 
spinach plants was measured in the presence of 1 mM DCBQ at 23°C (Paper IV). 

3.8.  Measurements of respiratory reactions 

3.8.1. Dark respiration measurement (Paper III) 

The respiratory activity of Synechocystis cells in the dark was measured with a 
Hansatech DW1 oxygen electrode at 30°C. 

3.8.2. Spectroscopic assay of respiratory chain enzyme activities (Paper V) 

The respiratory chain activities of isolated mitochondria were measured 
spectrophotometrically using an Aminco DW2 spectrophotometer (American 
Instrument Co., USA) as described earlier (Hinttala et al., 2005) with minor 
modifications (Vigani et al. 2009). Complex I activity was assayed by measuring 
rotenone-sensitive oxidation of NADH in the presence of decyl ubiquinone at 340/385 
nm. Activities of complex II+III were determined by measuring the succinate-
dependent reduction of cytochrome c at 550/540 nm. Activity of complex IV was 
assayed as an oxidation rate of reduced cytochrome c at 550/540 nm. This activity was 
monitored in the presence and absence of octylglucoside. The activity of citrate 
synthase was measured according to Tonkonogi and Sahlin (1997). The respiratory 
chain enzyme activities were then expressed relative to citrate synthase activity. These 
experiments were carried out at the University of Oulu, Finland. 

3.9.  Detection of ROS (Paper III) 

Production of ROS was monitored as light-induced oxygen uptake by chemical-
trapping technique in the presence of 5 mM histidine in BG-11 medium using a 
Hansatech oxygen electrode. This experiment was performed at the Laboratory of 
Molecular Stress and Photobiology, Szeged, Hungary. 

3.10.  Pigment and α-tocopherol analysis (Paper IV) 

Pigments (Chl a and b, neoxanthin, violaxanthin, lutein, and β-carotene) and α-
tocopherol were extracted from leaf discs of spinach with 100% methanol. The 
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photosynthetic pigments were separated by HPLC according to Gilmore and 
Yamamoto (1991) with a LiChroCART125-4 reverse-phase C18 column (Hewlett 
Packard, USA), and a series 1100 HPLC device with diode array and fluorescence 
detector (Agilent Technologies, USA). 

3.11.  APX activity and determination of ascorbate (Paper IV) 

APX activity from fresh leaves was determined according to Foyer et al. (1989) 
using the modifications of Pätsikkä et al. (2002). Ascorbate was extracted from the 
leaves and was assayed according to Foyer et al. (1983). 

3.12.  DNA analysis (Paper II) 

Genomic DNA was extracted according to Neilan et al. (1995) (Paper II). The 
quality of DNA was verified by agarose gel electrophoresis according to standard 
protocols (Sambrook et al. 1989). For Southern hybridization, 1-2 µg of genomic DNA 
was digested with HindIII and EcoRI. The restriction fragments were separated on 
0.7% agarose gel. After denaturation and neutralization, restricted DNA was blotted 
onto Hybond-N nylon membranes (Amersham Bioscience, UK). The membranes were 
pre-hybridized, exposed to denatured probes (hup, hox, and nif) and hybridized 
overnight at 45ºC. After hybridization, the membranes were washed with 2x SSC, 
0.1% SDS. 
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4.  RESULTS 

4.1.  Identification and characterization of superior H2 producers from 
the Baltic Sea and Finnish lakes (Papers I & II) 

4.1.1  Screening of UHCC (Paper I) 

In order to identify potential H2 producers from UHCC, a preliminary screening 
process was carried out with 400 cyanobacterial species using four different conditions: 
aerobic/light, aerobic/dark, microaerobic/light, and anaerobic/dark. Two hundred strains 
produced detectable amounts of H2. The list of 100 strains with an H2 production rate of 
0.1 µmol H2 mg Chl-1 h-1 or higher is shown in Table 1 of Paper I. The highest H2 
production rate was obtained under microaerobic/light conditions and the strains 
producing H2 at a rate higher than 0.15 µmol H2 mg Chl-1 h-1 were selected for the second 
screening. The H2 production rate of UHCC strains was compared to the H2 production 
rate of reference strains N. punctiforme PCC 73102 (WT and ΔhupL deletion mutant) 
and Anabaena PCC 7120 (WT and ΔhupL, ΔhoxH, and ΔhupL/ΔhoxH deletion mutants). 
The screening revealed top ten strains with H2-producing capacity similar to or up to 4 
times higher than in the ΔhupL and ΔhupL/ΔhoxH mutants (Fig. 1 of Paper I). 

4.1.2. Identification of genes encoding the enzymes involved in H2 metabolism in the 
top ten superior strains (Paper II) 

The distribution of the genes encoding the enzymes involved in H2 metabolism in 
the top ten strains was studied by Southern hybridization. The PCR product of hoxY 
from Calothrix XPORK 5E was used as probe for the detection of the hoxY gene. 
Similarly, the PCR products of hupL, hupS, nif1, nif2, and vnf genes from A. variabilis 
were used as probes for the detection of the hup, nif, and vnf genes. The genomic DNA 
of eight of the strains, with Calothrix XSPORK 36C and Calothrix XSPORK 11A as 
exceptions, showed hybridization signals in the hupL, hupS, and hoxY blots. As the 
strains tested are heterocystous, N2-fixing cyanobacteria, they showed hybridization 
signals in the nifH1, nifD1, and nifK1 blots, the subunits of conventional nitrogenase. 
However, none of the strains tested showed any hybridization signal in nif2 and vnf 
blots for the presence of these genes. The blots showing the hybridization signals for 
nif1, nif2, vnf, hup, and hox are shown as supplementary figures (Pages 5 -5 ). 

4.1.3. Effect of changing culture conditions on the rate of H2 production (Paper I) 

Differences in the cell density had a considerable effect on the H2-producing capacity 
of the top ten H2 producers. Increase in light intensity from 100 to 250 µmol photons m-2 
s-1 enhanced the rate of H2 production in top two H2 producers, Calothrix 336/3 and 
Calothrix XPORK 5E. Further increase in light intensity to 350 and 500 µmol photons 
m-2 s-1 gradually reduced the capacity of H2 production in Calothrix XPORK 5E, whereas 
high light still enhanced the H2 production rate in Calothrix 336/3. The increase in 
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temperature in the H2 production assay from 23ºC to 30ºC stimulated the H2 production 
rate two-fold in Calothrix 336/3. Further increase was obtained at the same temperature 
when the position of the vials during incubation was shifted from vertical to horizontal 
position so that the light came from the sides (150 µmol photons m-2 s-1). In this way, the 
surface area of the vials exposed to light was increased, thereby enhancing the H2 
production rate ca. 5 times relative to the standard vertical incubation position.  

