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Piezoelectric Actuators for 
Distributed Vibration Excitation of 
Thin Plates 
The behavior of two dimensional patches of piezoelectric material bonded to the 
surface of elastic distributed structures and used as vibration actuators is analytically 
investigated. A static analysis is used to estimate the loads induced by the piezoelectric 
actuator to the supporting elastic structure. The theory is then applied to develop 
an approximate dynamic model for the vibration response of a simply supported 
elastic rectangular plate excited by a piezoelectric patch of variable rectangular 
geometry. The results demonstrate that modes can be selectively excited and that 
the geometry of the actuator shape markedly affects the distribution of the response 
among modes. It thus appears possible to tailor the shape of the actuator to either 
excite or suppress particular modes leading to improved control behavior. 

Introduction 
Recent work on novel concepts for both sensing and driving 

transducers has created strong interest in the active control 
community. Some of the most significant work has concen­
trated around the development and implementation of actua­
tors and sensors made of piezoelectric material. The advantage 
of distributed control as contrasted to point control has been 
demonstrated by Meirovitch and Norris [ 1 ]. Thus, piezoelectric 
actuators seem to offer a good approach in order to obtain 
such a control strategy when implemented in patch type con­
figurations. 

The feasibility and range of applicability of piezoelectric 
actuators in one-dimensional vibration excitation and control 
problems have been demonstrated by a number of researchers 
[2-4]. In all of these works piezoelements (mostly ceramics) 
were bonded to the surface of the controlled structure. A 
rigorous study of the stress-strain-voltage behavior of piezo­
electric elements bonded to and imbedded in one dimensional 
beams was presented by Crawley and de Luis [5]. They analyzed 
the stresses, strains, and loads generated on a cantilevered beam 
when piezoelectric segments were bonded symmetrically on 
both sides. Their work demonstrated a number of important 
results such as increased effectiveness of the actuators for 
stiffer and thinner bonding layers, as well as for stiffer piezo­
electric material. Another important observation of Crawley 
and de Luis is that the effective moments resulting from the 
piezoactuators can be seen as concentrated on the two ends of 
the actuator when the bonding layer is assumed infinitely thin. 

Bailey and Hubbard [6] recently developed and implemented 
three different control algorithms on a beam piezoelectric sys­
tem to control transient cantilevered beam vibration. Part of 
this work involved developing equations for the response of a 
cantilevered beam with a layer of polyvinylidene fluoride (P VF2) 
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bonded to one complete side of the beam. The algorithms were 
experimentally tested and simultaneous control of the first 
three modes was demonstrated. 

Other workers who have performed significant research on 
the use of the piezoelectric actuators are Fanson and Chen [7] 
and Baz and Poh [8]. These works, on control of motion in 
beams, again have demonstrated the potential of piezoelectrics 
as distributed vibration actuators by simultaneously control­
ling a number of modes with reduced spillover. 

Although these previous works have clearly shown the tre­
mendous potential of piezoelectric actuators, the investigations 
have been limited to actuation of one dimensional systems 
such as beams. Of course, many systems are composed of 
distributed two dimensional elements such as panels and there 
is need to understand whether piezoelectric actuators can suc­
cessfully control motion in such systems. The present paper 
thus deals with an approximate analytical investigation of the 
actuation of two dimensional thin elastic structures by piezo­
electric patches symmetrically bonded to the opposite plate 
surfaces. 

The current work is thus an extension of the one dimensional 
theory derived by Crawley and de Luis [5]. Piezoelectric ele­
ments which are finite in two dimensions are considered. The 
potential of two dimensional patches is investigated through 
static and dynamic analyses. The static analysis estimates the 
loads induced by the piezoelectric actuator to the supporting 
thin elastic structure. This is followed by an approximate dy­
namic analysis model for an undamped thin rectangular plate 
with simply supported boundary conditions excited by a rec­
tangular piezoelectric patch of variable dimensions. Results 
are presented for the vibration displacement distribution and 
modal amplitudes of the panel response for various excitation 
frequencies and actuator dimensions. The effectiveness of the 
patch actuator in generating a single mode with reduced ex­
citation of other unwanted modes (spillover) is briefly inves­
tigated. 
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Piezoelectric 

Piezoelectric 

Fig. 1 Stress distribution, x-z and y-z planes, due to piezoelectric ac­
tivation 

Actuator Analysis 
Piezoelectric elements or "patches," when unconstrained 

and activated by applying a voltage along their polarization 
direction develop compressive (or extensional depending upon 
the input voltage sign) strains. In an unconstrained two-di­
mensional actuator, which is polarized in the z-direction, equal 
strains will be induced in both the x and /-directions when 
activated. The magnitude of the induced strains can be ex­
pressed as a function of the piezoelectric-strain constant, diu 

the applied voltage, V, and the actuator thickness, t: 

\^x)pe \£y)pe Epe . " (1) 

The subscripts pe and p denote quantities associated with the 
piezoelectric elements and the plate, respectively. 

