
Towards a Model for Automated Fault Localization in
VHDL Designs: Exploring Counterexample-Traces Using

a Model-Based Diagnosis Approach
Bernhard Peischl and Franz Wotawa1

Technische Universiẗat Graz
Institute for Software Technology (IST)
Inffeldgasse 16b/2, A-8010 Graz, Austria

{peischl,wotawa }@ist.tu-graz.ac.at

Abstract. In this paper we discuss the exploration of a model
checker’s counterexample trace using model-based debugging tech-
niques. We show that a diagnosis model obtained from a single coun-
terexample run in an event-driven simulation is not appropriate for
localizing a failures real cause in general. Notably, modeling VHDL’s
event and process semantics as originally defined hampers the inte-
gration of today’s model checkers with our event-centered diagno-
sis approach considerably. Therefore, we propose a static but still
event-centered and a data-driven approach for debugging hardware
description languages. Both models do not exhibit the restrictions of
the event-driven simulation approach with respect to integration of
model checking tools.

1 Introduction
Detecting, localizing, and fixing faults is a crucial issue in today’s
fast paced and error prone development process. Detecting and re-
pairing misbehavior in an early stage of the development cycle re-
duces costs and development time considerably.

Among the most popular techniques in detecting misbehavior of
designs are model checking and testing. Today’s testing procedures
have reached a high state of maturity [2], and model checking [12]
particularly helps in revealing the violation of properties even in un-
usual situations where bugs are difficult to detect. Both approaches,
model checking and testing, have in common that they exploit a par-
tial specification (a test case or a property) for detecting a possible
fault.

Symbolic model checking automatically verifies whether a design
satisfies a given property. The more traditional method of testing re-
quires a test bench, that is, predefined input sequences and the as-
sociated intended outputs. In contrast to testing, in model checking
properties are stated formally as assertions on the system. Adherence
of the design to the specified properties is checked for all possible in-
put combinations, ensuring full coverage of the design. If a program
is not correct with respect to its specification, a counterexample is
provided. Model checking is particularly useful to detect a misbe-
havior that is difficult to find because it occurs in unusual situations,
which maybe neglected when constructing test benches.

For example, in model checking the tools usually give back a
counterexample once a checked property is violated. This counterex-
ample provides a concrete run of the program that leads to a situation
where the property is no longer valid. When using this program ex-
ecution (the executed statements are henceforth referred to as coun-

1 Authors are listed in alphabetical order. The Austrian Science Fund (FWF)
supports this work under project grant P15163-INF.

terexample trace) the fault can be detected but this requires heavy
user interaction and designers spend a lot of effort for the task of fault
localization and fault correction. Therefore, tool support not only for
detecting a fault but also for localizing the real cause of a failure
deserves uttermost importance. Recently, the growing interest in not
only detecting a fault, but also in localizing its cause automatically,
has led to various approaches [1, 7].

Theses fault localization approaches exploit a model checker’s ab-
straction in order to compute fault candidates and therefore must use
properties for fault localization. Our approach is focused on model-
based diagnosis [15, 5] and, although not specifically tailored to-
wards model checking, we can integrate this approach. The model
checker and our software debugger use different abstractions, which,
as pointed out in this article, hampers smooth integration of both ap-
proaches depending on the used abstractions.

Intuition tells us, that at least one of the executed statements in
a counterexample trace contains enough information for automated
fault diagnosis. Notably, we point out that this intuition, under the
presence of restricted specification (as usual when dealing with prop-
erties), turns out to have no firm computational grounds. The reason
for this roots in exactly modeling VHDL’s process and event seman-
tics. We propose two different approaches to overcome this problem.

The first reflects the original, event-centered semantics of VHDL
in a static fashion but its applicability is restricted to small to medium
sized designs. The second, however, is an abstraction reflecting the
data-flow in the design, and we expect this model to perform well
even for bigger designs.

2 A VHDL Program Example
Suppose that we want to design a circuit according to the following
specification. The circuit receives a stream of bits, one per clock cy-
cle on inputdin and at every clock cycle it indicates, on the three
outputsz2, z1, andz0, the difference between the number of ones
and the number of zeroes in the last three bits received. The differ-
ence is considered to be positive if the number of ones in the last
three bits exceeds the number of zeroes and is negative otherwise.
At reset, the circuit is assumed to have received an arbitrarily long
stream of zeroes, so that the output is -3.