Next, the effect of pH on the H2 production rate of two Calothrix strains was 
studied using Z8x medium at either pH 6.8 or pH 8.2, in addition to standard medium 
at pH 7.5. Interestingly, Calothrix 336/3 was not able to grow at pH 6.8 or pH 8.2. 
Calothrix XPORK 5E strain did not grow at pH 8.2 and grew relatively slowly at pH 
6.8. At pH 6.8, Calothrix XPORK 5E produced much less H2 than at the optimal pH 
(7.5). On the other hand, Calothrix XPORK 5E produced H2 at a similar rate in both 
BG-110 and Z8x medium, whereas Calothrix 336/3, despite similar growth in both 
media, produced less H2 in BG-110 compared to in Z8x medium. The third highest H2 

producer, Nodularia AV33, which is normally grown in Z8xS medium at pH 7.5, could 
not survive in BG-110 supplemented with salt. The H2 production rate of most of the 
strains examined increased with decreasing cell density of the cultures. Nevertheless, 
some planktonic strains, such as Nodularia AV33 and Nodularia TRO31, did not show 
any difference in H2 production rate upon lowering of the cell density. The H2 
production rate of Calothrix 336/3 and Calothrix XPORK 5E was compared on the 
basis of Chl and dry biomass. When compared to Calothrix XPORK 5E, Calothrix 
336/3 produced 30% more H2 on the basis of Chl whereas two-fold higher H2 
production was recorded on the basis of dry weight. 

4.2.  Screening of the UHCC for compounds with the capacity to modulate 
the photosynthetic apparatus of Synechocystis PCC 6803 (Paper III) 

In preliminary screening assays, 55 methanol extracts of various cyanobacterial 
strains isolated from the Baltic Sea and Finnish lakes were monitored for their possible 
effects on the photosynthetic apparatus of Synechocystis, making use of Chl a 
fluorescence induction kinetics. The methanol extract from Nostoc XPORK 14A, the 
only one showing a dramatic effect on the kinetics and amplitude of Chl fluorescence 
induction, was selected for more detailed studies. 

4.2.1.  Phenotype, pigment content, and oxidative status of Synechocystis exposed to 
XPORK 14A extract 

The short-term exposure of Synechocystis cells to the XPORK 14A extract resulted 
in significantly retarded growth rate and reduced Chl content under illumination as 
compared to the control cells after two days of incubation. Incubation of Synechocystis 
cells with XPORK 14A extract in darkness did not have any noticeable effect on the 
OD750 or the Chl content when compared to the control cells. On the other hand, during 
long-term exposure to XPORK 14A extract, the growth of Synechocystis cells was 
inhibited for four days but then the cells slowly resumed their growth. The OD750 of 
one-week-old treated cultures was equivalent to the OD750 of three-day-old control 
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cultures. Interestingly, the Synechocystis cells incubated with XPORK 14A extract 
under standard growth conditions in the light or in darkness for two days demonstrated 
significant oxidative modifications (i.e. carbonylation) in the total protein fraction and 
the membrane protein fraction similar to those in spinach leaves exposed to nodularin-
containing AV1 extract (Paper IV). 

4.2.2.  Action of XPORK 14A extract on bioenergetic pathways of Synechocystis 

4.2.2.1.  Short-term treatment in the light 

Under growth light, the net photosynthetic activity of Synechocystis cells exposed to 
the XPORK 14A extract was drastically reduced. At the same time, the cells showed a 
significant decrease in the oxygen evolution capacity of PSII measured with DCBQ as an 
artificial electron acceptor. The treatment also demonstrated significant modifications in 
the shape of the FF-relaxation curve in the absence of DCMU, indicating that there were 
changes on the acceptor side of PSII. In the presence of DCMU, the FF-relaxation-curve 
showed a new fast phase, indicating serious modifications at the donor side of PSII. In 
addition to the effect on PSII, the extract also affected P700 oxido-reduction by slowing 
down the kinetics. Furthermore, the treated cells demonstrated a drastically reduced dark 
respiration rate compared to control cells. 

4.2.2.2.  Short-term treatment in darkness 

Similarly to the experiment performed in the light, the XPORK 14A treatment in 
the dark reduced the net photosynthetic rate and the PSII activity of the Synechocystis 
cells relative to the control cells. The overall FF-relaxation kinetics in the absence of 
DCMU was slower compared to that of the control cells. In the presence of DCMU, no 
significant difference in the relaxation kinetics was detected. On the other hand, no 
difference in the P700+ oxidation and re-reduction rates was recorded in darkness. 
Interestingly, the treatment increased the dark respiration rate of the Synechocystis cells 
nearly two-fold compared to the control. 

4.2.2.3.  Modification of the protein composition of the photosynthetic machinery by 
the XPORK 14A extract 

In cells treated with XPORK 14A extract, under illumination, the amount of PsaB, one 
of the reaction centre proteins of PSI, was at an elevated level whereas the contents of D1, 
the PSII reaction centre protein, and cytf, the subunit of the cyt b6f complex, were clearly 
reduced compared to those in control cells. In cells treated with the extract in darkness, the 
amounts of both the D1 protein and PsaB were found to be significantly reduced, and the 
cytf level increased, in comparison with the corresponding controls. Interestingly, the 
expression of the NdhJ subunit of the NDH-1 complex was downregulated in the cells 
treated with XPORK 14A extract, both in light and in darkness. 

4.2.3. Characterization of the XPORK 14A extract and purification of M22 

LC-MS analysis of the methanol extract of the Nostoc XPORK 14A strain revealed 
a prominent peak of an unknown secondary metabolite at the late growth phase. This 
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metabolite was isolated, purified, and named M22. The purity of M22 was confirmed 
by using HPLC. The molecular mass of M22 is 1,626.472 Da and the compound most 
likely possesses non-peptidic structure. Purified M22 absorbs within the UV-range and, 
interestingly, also in the blue region of visible light. The absorption properties of M22 
suggested that it may be involved in photo-induced formation of ROS, and later on, 
M22 was indeed confirmed to produce ROS in a light-intensity-dependent manner. 