In the following model formulation and simulation, the pi­
ezoelectric elements are assumed to be perfectly bonded to the 
surface of an infinite plate. In order to maintain symmetry of 
the geometric structure and increase the authority of the ac­
tuator patches, a piezoelectric patch is bonded on both the top 
and bottom surface of the plate. The two actuators are then 
activated by applying a voltage of opposite signs to the op­
posing piezoelectric patches. The uniform surface tractions 
caused at the actuator-plate interfaces, act in opposite direc­
tions and being off the neutral axis they cause uniform bending-
moments as a reaction to the actuator. These bending moments 
are uniform within the actuator boundaries, which for the time 
being is assumed to be of infinite extent. If so, the symmetry 
of the elements on the top and bottom surfaces result in no 
net extension or contraction of the plate midplane. The plate 
then deforms in pure bending. 

The assumption of perfect bonding between the actuator 

patch and the plate implies that strain continuity is specified 
at the interface. With the interface strains of the plate and the 
piezoelectric element being equal and the elastic moduli of the 
materials being different the interface stresses will contain a 
discontinuity. This discontinuity will also be created by the 
additional "external" stress caused by activating the piezo­
electric element. The general form of the stress distribution is 
shown in Fig. 1 [5, 6], Because the actuators strain normal to 
their polarization direction, the induced interface stresses and 
strains are equal in the x- and /-directions and the resulting 
stress distributions in the x-z y-z planes are identical at all 
points constrained by the piezoelectric elements. Therefore, 
Fig. 1 represents the x-z and/-z stress distribution at any point 
within the piezoelectric-plate structure. 

Before proceeding further in developing the piezoelectric 
actuator induced stress relations, it is appropriate to consider 
the nature of the plate deformation resulting from activation 
of surface bonded distributed actuators. From Fig. 1 it is clearly 
shown that, at any point within the actuator patch boundary, 
the stress distribution within the plate must be symmetric about 
the neutral axis (as no extension is possible from equilibrium 
considerations) and bending of the plate yields a linear normal 
stress distribution. The actuator stresses can be integrated to 
obtain the equivalent bending moment. Once the interface 
stress of the plate is found (or the equivalent bending stress 
at the plate surface) the resulting plate bending response can 
be found. 

For instance, the normal stress distribution, as shown in Fig. 
1, within the plate can be reduced to couples per unit length 
by 

I _ ha^z dy dz = tn^dy 

\_h(jyZ dx dz = rriydx 

(2) 

The strain distribution through-the-thickness is linear and can 
be determined from 

— ; ty= — 
z_ (3) 

where l /rxand \/ry denote the curvatures of the neutral surface 
parallel to the x-z and y-z planes at any point on the plate. 
When equations (3) are substituted into Hooke's Law and 
equations (2) used to replace the normal stresses, ax and ay, 
with the couples, mx and my, the following expressions are 
obtained [9] 

N o m e n c l a t u r e 

A = 
Q = 

du = 

h(. 

D = 
E = 
h = 

.) = 
K = 

L 
m 

m" 
M 
P 

area of plate 
piezoelectric strain-plate 
moment coupling term 
piezoelectric strain con­
stant 
flexural rigidity 
Young's modulus 
half-thickness of plate 
step function 
geometric nondimensional 
parameter 
plate dimension 
interface moments per 
unit length 
mass per unit plate area 
internal plate moments 
constitutive nondimen­
sional parameter 

x,y,z 

x\->x2 

y\,yi 

Greek 

7 

r = radius of curvature 
t = piezoelectric element 

thickness 
V = voltage 
w = plate transverse displace­

ment 
W = plate amplitude of dis­

placement 
rectangular coordinates 
(centered on the plate 
neutral axis) 

actuator boundaries 

« ( • ) 
e 
v 
a 

Pmn 

CO 

Subscripts 

= plate wavenumber 

P 
pe 

m,n 
x 
y 

delta function 
strain 
Poisson's ratio 
stress 
plate eigenfunction 
input frequency 
resonance frequency 

interface between actuator 
and plate 
plate 
piezoelectric element 
modal indices 
x-direction 
/-direction 
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m. 