Proceeding informally, we may decide to built our circuit around a
3-bit shift register. This shift register holds the last three bits received,
so that a combinatorial circuit can determine the number of ones and
zeroes and produce the appropriate output encoded in form of the
two’s complement. Lettingy0, y1, andy2 be the three bits stored
in the shift register, the truth table of the combinational circuit is

161

outlined in Table 2.

y2y1y0 z2z1z0 y2y1y0 z2z1z0

0 0 0 1 0 1 1 1 0 0 0 1
0 0 1 1 1 1 1 1 1 0 1 1
0 1 1 0 0 1 1 0 1 0 0 1
0 1 0 1 1 1 1 0 0 1 1 1

Table 1. The truth table for the combinational circuit.

Our initial problem’s definition gives rise to a design whose struc-
ture is outlined in Figure 1. Although we know the intended behavior
of the combinational logic block, we have to provide a running im-
plementation for this block. As mentioned above, today this is done
by using a hardware description language (HDLs). Figure 2 spec-
ifies the behavior of our solution in VHDL. Using this formal de-
scription we can do simulation, automatic verification, synthesis to a
gate level representation and, as shown later on, we can also use the
VHDL source code for fault localization. If we are interested in ver-

z1

z0

z2

logic

z0
z1
z2

combinational

D − F F

D − F F

D − F F

RESET

CLK

din process

comb

proc.

sh.Reg

y0

y1

y2

y0

y1
y2

dinresetclk

Figure 1. A structural view on the example circuit.

ifying that the implementation is correct, we need a non-ambiguous
description of the intended behavior that can be deduced automat-
ically from the VHDL code. One such description of our example
program is the state transition graph of Figure 3. In compiling this di-
agram, we have assumed a synchronous circuit, that is, the values of
the signals are updated whenever a clock ticks (i.e. the clock changes
from 0 to 1). In Figure 3 the values of the state of the shift regis-
ter y2y1y0 is given in the circles and the input is given at the arcs.
Alongside to the states, the corresponding output is given. From this
diagram we can deduce a simple property of our circuit:

The least significant bitz0 always is one.(Property 1)
The difference in the number of ones and zeroes in the last three

bits of the input stream is always an odd numbern. Encoding this
number as the two’s complement, that is,n = −z2(2

2) + z1(2
1) +

z0(2
0), requiresz0 to be one.

A second property that a designer might be aware of can infor-
mally be stated as follows:

Assuming the inputdin to be one for a sufficient number of clock
cycles (i.e., more than 2), the output of our design shall bez2z1z0 =
011. (Property 2)

1 entity FSM is
2 port (
3 reset : in bit ;
4 clk : in bit ;
5 d in : in bit ;
6 z0 : out bit ;
7 z1 : out bit ;
8 z2 : out bit);
9 endFSM;

10
11 architecture BEHAV of FSM is
12 signal y(3 downto 0) : bit vector ;
13 begin
14 comb:process(y)
15
16 variable a , b , c , d , h , g , e : bit ;
17 begin
18 b := y (1) nand y(2);
19 c := y (1) nor y (2);
20 a := not(y0) or c;
21 d := b or c;
22 h := a nand d;
23 e := not(c);
24 g := y (0) nor e;
25 z0<= e or c;
26 z1<= (b or not(y (0))) nand (h or g);
27 z2<= not h;
28 end processcomb;
29
30 shiftReg : process(clk , reset)
31 begin
32 if reset = ’1’ then
33 y <= ’000’;
34 else
35 if (CLK’eventand CLK = ’1’) then
36 y(2) <= d in ;
37 y(1) <= y (2);
38 y(0) <= y (1);
39 end if ;
40 end if ;
41 end processshiftReg ;
42 endBEHAV;

Figure 2. The source code of our correct example circuit.