4.2.4. M22 retards the growth and photosynthetic performance of Synechocystis 

M22 treatment retarded the growth of Synechocystis cells in a similar way as 
XPORK 14A extract. The OD750 of Synechocystis cells incubated with purified M22 for 
two days were significantly reduced, and the pigmentation of Synechocystis cells was 
affected in similar way to that induced by the XPORK 14A extract. During long-term 
treatment with purified M22, the growth of Synechocystis cells was inhibited for four 
days, similar to the situation with XPORK 14A extract. The cells treated with M22 
showed severe modifications in the overall FF-relaxation kinetics. These results 
indicate that the M22 may be responsible for major modifications in the growth and 
photosynthesis of Synechocystis cells reported in the presence of XPORK 14A extract. 
However, we cannot exclude the possibility that the Nostoc XPORK 14A extract also 
has other biologically active secondary metabolites.  

4.2.5. Fate of M22 in the culture medium during long-term treatment and light 
exposure studies on XPORK 14A extract 

M22 in Synechocystis culture medium was quantified every day in order to find any 
correlation between the inhibition of growth occurring during the first four days of long-
term exposure of Synechocystis cells to XPORK 14A extract on the one hand and and the 
amount of M22 on the other. On second day, the concentration of M22 in the culture 
medium decreased to nearly half, and finally no M22 was detected after four days of 
incubation. To determine whether the loss of M22 in the culture medium was due to 
light-induced self-destruction, BG-11 medium containing only XPORK 14A extract was 
illuminated under standard growth conditions for four days. Quantification by HPLC 
revealed only a trace amount of M22 (5 nM) in illuminated BG-11 medium. Importantly, 
when Synechocystis cells were inoculated into BG-11 medium containing pre-
illuminated XPORK 14A extract, a lag phase in the growth was still observed similar to 
that in cells exposed to XPORK 14A extract that had not been pre-illuminated. 

4.3.  Nodularin modifies the bioenergetic pathways of Spinacia oleracea 
(Papers IV & V) 

4.3.1.  Phenotype and pigment changes in spinach plants exposed to nodularin 
extract (Paper IV) 

Prolonged exposure of spinach seedlings (five weeks of growth) to nodularin-
producing Nodularia AV1 extract resulted in significant accumulation of nodularin in 



Results 

34 

 

the leaves and in the roots. As a result, the spinach plants exposed to Nodularia AV1 
extract had a distinct phenotype with the leaves suffering from severe chlorosis, which 
ultimately led to the death of the leaves. The most deleterious symptoms were detected 
in the oldest leaves, which were partly colourless and yellowish, while the youngest 
leaves were dark green and looked quite healthy. After six weeks of growth, the oldest 
leaves died. In contrast, treatment of plants with water extract from non-nodularin-
producing Nodularia HKVV did not result in chlorosis and death of the leaves during 
the time course of the experiment. The control plants remained healthy and the leaves 
were dark green and exuberant (see Fig. 1 in Paper IV). 

In line with the phenotypic features, the yellow part of the leaves of nodularin-
exposed plants possessed ca. 50% less Chl than those of the control plants. However, 
the Chl content of the green parts of the leaves from nodularin-exposed plants and 
HKVV-exposed plants did not differ significantly from that of the control leaves. No 
distinct differences in the content of neoxanthin, lutein, β-carotene, and violaxanthin 
could be detected between the green parts of the leaves, but the yellow parts of the 
leaves from the nodularin-exposed plants always contained markedly less carotenoid 
pigments than the control or HKVV-exposed plants.  

4.3.2.  Effect of nodularin extract on the photosynthetic machinery of spinach plants 
(Paper IV) 

As the plants treated with nodularin suffered from severe chlorosis and reduced 
pigment content, the possible effects of nodularin on the photosynthetic machinery of 
spinach leaves were studied. Immunoblotting of key photosynthetic proteins showed 
no marked difference in the level of PSII (D1, CP43, and CP47), PSI (PsaB) and 
ATPase proteins between the control plants and the plants treated with cyanobacterial 
extracts including nodularin. Likewise, the PSII function of the nodularin-exposed 
plants was not affected when oxygen evolution activity of the thylakoids was measured 
either from the young, healthy leaves or from old, yellowish leaves using DCBQ as an 
artificial electron acceptor. Nevertheless, the rate of re-reduction of P700+, the primary 
donor of PSI, in the dark was slightly faster in the nodularin-exposed plants than in the 
control or HKVV-exposed plants. Nodularin exposure did not result in visible changes 
in the chloroplast ultrastructure, as the thylakoid organization remained intact in the 
chloroplasts of nodularin-treated plants (Paper V). 

4.3.3.  Upregulation of the mitochondrial electron transport chain of spinach plants 
by nodularin extract (Paper V) 

In experiments with the crude membrane fraction from spinach, I noticed that the 
amount of mitochondrial COXII, a subunit of complex IV was significantly increased 
(Paper IV). To investigate the detailed effect of nodularin on mitochondrial respiration, 
the function of the respiratory enzyme complexes in mitochondria isolated from 
nodularin-exposed plants was determined using a spectrophotometry-based in 
organello assay. Nodularin exposure markedly increased the enzyme activities of 
complex I, complex II, complex III, and complex IV, as well as the activity of citrate 
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synthase, a marker enzyme of the citric acid cycle. Western blotting demonstrated the 
enhanced accumulation of the 39-kDa subunit and ND4 subunit of complex I, whereas 
no difference in the level of the 30-kDa subunit of complex I could be detected. Also, 
the amount of COXII from pure mitochondria was increased, which is in line with the 
upregulation of COXII when analyzed using crude membrane protein extract. 
Interestingly, the amounts of stress-induced AOX and NAD+-dependent isocitrate 
dehydrogenase (Idh), an enzyme of TCA cycle, were significantly upregulated in the 
plants exposed to nodularin-containing extract. 