(4) 

Eh? 
where D is the flexural rigidity of the plate, — " ' ,,. For any 

3(1 - v2) 
rectangular piezoelectric element, the unconstrained strains in 
the x- and ̂ -directions are equal which will result in the couples 
mx and my to be equal and uniformly distributed over the entire 
plate within the actuator boundaries. It can now be easily seen 
that in order to satisfy equations (4) rx must equal ry at all 
points within the piezoelectric patch which is the definition of 
pure plate bending. In fact, this conclusion can be confirmed 
for a plate of any shape in which the bending moments are 
uniformly distributed along the entire boundary (or uniformly 
distributed throughout the plate) and no twistive moments 
exist, resulting in a plate bent to a spherical surface of curvature 
given by 

1 1 

ry D{\ + v) 
(5) 

Based on this result, the objective will be to determine the 
magnitude of the edge moments to be applied to the plate in 
order to replace the actuator patch and create pure bending 
of the plate such that the bending stress at the surface of the 
plate is equal to the plate's interface stress when the patch is 
activated. 

This formulation begins with determining the plate and pi­
ezoelectric patch interface stress-strain relations derived di­
rectly from Hooke's Law 

the understanding that in all cases there is a companion y-
direction equation. 

Once the interface stress of the plate is known from equation 
(6), the uniformly distributed moments can be determined to 
produce the assumed linear stress distribution. However, equa­
tions (6) are functions of the unconstrained piezoelectric strain, 
epe, and the actuator interface strains. Therefore, the interface 
strains and the plate bending stresses must be derived in terms 
of the constituent material properties and the unconstrained 
actuator strains. The relationship between (ax)p and (ax)pe is 
determined from moment equilibrium about the neutral axis 
of the plate. 

!

h fh + t 

0(ax)pZdz+ \h (ox)pezdz = 0 (10) 
Equations (8) and (9) are substituted into equation (10) to 
evaluate the integral, resulting in 

_ 3th(2h + f) 

or 

( 4 = % ) P 

(i i) 

(12) 

where the nondimensional geometric parameter, K, is defined 
as 

K= 
3th(2h + t) 

litf + ^ + lhi1 (13) 

In a similar fashion, the interface stress relations are developed 
in the ^-direction. Equation (12) may now be substituted into 
equations (6) and (7) in order to eliminate the interface plate 
strains from the expressions 

(l-P)eXi+(vp-Pupe)e pe/^yj - {\+Vpe)Ptp (14) 

where 

and 

(<Ty)p = (ey.+ vpex) (6) 

The actuator stresses at the interface is the result of super­
imposing the external plate strains at the interface and the 
unconstrained piezoelectric element strains 

K V = T Z ^ K ' + V V 

!-»& 
[<*,•+ "pety,-(l + "pe)€pe\ 

P=_Eml^AK 
Ep 1-"% 

(15) 

The interface strain relation can be determined by simply rear­
ranging equation (14) 

- ( 1 + i O P 

\ + vp~(\ + vpe)P 
(16) 

Now that the interface strains have been reduced to a func­
tion of the unconstrained piezoelectric element strains and the 
constitutent material properties, the uniformly distributed mo­
ments which produce the interface stress, (ox)p, can be deter­
mined. Substituting the bending curvature-stress relationship 
[9] into equation (4) results in the expression 

K/V = i J*i [̂ , + Vex,-(1 + vpe)ep (7) mx = my= ~h\ax)p (17) 

The bending stresses in the plate are linear in z and can be 
written in terms of their values at the interface as, 

(Px)p--
K ) P 

z; {ay)„ h 
(8) 

Similarly, the stress distribution in the piezoelectric element is 
assumed to have the same slope as in the beam and is 

(.Gx)pe=(Ox)pe-(<Jx)i i'p 1-
h 

(9) 

while a similar equation in the ̂ -direction can be written. Since 
we have established that pure bending is an appropriate as­
sumption, only the x-direction equations will be presented with 