000

001 011

111

110

010

100

101

1

0

0 0

0

0

0

0

0

1

1

1
1

1

1

1

z2z1z0 = 111 z2z1z0 = 001

z2z1z0 = 101

z2z1z0 = 111 z2z1z0 = 001

z2z1z0 = 011
z2z1z0 = 111

z2z1z0 = 001

Figure 3. The state transition graph of our correct design.

162

This can easily be seen from the state transition graph in Figure 3.
Moreover, we introduce a bug in line 26 of our program by substitut-
ing thenand operator by anand operator.

14 comb:process(y)
15
16 variable a , b , c , d , h , g , e : bit ;
17 begin
18 b := y (1) nand y(2);
19 c := y (1) nor y (2);
20 a := not(y0) or c;
21 d := b or c;
22 h := a nand d;
23 e := not(c);
24 g := y (0) nor e;
25 z0<= e or c;
26 z1<= (b or not(y (0))) and (h or g);
27 z2<= not h;
28 end processcomb;

Figure 4 outlines the state-transition diagram of the modified pro-
gram. We can use the above stated or similar properties to verify our

000

001 011

111

110

010

100

101

1

0

0 0

0

0

0

0

0

1

1

1
1

1

1

1

z2z1z0 = 111

z2z1z0 = 011

z2z1z0 = 001
z2z1z0 = 101

z2z1z0 = 011

z2z1z0 = 011z2z1z0 = 101

z2z1z0 = 101

Figure 4. The state transition graph of the modified example.

design. If the properties are fulfilled we don’t need to fix a bug. If
the properties are violated, however, there is a bug in the VHDL pro-
gram. For example, the faulty design fulfills the Property 1 but vio-
lates Property 2. The sequence of states(000) → (100) → (110) →
(111) is a counterexample for Property 2.

Note that this counterexample gives no hint about the real cause
of the misbehavior because both processes execute to compute the
signals’ values. However, the model we are going to introduce in
the next section together with this counterexample can be used to
automatically compute potential causes for the misbehavior.

3 Modeling for Fault Localization
The basic idea of model-based diagnosis (MBD) is to use knowledge
of the correct behavior of the components of a system together with
knowledge of the system’s structure to locate the cause of malfunc-
tioning. The behavior and the structure of the system are the model
and the components of the system are the parts that behave either
correct or abnormal.

In the domain of software debugging of hardware designs the
model primarily reflects the syntax of the program and the seman-
tics of the language. Considering VHDL designs, depending on the
required granularity, components can either be statements, expres-
sions, or processes and the model has to capture the underlying se-
mantics of these artefacts at an appropriate level of abstraction.

In the past, models for different levels of abstraction have been
developed. The so called functional-dependency model [6] repre-
sents concurrent statements as components and completely abstracts
from individual values, referring to variables or signals merely as
being correct or incorrect with regard to a given expected behav-
ior. This representation allows for debugging VHDL designs up to
10MB of source code and is able to locate the faulty process, that

is, the process in which at least one faulty statement occurs. In a
more detailed model [18], expressions, sequential assignments, and
concurrent-signal assignments represent diagnosis components. The
behavior of those components is given by the semantics of the orig-
inal statements or expressions allowing for fault localization at the
statement and expression level. For all these models we can apply
the same standard diagnosis engine to compute possible fault loca-
tions, i.e., the one that is based on Reiter’s hitting set algorithm [15].

These models are successfully applied to combinational designs,
however, recently we developed a novel model that also allows for
debugging sequential designs. This is a prerequisite for integration of
model checking and diagnosis since a counterexample usually com-
prises a sequence of inputs rather than a single input at a given point
in time. The key to source-level debugging of sequential designs is
the model for VHDL’s process and event semantics, therefore we
briefly introduce these language artefacts.