SDS-PAGE analysis revealed the upregulation of expression of 30- and 20-kDa 
proteins and downregulation of the prominent protein band of approximately 55-kDa in 
mitochondria isolated from nodularin-exposed plants. Although the general 
morphology of the leaves did not differ between the control and nodularin-exposed 
plants, the defined structure of the cristae typical of the control mitochondria was more 
obscure in the mitochondria of the nodularin-treated plants. Moreover, at least part of 
the leaf mitochondria of nodularin-exposed plants were swollen compared to those of 
the control plants.  

4.3.4.  Organellar stress response of spinach plants exposed to nodularin extract 
(Papers IV & V) 

The phenotype of the plants exposed to nodularin-containing extract indicated that 
the plants suffered from oxidative stress. As already mentioned, both chloroplasts and 
mitochondria are major sources and targets of ROS (Apel and Hirt 2004), and the 
oxidative stress response from both chloroplasts and mitochondria was therefore 
studied. Oxyblot analysis has been used to study the oxidative modifications, i.e. 
carbonylation of the proteins susceptible to oxidative damage. Chloroplast membrane 
and soluble proteins in the nodularin-exposed plants showed markedly more oxidative 
damage than those of the control or HKVV-exposed plants, whereas no such changes 
could be detected in the mitochondrial proteins. Also, the mAPX was upregulated 
during exposure to nodularin-containing extract, as a protective mechanism against the 
oxidative damage to mitochondria. No significant differences in the amounts of 
chloroplast PRXQ, SOD, or cytoplasmic APX (cAPX) were observed. However, the 
contents of tAPX and stromal APX (sAPX) were markedly reduced. Furthermore, α-
tocopherol content both in green and yellow leaves of the plants treated with nodularin-
containing extract was ca. 1.3 fold higher than in the control plants. Despite the 
obvious changes in oxidative status, no significant difference in the ratio of reduced to 
oxidized ascorbate could be detected in the differently treated spinach plants. 
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5.  DISCUSSION 

5.1.  The Finnish cyanobacterial culture collection (UHCC) has several 
good H2 producers (Papers I & II) 

5.1.1.  The top ten strains of UHCC are efficient H2 producers 

Cyanobacteria have the ability to produce H2, a potential future source of energy, 
using the simplest raw materials such as water, mineral salts, and light. Although the 
potential light conversion efficiency to H2 by cyanobacteria is theoretically high, the 
system is restricted by biochemical and metabolic pathways. Cyanobacterial H2 
production also faces hurdles, such as the sensitivity of nitrogenases and hydrogenases 
to O2 and the consumption of H2 by uptake hydrogenase (Rao and Hall 1996). A broad 
range of approaches to developing suitable and sustainable biohydrogen production 
methods using cyanobacteria have been utilized over the past three decades (Pinto et al. 
2002). Importantly, in most cases, scientific and commercial interests have focused on 
the model and sequenced cyanobacterial strains. Biodiversity among cyanobacteria 
regarding H2 production has not been well studied, which is the reason why 
cyanobacteria have a poor reputation regarding H2 production. Several WT strains 
from natural environment, which could be potential H2 producers as well as strains 
from the culture collections should be surveyed and exploited as the future energy 
resources. 

To meet this requirement, we screened 400 out of 1,000 strains from the UHCC, 
which is a culture collection of cyanobacterial strains from the Finnish lakes and the 
Baltic Sea (Paper I). The ten cyanobacterial strains that produced the highest amounts 
of H2 were selected from this screening. The rate of H2 production of the top ten strains 
was similar or higher than the rate shown by the best H2 producers and specifically 
generated mutant strains in other laboratories (Lindberg et al. 2002; Masukawa et al. 
2002a, 2002b). Although Nodularia TRO31 and AV33 strains were among the best H2-
producing strains, they were excluded from further studies due to their toxic nature and 
light sensitivity. So, Calothrix 336/3 and Calothrix XPORK 5E were considered to be 
the two best H2-producing strains. 

5.1.2.  Superior H2-producing strains possess conventional nitrogenase enzymes 

The molecular approach provides a means of identifying promising organisms that 
have the potential to produce H2, characterizing the H2-evolving machinery, and 
generating mutant strains. The molecular machinery for H2 metabolism varies 
significantly between cyanobacterial strains. For example, strains such as A. variabilis 
and Anabaena PCC 7120 contain both uptake and bidirectional hydrogenases 
(Tamagnini et al. 2000), whereas N. punctiforme PCC 73102 contain only the uptake 
hydrogenase and lacks the bidirectional hydrogenase (Tamagnini et al. 1997). In an 
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attempt to characterize the top ten strains identified in the screening process at the 
molecular level, the Southern hybridization approach was employed (Paper II).  

All the top superior strains were heterocyst-forming, N2-fixing cyanobacteria and, 
as one would expect, the eight strains tested were found to contain all three subunits of 
nif genes, including nifH, D and K. N2-fixing microorganisms may contain either one 
type of nitrogenase or a combination of two or three nitrogenase types (Kentemich et 
al. 1988; Bishop and Premakur 1992; Chakraborty and Samaddar 1995; Loveless and 
Bishop 1999; Oda et al. 2005; Betancourt et al. 2008). Cyanobacteria that harbor the 
Mo-based nitrogenase can produce only one molecule of H2 at the expense of 16 
molecules of ATP, but cyanobacteria that express V- and Fe-based nitrogenases, 
although not very common, can theoretically produce higher amounts of H2 than those 
with only conventional Mo-nitrogenase. Thus, more attention should be paid to 
characterizing and utilizing alternative nitrogenase-based cyanobacterial H2 
production. Recently, Weyman and co-workers reported the amino acid substitution in 
nifD2 as a first step towards the development of nitrogenase mutants in A. variabilis, 
which produce large amounts of H2 in a N2 atmosphere (Weyman et al. 2010). 
However, none of the N2-fixing UHCC cyanobacterial strains tested contained the 
alternative nitrogenases nif2 or vnf. Alternatively, bidirectional hydrogenase-based H2 
production can be employed, which may produce H2 under anaerobic conditions. This 
reaction is not driven by ATP, and it is energetically more favourable than nitrogenase-
based H2 production. In spite of being advantageous, this enzyme needs an O2-
protected environment, and the reaction can be reversed (with H2 uptake) above certain 
partial pressure of H2. 