When the interface stress-piezoelectric strain coupling rela­
tions, equations (6) and (16), are substituted into equation (17) 
the distributed surface moments may be expressed as 

mx = my = C0epe (18) 

where 

Q = - E n ^ -
\-vp l + ^ - ( l + v ) - P 3 

h2 (19) 

The formulation above began with several basic assumptions 
of which the first was that the plate and patch are considered 
infinite. Naturally, the piezoelectric patches are finite thereby 
necessitating a brief discussion on the appropriateness of the 
above formulation. For a finite actuator patch, the normal 
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Piezoelectric 

Fig. 2 Plate and piezoelectric actuator coordinate system 

stress distribution as shown in Fig. 1 does not hold at the free-
edge where equilibrium conditions require the normal stress 
at the" actuator boundary to be zero. However, Liang and 
Rogers [10] showed that the actuator stress field for a distrib­
uted actuator is unaffected by the free-edge up to approxi­
mately four actuator thicknesses from the boundary. Therefore, 
for large actuators with respect to their thickness, the assumed 
stress field described above and shown in Fig. 1 creates a case 
of pure plate bending which is the fundamental working prem­
ise of the formulation. Crawley and de Luis [5] have also shown 
that when a finite piezoelectric strip is "perfectly" bonded to 
a beam, the induced moments effectively act at the element 
boundaries and result in pure bending of a one-dimensional 
structure. It will be shown in the following derivation of the 
excitation of a plate by a finite piezoceramic patch that this 
concept can be extended to two dimensions; the induced mo­
ments can be effectively thought of as acting at the piezocer­
amic element boundaries. These moments will be constant per 
unit length in both the x and y directions. 

Excitation of a Simply Supported Rectangular Plate 

We now turn to the vibration model of a finite plate with 
a bonded rectangular actuator as viewed from the top in Fig. 
2. The plate in the ensuing analysis will be assumed rectangular 
with simply supported boundaries. As required by the previous 
analysis the actuator is taken to consist of two identical pie­
zoceramic elements bonded symmetrically to each side of the 
plate so that their edges are parallel to the plate edges. 

The activated piezoelectric actuator will induce internal mo­
ments across the piezoelectric and since, as previously shown, 
the strains are the same in the two directions, these moments 
are independent of the actuator length. The moments in the 
plate can be written using unit step functions 

mx = my=C0epe[h(x-*,) -h(x -x 2 ) ] [h (y -y{ ) - h ( y - y 2 ) ] 
(20) 

Here, h(-) is the unit step function. 
If the actuator input voltage is oscillating, moments mx and 

my will oscillate at the same frequency as the voltage. It is now 
possible to write the equation of motion for the plate. It is 
assumed at this point that the mass and stiffness loading of 
the plate by the bonded actuator are negligible. Using classical 
thin plate theory, the equation of motion can be written in 
terms of the internal plate bending moments, Mx, My, and 
Mxy, and the actuator induced moments, mx and my, as 

d2(Mx 

dx2 
mx) +2^MM 

dxdy 

d2(My-my) 

dy2 
(21) 

m" being the area mass density of the plate, and w the plate 
transverse displacement [9]. 

The moments, mx and my, can be transferred to the right 
hand side of equation (21), thus representing the external plate 
loads. In addition, the internal moments, Mx, My, and Mxy, 

can be written in terms of the displacement w [9], yielding the 
final equation of motion 

Z)V w + m"w = 
d mx d m„ 

dx2 dy2 (22) 

where D is the plate flexural rigidity. 
The external loads in equation (22) can be calculated by 

differentiating equation (20). 

= C0tpe{b' (x-x^-b' (x-x2)][h(y-yx)-h{y-y2)} 

(23) 

^Coepe[h(x-xi)-h(x-x2)][S' (y-yi)-8' (y-y2)] 

d2mx 

dx2 

and 

b2my 

dy2 

(24) 
When the above expressions are substituted into equation 

(22), the equation of motion becomes 

DV4w + m"w 

= Q e ^ S ' (x - x,) - 5' (x - x2)] [h(y - y,) - h(y - y2)] 

+ C0epe[h(x-xl)-h(x-x2)][5'(y-yl)-8'(y-y2)] (25) 

It is easy to show that a moment, M, acting upon a structure 
can be represented by a dipole force whose magnitude is 
M8'(x-x0), where x0 is the location of the moment. Loads of 
the same nature (here, line moments), appear as the resultant 
plate excitation in equation (25). It can thus be said that the 
uniformly distributed reaction moments in the plate are the 
result of external line moments acting along the boundaries of 
the piezoelectric element. 