A design usually consists of several processes, a process itself is
composed of statements, such as signal assignments or conditionals.
Each process contains a so called sensitivity list enumerating those
signals the process is sensitive to. Whenever at least one signal from
the sensitivity list of a process changes its value, the process’ state-
ments execute and the resulting changes to its output signals prop-
agate to other processes, possibly causing their execution in turn.
Thus, processes communicate by means of signals. The parallel exe-
cution of the processes of different entities, resulting in the simulated
behavior of the designed hardware unit, is performed by executing
the VHDL program and recording the signal changes over time. Thus
every VHDL program executes as a series of simulation cycles as il-
lustrated in Figure 5. As outlined above, the different processes com-

start simulation

assign signals

execute processes

process resumption
signal transaction

update signals

run processes

update time

Figure 5. Simplified VHDL simulation cycle.

municate by means of signals. [8] gives an overview of the VHDL
language features and a definition of syntax and semantics and [13]
provides an introduction into designing circuits with VHDL.

In the next step, we present our model for the components repre-
senting the process and event semantics, which is the key to source-
level debugging of HDLs. According to the VHDL semantics, a pro-
cessp executes if at least one of the signals occurring in its sensitivity
list changes its value immediately before. If this is the case, the new
values ofp′s target signals (signals appearing on the left-hand side
of an assignment statement inp) are computed taking into account
the semantics ofp’s particular statements.

Formally we represented this computation by components asso-
ciated withp′s sequential statements. Hence, the value of the sig-
nals are given by the values of the sub-block connected top′s in-
put; iny(p) represents the signal value after executing the sequential
statementy whereasdefy(p) denotesp′s corresponding unmodified

163

inputs.s′EV ENT denotes the corresponding event signal of sig-
nal s appearing inp’s sensitivity list. If an output signals changes,
the corresponding event signals′EV ENT is set to true. As illus-

in

in

in

y1

y1

y2

y3

y2

y3

def

def

def

.. <= ..

.. <= ..

.. <= ..

.. := ..

.. xor ..

.. and ..

y1

y2

y3

sequential statement block

signals/variables from other temporal process instances

S’EVENT = T

out

out

out

y1

y2

y3

(2)

(1)

(S1’EVENT = F) (S2’EVENT = F) (Sn’EVENT = F) ..

Figure 6. The model for the process component.

trated in Figure 6, if (1) none of the signals within the sensitivity list
change their values, then the original input values before executing
the sequential statement block propagate to the output of the process
component; (2) otherwise the modified signal values propagate to the
output. Thus, we have to built model fragments for paths (1) and (2)
and add them to the modelm(p) for processp:

(1) for all input signalsy from processp and all signalss appearing
onp’s sensitivity-list
add(s′EV ENT (p) = T) → (outy(p) = iny(p)) to m(p)

(2) let si denote elementi in the sensitivity-list,i = 1..n; for all
input signalsy from processp
add ((s′1EV ENT (p) = F) ∧ (s′2EV ENT (p) = F) ∧ ... ∧
(s′nEV ENT (p) = F)) → (outy(p) = defy(p)) to m(p)

When equipping the model given above with¬AB predicates (stat-
ing whether component behaves abnormal or not), not only state-
ments, but also whole processes may represent diagnoses. [18] out-
lines the modeling approach for other synthesize-able VHDL lan-
guage artefacts.

4 Integrating Model Checking and Model-based
Debugging

Given a specific counterexample we perform a simulation run and
record the execution trace. According to this execution trace we built
up a diagnosis model employing the above stated logical sentences
representing a process’ semantics. Note, that though a certain pro-
cess triggers according to the simulation, we also create the logical
sentences for path 2 in order to allow for best possible backward
reasoning. Intuition tells us, that at least one of the executed state-
ments must account for detected misbehavior and therefore the error
trace cuts down the possible search space for faulty candidates con-
siderably. However, as we show in the following, for models relying
purely on VHDL’s language semantics, this turns out to have no firm
computational grounds.

The program outlined in Figure 7 consists of two processesinv1
(which is sensitive to signalX) andinv2 (which triggers on signal
A).

Considering the correct design, we can immediately deduce a sim-
ple property:

If input X is ’0’ then outputB is ’0’. (Property 3)
For example, the settingA = 0, B = 0, andC = 0 violates

Property 3. Considering this input, the execution trace of the correct
design is as follows. According to the VHDL semantics processes
inv1 andinv2 execute at simulation start, which yields both,A and

1 inv1 : process(X)
2 begin
3 A <= not not X; −− should be A<= not X;
4 end processinv1;
5 inv2 : process(A)
6 begin
7 B <= not A;
8 end processinv1;

Figure 7. Line 3 contains the fault (doubled not operator).