As the uptake hydrogenase can be an impediment to nitrogenase-based H2 
production systems (Tamagnini et al. 2002, 2007; Schütz et al. 2004; Sakurai and 
Masukawa 2007), targeted disruption of hup genes has been undertaken in several 
strains of Anabaena and Nostoc as a means of improving the efficiency of H2 
production (Happe et al. 2000; Lindberg et al. 2002; Masukawa et al. 2002a, 2002b; 
Schütz et al. 2004; Carrasco et al. 2005; Yoshino et al. 2007). These strains were used 
as reference strains in our research work (Paper I). Screening for hup genes in our top 
ten H2-producing strains revealed the presence of hupLS genes in all Calothrix strains 
except two, XSPORK 36C and 11A. It is worth mentioning that Southern blot may 
yield ambiguous output and lead to negative results if the probe used and the target 
gene do not share high enough homology or it may result in cross-hybridization, when 
the probe shares homology with several target genes. Therefore, it may be highly 
possible that the two Calothrix strains contain an uptake hydrogenase but that the 
hupSL genes of the two strains are substantially different from those of the other eight 
strains. Although some N2-fixing unicellular Synechococcus strains lack hup genes 
(Ludwig et al. 2006), the absence of those genes in our N2-fixing, filamentous 
Calothrix strains needs further confirmation through direct assay of uptake 
hydrogenase activity, or by sequencing the genome before making the conclusion. The 
bidirectional hydrogenase catalyzes both uptake and evolution of H2. Interestingly, the 
eight strains containing the hupSL genes also contain the hoxY genes. 
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5.1.3.  Growth conditions affect H2 production 

It is well known that modification of the growth conditions may substantially 
enhance the photobiological production of H2. For example, in Chlamydomonos 
reinhardtii, sulphur (S) deprivation became the most successful method and the one of 
choice for H2 production (Melis et al. 2000). Two good H2 producers, Calothrix 336/3 
and Calothrix XPORK 5E, were used to optimize the culture conditions for improved 
H2 production. The two Calothrix strains require higher light intensity (250 µmol 
photons m-2 s-1) than the reference strains, such as ΔhupL mutants of Anabaena PCC 
7120 and N. punctiforme PCC 73102, for maximal H2 production. The decrease in cell 
density gradually improved the H2 production rate in the H2 assay, which may have 
been related to the light requirement of these planktonic strains in the Baltic Sea. The 
combination of larger surface area for light capture and lower cell density had a 
dramatic effect on the H2 production rate of Calothrix 336/3 and the ΔhupL mutant of 
Anabaena PCC 7120. This set-up resulted in an improved rate of H2 production in 
Calothrix 336/3 by up to 9 times. The optimal pH for our Finnish strains, Calothrix 
336/3 and XPORK 5E, was pH 7.5 whereas the optimal pH for the ΔhupL/ΔhoxH 
mutant of Anabaena PCC 7120 was 8.2. The optimal temperature for H2 production 
varies between different cyanobacterial species (Dutta et al. 2005). Maximum H2 
production in A. variabilis SPU 003 (Shah et al. 2001) and Nostoc muscorum SPU 004 
(Shah et al. 2003) has been achieved at 30ºC and 40ºC, respectively. In our studies, the 
H2 production rate of Calothrix 336/3 increased two-fold on shifting from 23ºC to 
30ºC. Above all, the Calothrix 336/3 strain had better H2 production in the Z8x growth 
medium than in BG-110 medium, although the growth rates were similar in both media. 
On the other hand, Calothrix XPORK 5E showed similar growth rates and H2 
production rates in both BG-110 and Z8x. It has also been reported that A. variabilis 
ATCC 29413 has higher H2 production in Allen-Arnon medium than in BG-11 and 
BG-110 media (Berberoğlu et al. 2008). 

5.2.  A novel bioactive compound, M22, from Nostoc XPORK 14A (Paper III) 

Cyanobacteria produce many bioactive compounds that target photosynthesis in 
both eukaryotic algae and cyanobacteria. These compounds have mostly been reported 
to be algicides, as they kill other algae or cyanobacteria competing in the same habitat 
where the bioactive producer lives (Mason et al. 1982; Flores and Wolk 1986).  

5.2.1.  M22 in Nostoc XPORK 14A attacks the bioenergetic pathways of 
Synechocystis 

The XPORK 14A extract affected the growth and pigment content of Synechocystis 
in the presence of light, thus revealing a preliminary clue about its significant effect on 
the photosynthesis. This was supported by the reduced steady-state oxygen evolution 
activity of PSII and the modified acceptor and donor sides of the PSII complex. In 
addition, XPORK 14A extract increased the proportion of PSII centres with an empty 
QB pocket, most likely due to over-reduction of the PQ pool. Also, there was an 
increase in the fraction of PSII centres where re-oxidation of QA

- occurs through back 
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reactions due to the impaired forward electron transfer from QA
-. Additionally, the 

appearance of a new fast phase of FF-relaxation kinetics in the presence of DCMU 
suggests the accumulation of PSII centres with modifications on the donor side of the 
PSII complex. A similar fast phase is characteristic of Synechocystis cells exposed to 
UV-B light, impairing the electron transfer step from TyrZ to P680+ (Vass and Aro 
2008). Furthermore, exposure of the cells to the XPORK 14A extract markedly 
reduced the cyclic electron flow around PSI, indicating the malfunctioning of PSI. 
These effects on PSII and PSI were evident from the increased PSI/PSII ratio, 
supported by upregulation of PsaB and downregulation of D1 at the protein level. 
Interestingly, dark respiration that shares components of the photosynthetic machinery 
(Peschek et al. 2004), was also significantly affected in the light treatment. This is in 
line with the downregulation of the cytf subunit of the cyt b6f complex at the protein 
level. 