The solution of equation (25) can be reached using the modal 
expansion of the response w{x,y). For a simply supported 
rectangular plate the eigenfunctions are, 

<t>m„(x,y) = sin(7mx)sin(7^) (26) 

where ym = mir/Lx and y„ = n-w/Ly. 
The plate response to the piezoelectric actuator may now be 

expanded in terms of the above eigenfunctions, while the har­
monic term has been suppressed for brevity 

W (X<y) = Z ) H Wmn<t>mn (X,y ) (27) 

Here, Wmn are plate response modal amplitudes which can be 
calculated by substituting w(x,y) from equation (27) back into 
the equation of motion 

a2
mn-w

2)Wmn<l>mn(x,y)--
1 d2mv d2mr 

dx2 dy2 (28) 

4C0epe 

'"" mM^L-co2) 

(cosynpct - c 

YmYn 

os7mx2)(cos7,1y1 - cosy„y2) 

Mode orthogonality can now be implemented in equation (28), 
resulting in the expression for the modal amplitudes, Wmn, 

(29) 

It is worthwhile to summarize the important approximations 
used in the preceding analysis. It is assumed that the piezo­
electric element is perfectly bonded to the plate thus the in­
terface strains in the actuator and plate are equal. As discussed 
by Crawley and de Luis [5], significant thickness of adhesive 
can affect this situation. The piezoelectric element is also as­
sumed to not significantly alter the inertial mass or effective 
stiffness of the plate. This assumption of course is dependent 
upon the relative size, weight, and stiffness of the actuator but 
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Fig. 3 Piezoelectric actuator test configuration 

0.0 0.2 0.4 0.6 0.8 1.0 

Axial location, x/L 

Fig. 4 Displacement distribution, configuration I, w = 430 rad/sec 

Table 1 Material properties 

Ep(xl09 N/m2) 

207 

p(kg/m3) 

7870 

-
0.292 

C* (m/sec) 

3096 (shear) 

Table 2 Plate resonant frequencies, wm„(rad/sec) 
1 2 3 4 5 

m\ 

4480.0 

4983.9 

5823.7 

6999.5 

8511.3 

6905.5 

7409.4 

8249.2 

9425.0 

10936.7 

9870.0 

10373.9 

11213.7 

12389.5 

13901.2 

1 437.5 1246.0 2593.5 

2 941.4 1749.9 3097.4 

3 1781.2 2589.7 3937.2 

4 2957.0 3765.5 5113.0 

5 4468.8 5277.3 6624.8 

is likely to be reasonably accurate for small actuators such as 
piezoceramics commercially available with thicknesses of the 
order of 0.2 mm. This will be studied experimentally in the 
near future. 

Results 
Example results are presented for the excitation of a rec­

tangular thin elastic plate excited by a pair of rectangular 
piezoelectric patches (an actuator) of various dimensions. The 
plate was assumed to be steel with material properties given 
in Table 1. The dimensions of the plate were; Lx = 0.38 m, 
£,, = 0.30 m, and half-thickness h = 0.7938 mm. Resonant fre­
quencies for modes (m,«) were calculated from thin plate the­
ory [11] and are given in Table 2. 

For the following results no attempt was made to optimize 
the actuator shape or location to selectively excite modes; this 
is the subject of ongoing research. Rather the work presented 
here is intended to be preliminary in nature in order to dem­
onstrate that it is possible to excite two dimensional modes 
with patch type piezoelectric actuators. 

Three different configurations of actuators were tested and 
their layout is given in Fig. 3. For the first four results, the 
shape of the piezoelectric actuator was held constant as in 
configuration I at xx = 0.32 m, x2 = 0.36 m, y{ = 0.04 m, y2 = 0.26 
m; this is a long and narrow element along the j-direction and 

0.2 0.4 0.6 0.8 

Axial location, x/L 

Fig. 5 Displacement distribution, configuration 1,10 = 930 rad/sec 

Table 3 Plate displacement amplitudes (dB), u = 430 rad/sec) 