B to reach value ’1’. AlthoughB′s value changes, no further pro-
cess triggers since no process is sensitive toB. In contrast, the value
change ofA causes execution ofinv2 which in turn bringsB′s value
to ’0’ again. Figure 8 outlines the execution trace of the correct de-
sign.

In the faulty design, since doubling the not operator causesA to
remain at value ’0’, no further process executions take place. This,
in turn, prevents a data flow from signalA to B, as it happens in the
correct design. However, since we only are aware of a partial spec-
ification, i.e., we know thatB must be ’0’ instead of ’1’,we need a
continuous path fromX to B containing the real fault. As Figure
9 outlines, this is not the case. In terms of model-based diagnosis
solely inv2 is a minimal conflict, and the real cause of misbehav-
ior, namelyinv1, is no element of the conflict. This small example

A

B

X

0

0

0

A

B

X

1

1

0 0

A

B

X

1

0inv2

inv1

inv2

Figure 8. The execution trace for the correct design.

A

B

X

0

0

0

A

B

X

0

0

1inv2

inv1

Figure 9. The execution trace for the faulty design.

shows that debugging models purely relying on a single error trace
from an event-based simulation cannot localize a failure’s real cause
under the presence of a restricted specification. Consequently, we
cannot build-up a diagnosis model for debugging VHDL as a byprod-
uct of an event-driven simulation run for a given counterexample.

In order to overcome the stated problem we outline two ap-
proaches. The first approach directly represents VHDL’s event and
process semantics, but instead of focusing on a single execution
trace, it covers all possible paths statically. Although this model is
only applicable for small to medium-sized designs, a case study in-
dicated promising results [14]. Second, we propose a data-driven ab-
straction resembling the synthesis process. However, this approach
does not reflect VHDL’s execution semantics directly rather it rear-
ranges the program’s statements in a way that reflects the data flow
and thus the gate arrangements in the synthesized circuit.

Our first approach assumes that the process activation graph is
acyclic. Considering this assumption and a VHDL program that com-
prisesn processes, each process can at most be activated byn − 1
other processes. Taking into account the initial activation for every

164

process, there are at mostn + n × (n − 1) = n2 process activa-
tions per simulation cycle. For small designs, we can create a tem-
poral instance of a process for every possible activation. However,
this model consumes a lot of memory and thus is only applicable for
small to medium-sized designs or parts of a bigger design. In Section
5 we outline the obtained results for this event-driven model for our
running example.

A data-driven modeling approach overcomes both, the problem
of combinational explosion of the static approach above and that
caused by VHDL’s execution semantics. Like the event-driven static
approach this model is applicable to sequential circuits but reflects
the data flow from primary inputs (and latch outputs) to primary out-
puts (and latch inputs) rather then VHDL’s execution semantics.

We deduce a sequence of statements representing the data flow
of the synthesized circuit by analyzing static dependencies between
signals. For example, considering the design in Figure 1, we have to
compute signalsy0, y1, andy2 before we are able to compute the
values forz0, z1, andz2, since, for example,z0 is dependent ony1

andy2. This relationship reflects a data-flow driven ordering of state-
ments that is suitable for building up a diagnosis model. Figure 1 also
lines out the conceptual relationship between the structure of the cir-
cuit (reflecting the syntactic properties of the design) and the order
of statement execution.

In order to deduce the appropriate ordering of statements we use
functional dependencies [9]. A functional dependency is defined as:

Definition 4.1 (Functional Dependency)An output out depends
functionally on a setI if changing some input signalsi ∈ I at time
t may change the output signalout at timet′ ≥ t. We say thatout
depends onI and write(out, {I}).
For example, consider the statementO <= not Q . In this state-
ment signal Q influences signal O since Q determines O’s value, thus
the functional dependency relation is given by(O, {Q}). Moreover,
we define a functional dependency graph representing functional de-
pendencies.