5.2.2.  M22 produces ROS in the light and is subject to degradation 

The next task was to identify the compound responsible for the harmful effects of 
Nostoc XPORK 14A on Synechocystis culture. Nostoc XPORK 14A synthesized a 
specific compound during the late growth phase. This compound was purified from 
Nostoc XPORK 14A extract and named M22. M22 was identified as an active 
compound that modifies the bioenergetic pathways of Synechocystis. This was evident 
from reduction in the growth and pigment content of Synechocystis cells by M22 on 
treatment with light for two days, similar to that seen from XPORK 14A extract. 
Purified M22 absorbs light in the blue region, which suggested that it might behave as 
photo-induced ROS generator. A similar kind of photosensitizing compound, 
cercosporin, a fungal toxin, also kills plant cells rapidly in the light (Daub and 
Hangarter 1983). Indeed, M22 was found to generate ROS, and the production of ROS 
was linearly dependent on the light intensity. Also, the linearity was disturbed above a 
certain light intensity, suggesting photo-induced degradation. Degradation of M22 was 
evidenced by a gradual decrease in the amount of M22 during the first four days of 
incubation under standard growth light, and no M22 could be detected from four days 
onwards. During the long-term incubation, M22 inhibited the growth of Synechocystis 
for four days, and surprisingly, the cells started to grow like the control cells after four 
days. This behaviour contrasts with that of well-known algicidal compounds such as 
cyanobacterin (Mason et al. 1982; Gromov et al. 1991) and fischerellin (Gross et al. 
1991; Srivastava et al. 1998), which completely kill the cyanobacteria or algae being 
tested. Besides the photo-generation of ROS, M22 can also undergo light-dependent 
destruction in its oxidative state. Degradation of M22 is a probable reason for the 
initiation of growth after four days in growth medium. In line with this, the photo-
degradation of nodularin under visible and UV-light has also been reported (Twist and 
Codd 1997). Similarly, if M22 undergoes photo-degradation, one would expect normal 
growth of cells in the medium containing M22, pre-illuminated for four days without 
Synechocystis cells. However, the growth of the cells inoculated on the fourth day was 
still arrested, which could be due to a residual amount of M22 in the medium on the 
fourth day of the pre-light treatment. The reason for the absence of M22 in the medium 
including Synechocystis cells from the fourth day may have been due to degradation, 
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either by enzymatic means by Synechocystis or by physical means including prolonged 
exposure to unfavourable pH, light, or temperature. Another possible explanation for 
the faster destruction of M22 in the presence of Synechocystis cells might be the 
evolution of O2 during photosynthesis, which might result in an oxidized state of M22 
and therefore enhanced degradation. 

5.2.3. M22 has a dual-action mechanism 

M22 might induce oxidative stress via photo-generation of ROS, which was 
supported by the accumulation of oxidatively modified proteins in the presence of 
light. Surprisingly, the XPORK 14A extract caused upregulation of oxidative 
modification of proteins even in darkness. In addition, the treatment with XPORK 14A 
extract in darkness revealed significant effects on net photosynthetic rate, and the 
oxygen evolution capacity of PSII was similar to that under light treatment even 
though the cells do not grow in the dark. In contrast to light treatment, the dark 
treatment revealed significant effects that indicated that M22 has a dual-action 
mechanism. Dark-treated cells (1) lacked the prominent very fast phase in the FF-
relaxation curves, which is specific to light-induced damage (Vass and Aro 2008), (2) 
showed no Chl destruction, (3) upregulated cellular respiration, which was also 
evidenced by increased amount of the cytf protein, and (4) showed no difference in the 
oxido-reduction of P700 in the control cells and the cells treated with XPORK 14A 
extract. Thus, M22 apparently affects the photosynthetic and respiratory machineries in 
the light through photo-induced generation of ROS and in darkness by a still unknown 
mechanism. 

5.3.  Harmful nodularin-producing N. spumigena strain AV1 disturbs the 
growth and metabolism of plants (Papers IV & V) 

5.3.1.  Nodularin accumulates and affects the growth of spinach  

Long-term exposure of spinach plants to nodularin-containing extract resulted in the 
uptake of nodularin in the roots and leaves of the plants, which is likely to be the 
reason for severe chlorosis in the leaves and reduction in the growth of the plants 
(Papers IV & V). High concentrations of nodularin, beyond ecologically relevant 
levels, were used to impose severe effects on metabolism in order to reveal the targets 
of nodularin. Nevertheless, it is highly possible that plants near the shore are not 
exposed to uniform concentrations of nodularin during the formation of thick blooms. 
In addition to its harmful effects on growth of the plants as such, accumulation of 
cyanotoxins in plants might lead to potential health risks for animals and humans 
consuming the contaminated plants. Interestingly, the nodularin that accumulated in the 
roots and leaves was stable and did not undergo degradation, as seen from analyzing 
the quantity of nodularin by HPLC. In contrast, the Baltic Sea trout accumulated 
nodularin-like compounds as degradative products in muscle, albeit in lower quantities, 
when exposed to N. spumigena AV1 (Kankaanpää et al. 2002), same strain as 
employed in our study. In our work, bleaching of leaves was observed in the older 
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leaves and the older leaves accumulated more nodularin than the young leaves (Papers 
IV & V). Similar leaf chlorosis has been detected in different variants of spinach plants 
treated with MC, which possess similar toxicity as nodularin (Pflugmacher et al. 
2007a). 

The hepatotoxin nodularin is produced by N. spumigena, a common harmful 
cyanobacterial species found in the Baltic Sea during the summer (Sivonen et al. 
1989). Nodularin is known to accumulate in shell fish, mussels, prawns, flounder, etc. 
to a level high enough to cause hepatotoxicity in animals consuming them (Falconer et 
al. 1992; Van Buynder et al. 2001; Mazur-Marzec et al. 2007). Indeed Van Buynder et 
al. (2001) reported that nodularin was taken up by mussels and prawn at toxicity levels 
and that boiling of these seafoods redistributed the toxin between viscera and flesh. 
Therefore, they recommended restricting the use of seafoods harvested from the Sea 
contaminated with Nodularia blooms. Although there are enough studies 
demonstrating the effect of nodularin on sea animals, there has been a complete lack of 
studies concerning the toxicity, physiological and ecological consequences of 
nodularin on any kinds of plants, particularly terrestrial plants growing on the shores of 
the Baltic Sea (Fig. 4). It is also possible that agricultural crops are exposed to 
cyanotoxins if irrigated with surface waters containing bloom material. 