1 

2 

3 

4 

5 

0.0 

-28.6 

-33.2 

-37.1 

-45.0 

-652.5 

-650.6 

-651.8 

-654.3 

-661.1 

-63.6 

-59.8 

-59.5 

-60.9 

-66.5 

-668.8 

-664.4 

-663.3 

-664.0 

-668.6 

-72.6 

-67.8 

-66.2 

-66.5 

-70.4 

-666.8 

-661.9 

-660.0 

-660.1 

-663.3 

Table 4 Plate displacement amplitudes (dB), u = 930 rad/sec) 

1 

2 

3 

4 

5 

-42.1 

0.0 

-32.7 

-38.1 

-46.6 

-648.3 

-650.0 

-652.6 

-655.6 

-622.8 

-64.4 

-60.9 

-60.8 

-62.4 

-68.2 

-670.3 

-665.9 

-664.8 

-665.6 

-670.3 

-74.2 

-69.4 

-67.9 

-68.2 

-72.1 

-668.5 

-663.6 

-661.8 

-661.8 

-665.1 

symmetric about the Ly/2 line. The input frequency is varied. 
For the second case of configuration II, the input frequencies 
are kept constant and the location of the actuator varied. In 
the last case of configuration III a small actuator is placed at 
the center of the plate. All the plate vibration profiles were 
calculated along the y = Ly/2 line and are presented normalized 
to the maximum obtained value. 

Excitation Frequency co = 430.00 rad/sec. Figure 4 shows 
the total plate displacement amplitude for input excitation 
frequency of w = 430.00 rad/sec and configuration I. As can 
be seen from Table 2, this frequency is close to the resonant 
frequency of the (1,1) mode and it is apparent from Fig. 4 that 
this mode is being strongly excited with the response plot close 
to that for a (1,1) mode shape. Likewise the normalized modal 
amplitudes presented in Table 3 for this case show that the 
(1,1) is indeed strongly excited being close to 30 dB up on the 
next mode. From the results of Table 3 it also appears that 
spillover of energy is occurring among the next higher order 
modes with nodal lines parallel to the long side of the actuator 
or the y axis. Modes with nodal lines perpendicular to the 
actuator are not excited at all. This is to be expected since the 
line moments are all in phase along the y direction. 

Excitation Frequency oi = 930.00 rad/sec. Figure 5 and Ta­
ble 4 present similar results when the input frequency is 
a) = 930.00 rad/sec or close to the resonant frequency of the 
(2,1) mode. The displacement amplitude distribution in Fig. 5 
shows evidence of the (2,1) mode being dominant with very 
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Fig. & Displacement distribution, configuration I, to = 600 rad/sec 
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Fig. 8 Displacement distribution, configuration II, to = 930 rad/sec 
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Fig. 7 Displacement distribution, configuration I, a = 1700 rad/sec 
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Axial location, x/L 

Fig. 9 Displacement distribution, configuration III, w = 600 rad/sec 

Table 5 Plate displacement amplitudes (dB), u = 600 rad/sec) 
Table 7 Plate displacement amplitudes (dB), to = 930 rad/sec) 

1 

2 

3 

4 

5 

6 

- 2.27 

0.0 

- 6.5 

-10.8 

-14.5 

-18.8 

-625.1 

-623.9 

-625.4 

-628.1 

-631.1 

-634.9 

-37.2 

-33.5 

-33.2 

-34.7 

-37.0 

-40.4 

-642.6 

-638.2 

-637.1 

-637.8 

-639.5 

-642.5 

-46.4 

-41.6 

-40.1 

-40.4 

-41.7 

-44.2 

-640.7 

-635.7 

-633.9 

-633.9 

-634.9 

-637.2 

1 

2 

3 

4 

5 

6. 

0.0 

-345.8 

- 55.4 

-358.5 

- 84.7 

-357.4 

- 32.8 

-348.1 

- 54.3 

-356.1 

- 81.6 

-352.2 

- 39.1 

-352.5 

- 57.2 

-357.9 

- 82.6 

-355.2 

- 45.7 

-358.5 

- 62.4 

-362.3 

- 86.5 

-348.9 

- 54.9 

-367.3 

- 70.8 

-370.3 

- 94.1 

-349.1 

-343.4 

-655.6 

-358.8 

-658.0 

-381.5 

-350.6 

Table 6 Plate displacement amplitudes (dB), w = 1700 rad/sec) 
Table 8 Plate displacement amplitudes (dB), u = 600 rad/sec) 

1 

2 

3 

4 

5 

6. 