 

Fig. 4. Blue-green algal bloom in the Baltic Sea (courtesy: www.yle.fi, published on 07.02.2009)  

5.3.2. The photosynthetic machinery is not the primary target of nodularin 

Severe chlorosis of older leaves of nodularin-exposed plants was evident from less 
Chl and carotenoids accumulating in the yellow parts of the leaves. However, the 
photosynthetic performance of nodularin-exposed plants was unaffected by the 
presence of nodularin (Paper IV). No differences were detected in the rate of PSII 
oxygen evolution in old and young leaves, and the levels of photosynthetic proteins in 
the thylakoid membranes of plants exposed to nodularin-containing extract remained 
unchanged. These results were supported by the intact chloroplast ultrastructure 
visualized by the electron microscopy (Paper IV). Therefore, it is possible to assume 
that although the amount of functional photosystems in the chloroplasts of yellow 
leaves is very low, the function of the remaining photosystems has not been disturbed 
by nodularin. The remarkable feature of the photosynthetic apparatus is its ability to 
adjust rapidly to changes in environmental and metabolic conditions (Rochaix 2011). 
Many studies reported that MC inhibits the photosynthetic activity of higher plants 
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(Babica et al. 2006), whereas long-term treatment of Brassica oleracea and Sinapis 
alba with MC did not affect the PSII capacity (Järvenpää et al. 2007). Moreover, 
Suikkanen and co-workers reported that nodularin has no role in allelopathy, and it has 
not been reported as an allelochemical (Suikkanen et al. 2006). An allelochemical is a 
compound that inhibits or benefits the growth of another organism in the same or a 
neighbouring habitat (Muller 1969). Intriguingly, the only photosynthetic parameter 
found to be affected by the presence of nodularin was the rate of P700 re-reduction, 
which reflects the status of cyclic electron transfer around PSI (Paper IV). The cyclic 
electron transfer was activated, which usually happens under stress conditions, for 
example, under low ambient CO2 concentration (Rumeau et al. 2007) or drought 
(Golding et al. 2004). 

5.3.3. Nodularin upregulates the activity of mitochondrial enzyme complexes 

The mitochondrial electron transport chain and ATP synthases are very sensitive to 
inhibition and modification of the components by various stress conditions (Noctor et 
al. 2007). It has also been reported by several authors that mitochondria may be 
vulnerable targets of various cyanotoxins, e.g. MC-LR induced apoptosis, 
ultrastructural changes through the loss of MMP, formation of ROS, and cytochrome c 
release in primary cultured rat hepatocytes (Ding et al. 1998, 2000). However, very 
few studies have been done with plant mitochondria. It has been shown that MC-RR 
induces apoptosis in a dose-dependent manner by opening the mitochondrial 
permeability transition pores in tobacco BY-2 cell cultures (Huang et al. 2008, 2009). 
My study involving mitochondrial metabolism initiated when a high content of COXII, 
a marker for respiratory protein complexes, and increased oxygen consumption rate 
had been evidenced (Paper IV). Later on, I found that nodularin increased the specific 
activity of complex I and citrate synthase (Paper V). The increased rate of 
mitochondrial electron transport has already been reported in Arabidopsis thaliana 
exposed to oxidative stress (Tiwari et al. 2002) and Chlamydomonas reinhardtii cw92 
exposed to anthracene (Aksmann and Tukaj 2008). Interestingly, the amounts of 39-
kDa and ND4 subunits of complex I, COXII subunit of complex IV, and ATP synthase 
were also upregulated at the protein level in the plants exposed to nodularin-containing 
extract. It is important to note that the level of porin, the voltage-dependent anion 
channel on the outer mitochondrial membrane (Clausen et al. 2004), was unaffected by 
the exposure of plants to nodularin-containing extract in spite of the activated 
respiration rate. This clearly shows that the mitochondrial mass (Noguchi et al. 2005) 
was unaltered by the exposure to nodularin. 

5.3.4.  Nodularin induces oxidative stress and disturbs the balance of ROS 
production and scavenging  

Nodularin-exposed plants suffered from oxidative stress, which was clearly 
revealed by the reduction in pigment content and carbonylation of oxidized proteins 
(Paper IV). Induction of oxidative stress is a natural phenomenon during cyanotoxin 
exposure, and nodularin has already been implicated in induction of oxidative stress in 
various organisms (Davies et al. 2005; Kankaanpää et al. 2007; Persson et al. 2009). 
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Nodularin exposure of the brown alga Fucus vesiculosus increased the lipid 
peroxidation activity and many ROS-scavenging enzymes (Pflugmacher et al. 2007b). 
In our case, nodularin-containing extract affected the chloroplast and mitochondria 
differently, as evidenced by the accumulation of oxidatively modified proteins in 
chloroplasts only. Moreover, the amount of α-tocopherol, an antioxidant molecule, was 
upregulated in plants treated with nodularin-containing extract (Paper IV). In line with 
our results, it has been shown that even a low concentration of cyanotoxins in the water 
has a strong influence on tocopherols in Medicago sativa seedlings (Peuthert and 
Pflugmacher 2010). However, the amounts of ROS-scavenging enzymes such as 
PRXQ, SOD, and cAPX were unaltered, whereas the contents of tAPX and sAPX were 
markedly reduced in chloroplasts (Paper IV). On the other hand, nodularin-containing 
extract upregulated the expression of stress-induced AOX and mAPX, indicating the 
induction of ROS scavenging enzymes in the mitochondria, which apparently protect 
the mitochondrial proteins from oxidative damage (Paper V). Moreover, enhanced 
expression of AOX, which controls the levels of ROS in the mitochondria (Moore et al. 
2002) may protect mitochondria from the deleterious effects of nodularin. On the 
whole, nodularin exposure disturbs the balance of ROS formation and scavenging in 
chloroplasts and mitochondria, and consequently the network needed for maintenance 
of the redox balance is induced, which would help the organelles to function in a 
normal state. 
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6.  CONCLUDING REMARKS 

 UHCC strains possess tremendous potential to produce biohydrogen as a future 
alternative energy source. The H2 production rate of UHCC strains was higher 
than that of the highest H2 producers reported so far. The ten best H2 producers 
were selected and all the strains tested were found to contain conventional 
nitrogenase enzyme. Moreover, eight strains contained uptake and bidirectional 
hydrogenase enzymes and two strains probably did not contain both the uptake 
and bidirectional hydrogenases. A detailed knowledge of the genomic 
background will be needed for genetic modification of the potential strains 
through a systems biology approach.  

 A novel bioactive compound was identified from Nostoc XPORK 14A, and 
named M22. M22 affected growth and harmed the bioenergetic pathways, the 
photosynthetic and respiratory electron transport chains in the model 
cyanobacterium, Synechocystis PCC 6803. M22 possess a dual-action 
mechanism on bioenergetic pathways: light-induced production of ROS and a 
distinct, as yet unknown mechanism in the darkness.  