-39.7 

-25.0 

0.0 

-21.1 

-26.8 

-31.7 

-639.6 

-613.4 

-634.4 

-639.7 

-643.7 

-647.9 

-46.3 

-44.1 

-45.1 

-47.3 

-49.9 

-53.5 

-654.9 

-650.6 

-649.8 

-650.8 

-652.7 

-655.7 

-59.4 

-54.6 

-53.2 

-53.6 

-54.9 

-57.5 

-653.9 

-648.9 

-647.1 

-647.2 

-648.2 

-650.5 

1 

2 

3 

4 

5 

6 

- 0.8 

-266.4 

0.0 

-310.3 

- 11.9 

-319.4 

-599.1 

-808.6 

-612.1 

-920.03 

-620.7 

-927.7 

- 4.6 

-308.9 

- 9.7 

-316.2 

- 16.1 

-322.5 

-620.5 

-923.8 

-623.7 

-929.4 

-628.6 

-934.6 

-15.2 

-318.2 

- 17.6 

-322.8 

- 21.6 

-327.2 

-617.9 

-920.7 

-619.8 

-924.7 

-623.2 

-928.6 

little contribution from other modes. The modal amplitudes 
of Table 4 predict that in this case the (2,1) mode is the dom­
inant mode. Spillover is mainly confined to the other n = 1 
modes, with the strongest excited mode (3,1) being 33 db below 

the dominant mode. Again, here the n = 2 nodes cannot couple 
to the actuator at all, while there will be some coupling to the 
n = 3 nodes. 

Excitation Frequency to = 600 rad/sec. This excitation fre-
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quency was chosen as it is between the resonances of (1,1) and 
(2,1) and the system is being driven off-resonance or "forced" 
into motion. The displacement distribution in this case, Fig.6, 
shows evidence of multi-modal excitation and this is confirmed 
in the modal amplitudes of Table 5. At this frequency for this 
shape of actuator, weak dominance occurs in the (2,1) and 
(1,1) modes. However, strong spillover occurs in the other 
n = 1 modes. It is also apparent from Fig. 6 that for this case 
there is a strong node being forced close to the x=xx actuator 
boundary. Reasons for this will be discussed later. It is also 
clear that for this location and size of the actuator, modes that 
will be excited are those whose shape has in-phase portions at 
the y=yx and y=y2 actuator boundaries. 

Excitation Frequency u> = 1700 rad/sec. Here the excitation 
frequency is close to the (3,1) mode resonance. Figure 7 and 
Table 6 show a clear dominance of the (3,1) mode with rela­
tively little spillover to lower and higher modes. 

Variation of the Actuator Location. In this case the ac­
tuator was rotated to be long in the x-direction and narrow in 
the.y-direction. Its location was changed to xx = 0.04 m, x2 = 0.34 
m, yx = 0.23 m and y2 = 0.27 m corresponding to configuration 
II. Thus, the actuator is symmetric about the x-Lx/2 line. 
The excitation frequencies were the same as in the previous 
cases. 

Figure 8 is representative of the results for this configuration. 
The excitation frequency is very close to the (2,1) mode res­
onance but the vibration profile shows no trace of that mode 
shape. Instead the (1,1) mode seems to dominate. Table 7 gives 
the relative modal amplitudes. It is seen that it is both the (1,1) 
and the (1,3) modes that dominate and spillover mainly occurs 
into modes with nodal lines parallel to the x axis. 

When the excitation frequency was close to the (1,1) or the 
(2,1) mode resonance it was observed that it was possible to 
excite only the (1,1) mode with this configuration actuator. 
The same was observed when the actuator was driven at fre­
quencies between the first two resonances. 

Spillover is observed mostly to the higher modes (3,1), (1,3), 
(3,3), etc. The location of the actuator in relation to the excited 
mode shapes is such that the actuator boundaries are always 
at in-phase areas of these mode shapes. The inability of this 
actuator to excite the (2,1) mode becomes, therefore, clear 
since the actuator boundaries y=y\ and y=y2 are located at 
out-of-phase regions of this mode shape. As the effective edge 
moments attempt to excite the (2,1) mode, they act against 
each other because of their in-phase action. In the excited 
mode, however, the in-phase actuator boundary moments co­
operate with each other, since they act upon in-phase regions 
of the corresponding mode. Thus in Fig. 8 it is obvious that 
the x = Xi and x=x2 boundary moments excite the (1,3) mode. 

Small Actuator at the Plate Center. A small actuator was 
next considered located at the center of the plate: xx = 0.16 m, 
x2 = 0.22 m, >», = 0.13 m, ^2 = 0.17 m corresponding to config­
uration III. The same four excitation frequencies were ex­
amined. 

It was by now expected that the (1,1) mode would be strongly 
excited when driven near its resonance. The vibration profile 
was similar to that resulting from the other actuator locations 
and will not be presented here. As far as the (2,1) mode ex­
citation is concerned, the actuator is located symmetrically 
across the (2,1) nodal line at Lx/2. The results obtained prove 
that it is impossible to excite that mode when the plate is driven 
near its resonance frequency and most of the response again 
occurs in the (1,1) mode. When the plate is driven off-resonance 
at co = 600 rad/sec with this shape of actuator wide spread 
spillover occurs into the symmetric modes (/w = 1,3,5, . . .; 
« = 1,3,5, . . .) while the asymmetric modes (m = 2,4,6, . . .; 
n = 2,4,6, . . .) are not excited at all. It can be easily seen that 

for all modes excited in this case, the whole actuator is located 
within a single antinodal region; hence it is relatively well 
coupled to all these modes. 

Table 8 gives the relative modal amplitudes for the w = 600 
rad/sec case showing these features and Fig. 9 depicts the 
vibration profile for this excitation. The multimodal charac­
teristic of the response is clearly evident. Notice that the ac­
tuator is effectively trying to force a nodal line at the center 
of the plate, that is close to its boundaries. It is suspected that 
actually the actuator tries to force two nodes close to its x=xx 

and x = x2 boundaries. The proximity of these lines, however, 
result in what is apparently a (2,1) modal displacement pattern 
although that mode is not excited at all. What is seen in Fig. 
9, instead, is the superposition displacement response of the 
many excited modes, which tend to cancel each other near the 
actuator edge. 

Concluding Discussion 
A theory for the excitation of two-dimensional thin elastic 

structures by patch type piezoelectric actuators bonded to the 
structure surface has been developed. This theory has been 
briefly applied to excitation of a simply supported rectangular 
thin plate by a single rectangular actuator consisting of two 
piezoelectric actuators bonded symmetrically to both sides of 
the plate. 

Although the initial study is brief, a number of important 
results are immediately apparent. 

(1) From the results of the analysis it appears possible to 
excite modes in two dimensional structures using patch type 
actuators. 

(2) The input frequency of the excitation markedly affects 
the modal responses. When close to the resonant frequency of 
a mode, that mode is dominantly excited provided the actuator 
is properly located. Off resonance, the modal distribution is 
dependent upon patch shape and location. 

(5) The location of the actuator strongly influences the 
ability of the actuator to excite certain modes as well as the 
spillover. Since all the edges of the actuator act in phase, 
parallel edges may cooperate or cancel each other as far as the 
excitation of a particular mode is concerned. When a mode is 
such that parallel actuator edges are located in regions of the 
plate having 180 deg phase difference, then these actuator edges 
cannot couple well to that mode. If these parallel edges are in 
addition symmetrically positioned about the nodal line that 
separates those out-of-phase regions, coupling becomes the­
oretically impossible. 

Spillover will in general occur among modes that can couple 
to the actuator according to the above observations. This is 
evident in all the tables containing relative modal amplitudes. 

(4) There is also some evidence from Fig. 6 and Fig. 9 
that the actuator tends to force nodal lines in the plate dis­
placement near its boundaries, in the off-resonance case when 
the response modal density increases. Of course at a node, 
although the displacement is zero, there is still an effective 
moment about a nodal line. Since here a nodal line tends to 
be forced near an actuator boundary, it may be implied that 
the optimum boundaries of the actuator are along nodal lines 
or at clamped edges when selected modes are to be excited. 

Thus the results show that two dimensional patch type ac­
tuators show large potential for controlling vibration in dis­
tributed systems. Being distributed in nature it appears possible 
to tailor the shape of actuator to selectively excite certain modes 
and suppress others whose response will cause a reduction in 
performance of controllers, etc., as contrasted to point force 
actuators which are "spectrally white." As the piezoelements 
act by exerting a moment they can also be located near nodal 
lines or the boundaries of plates where the input mobility to 
point force excitation is low. 

Future work will concentrate upon studies of the behavior 
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and derivation of the configuration of optimally shaped ac­
tuators as well as configurations for control with single or 
multi-actuators, independently controlled. 
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