 Exposure of the terrestrial model plant, Spinacia oleracea (spinach) to nodularin 
resulted in nodularin uptake to the tissues, growth retardation, chlorosis, and 
upregulation of respiratory complexes. Also, nodularin-exposed plants suffered 
from oxidative stress. Plants growing on the shores of the Baltic Sea that are 
contaminated with algal blooms may be subjected to oxidative stress and 
metabolic fluctuations. More extensive analysis, including proteomic and 
transcriptomic approaches, will be required to characterize the toxin import, the 
onset of the metabolic changes, and the mode of nodularin action in terrestrial 
plants. 

 

Concluding Remarks 



Future Perspectives 

45 

 

FUTURE PERSPECTIVES 

Today, when the worldʼs energy demands are rising, one of the important goals is to 
produce clean and sustainable energy. Knowing that the cyanobacteria make use of 
solar energy, water, and simple nutrients for their growth, an exploration of 
morphologically and physiologically diverse cyanobacterial forms is required. 
Although the cyanobacterial H2 production strategies have been studied extensively 
over the last three decades, screening for H2 producers with flexible metabolism from 
culture collections and natural water bodies is still incomplete. Our laboratory is keen 
on this aspect of screening cyanobacterial forms from the UHCC to identify novel 
strains with better H2-producing capacity than the standard strains reported so far. 
Moreover, a deeper knowledge of the genomic machinery of the best H2 producers will 
be gained by sequencing of whole-genomes. This would provide an opportunity to 
either upgrade the H2 production capacity of WT strains or to generate mutants on 
enzymes that are involved in H2 metabolism. The generation of genetically modified 
strains, e.g. strains with modified hydrogenases showing O2 insensitivity or with active 
hydrogenases or nitrogenases from other organisms, would pave the way either to 
combating the sensitivity of cyanobacterial H2 metabolism to O2 or to increasing the 
turnover of H2 production through nitrogenase-based systems. 

Although many compounds directly affecting the bioenergetics of other 
cyanobacteria have been discovered during the past 20-30 years, more recent activity 
in identification and characterization of such compounds has been very low. We have 
identified a novel compound, M22, from Nostoc XPORK 14A strain that affects 
bioenergetic pathways, both the photosynthetic and respiratory electron transport 
chains of Synechocystis PCC 6803. This kind of study could possibly also identify 
novel compounds with herbicidal activity, which might be helpful in reducing the 
formation of algal blooms. At the same time, the formation of harmful algal blooms in 
the Baltic Sea every summer is a well-known phenomenon. However, the condition of 
terrestrial plants after exposure to growing algal blooms by accidental contamination 
through irrigation is not well studied. It is also important to mention that the impact of 
cyanobacterial blooms on the plants growing on the shore has not been investigated at 
all. In my PhD study, I have found out that nodularin from N. spumigena, a prominent 
producer of toxin in the Baltic Sea, retards the growth and also affects the bioenergetic 
pathways of a terrestrial plant, spinach (Spinacia oleracea). Detailed biochemical, 
proteomic, and transcriptomic approaches could be taken to investigate the target 
pathways of the toxic bloom, the mode of import of toxins, and the onset of metabolic 
fluctuations. This research could also lead to prevention of the entry of toxins into the 
food web, thereby protecting the mankind from the consequences of hepatotoxicity. 
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SUPPLEMENT 

Supplementary Figure 1. Southern hybridization with nifD1, nifH1, and nifK1. The genomic 
DNA of cyanobacterial strains (including positive and negative controls) was digested with 
HindIII or EcoRI, electrophoresed in agarose gels and blotted onto membranes. 1-Calothrix 
336/3, 2-Calothrix XPORK 5E, 3-Nostoc Becid 19, 4-Calothrix Becid 33, 5-Nostoc XHIID A6, 
6-Nodularia AV33, 7-Calothrix XSPORK 11A, 8-Nodularia TRO31, 9-Synechocystis PCC 
6803 (- control), 10-Anabaena PCC 7120 (+ control), 11-A. variabilis ATCC 29413 (+ control). 

Supplementary Figure 2. Southern hybridization with nifD2 and vnfDG. The genomic DNA of 
cyanobacterial strains (including positive and negative controls) was digested with HindIII or 
EcoRI, electrophoresed in agarose gels and blotted onto membranes. 1-Calothrix 336/3, 2-
Calothrix XPORK 5E, 3-Nostoc Becid 19, 4-Calothrix Becid 33, 5-Nostoc XHIID A6, 6-
Nodularia AV33, 7-Calothrix XSPORK 11A, 8-Nodularia TRO31, 9-Synechocystis PCC 6803 
(- control), 10-Anabaena PCC 7120 (- control), 11-A. variabilis ATCC 29413 (+ control).  
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Supplementary Figure 3. Southern hybridization with hupL and hupS. The genomic DNA 
from top ten cyanobacterial strains (including positive and negative strains) was digested with 
HindIII or EcoRI, electrophoresed in agarose gels and blotted onto membranes. 1-A. variabilis 
ATCC 29413 (+ control), 2-Synechocystis PCC 6803 (- control), 3-Calothrix 336/3, 4-Calothrix 
XPORK 5E, 5-Calothrix Becid 33, 6-Nostoc Becid 19, 7-Anabaena XSPORK 7B, 8-Calothrix 
XSPORK 36C, 9-Calothrix XSPORK 11A, 10-Nostoc XHIID A6, 11-Nodularia AV33, 12-
Nodularia TRO31.  

 

Supplementary Figure 4. Southern hybridization with hoxY. The genomic DNA from top ten 
cyanobacterial strains (including positive and negative strains) was digested with HindIII or 
EcoRI, electrophoresed in agarose gels and blotted onto membranes.1-A. variabilis ATCC 
29413 (+ control), 2- N. punctiforme PCC 73102 (- control), 3-Calothrix 336/3, 4-Calothrix 
XPORK 5E, 5-Calothrix Becid 33, 6-Nostoc Becid 19, 7-Anabaena XSPORK 7B, 8-Calothrix 
XSPORK 36C, 9-Calothrix XSPORK 11A, 10-Nostoc XHIID A6, 11-Nodularia AV33, 12-
Nodularia TRO31.  
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