Definition 4.2 (Functional Dependency Graph)The Functional
Dependency (FD) graphG = (V, E) is a directed graph where
signals and ports represent vertices and edges represent depen-
dencies. A (output) port is an ordered pair consisting of a process
and an output signal. An output signal is a signal appearing on the
left-hand side of a signal-assignment statement. Note that processes
may have several output ports. There is an edge from

(i) every port to the signal depended on that port.
(ii) every signal to every port depending on that signal.

Note that there are only edges from port nodes to signal nodes and
from signal nodes to port nodes. There are no edges connecting nodes
of the same type.

The process of levelization allows for deducing an appropriate or-
der of statement execution and thus it induces a topological ordering
relation on ports, therefore we give the following definition:

Definition 4.3 (Logic Levelization) A logic levelization of a FD
graph is an ordering relation on port nodes. The level of a port is
the maximal number of port nodes that are passed on any path be-
tween a primary input and that port.

Figure 10 outlines the FD graph for our running example. In the fig-
ure blank circles denote signals and full circles denote ports. In addi-
tion ports are leveled according to Definition 4.3. Once all port nodes
are levelized, we sort them in ascending order by level number. Since
the obtained sequence of process executions directly reflects the data
flow in the synthesized circuit, there is always a path from the input
to the erroneous output that contains the failure’s real cause.

(y(2),shiftReg)
din

CLK

RESET

(y(1),shiftReg)

(y(0),shiftReg)

y(2)

y(1)

y(0)

z(2)

z(1)

z(0)

(z(2),comb)

(z(1),comb)

(z(0),comb)

1level 0 level

Figure 10. The functional-dependency graph of our design.

This approach can be generalized in order to handle possible loops
in the FD graph. For example, [17] outlines an algorithm for lev-
elizing circuits at the gate-level and also discusses how to get rid of
possible loops.

We intend use the data-driven approach for larger sized designs
since we expect that it scales very well with the circuit’s size. For
our running example we outline the results obtained from the static,
event-based modeling approach.

5 Localizing the Faulty Statements
We now show the outcome of the fault localization process for our
running example. When testing Property 2, a model-checker may
provide the following counterexample:

CLK = [010101], RESET = [000000], din = [111111], z2z1z0 = 001

By using the counterexample with our event-driven diagnosis
model we applied Reiter’s diagnosis algorithm and obtained 27
single-fault diagnoses. In summary, after mapping the temporal in-
stances back to the corresponding components the computed fault lo-
cations with respect to this specific counterexample correspond to the
statements 14, 18, 26, 30, 32, 35, 36, 37 and 38 and include the intro-
duced bug. The statements 14, 30, 32 and 35 correspond to a process
or conditional statements. From the remaining statements 18, 26, 37
and 38 the statements 18 and 26 correspond to functional faults, i.e.
wrong operators in the code. Furthermore, in addition to the bug in
line 26, we altered line 27 in the following way:

24
25 z0<= e or c;
26 z1<= (b or not(y (0))) and (h or g);
27 z2<= not(not (h));
28 end processcomb;

Now our program contains two bugs and after assuming the input
din to be one for at least 3 clock cycles the output corresponds to
z2z1z0 = 101 and thus violates Property 2. Therefore, our coun-
terexample is suitable for locating both causes of misbehavior. Con-
sidering this example we obtained 508 diagnoses, thereof 448 dual-
fault diagnoses and 60 single-fault diagnoses. After mapping back
the temporal instances to the corresponding source code locations
we obtained 185 fault locations , 172 thereof correspond to dual-
fault diagnoses including the introduced bugs, and the remaining 13
correspond to single-fault diagnoses. Recognizing the secondnot
operator in line 27 to be faulty and therefore searching for those dual-
fault diagnoses that contain exactly this operator reduces the number
of possible locations that can explain the misbehavior with respect
to the given counterexample to 6. Likewise, if we recognize that the
other part of the real cause is faulty, that is theand operator in line
26, and filter out all the diagnoses containing this operator, in total 12
faulty components can explain the misbehavior. These results indi-
cate that the static, event-driven approach can localize the statements
that are responsible for a specific counterexample.

165

6 Related Work
Zeller’s Delta Debugging is a technique for minimizing error trails
that works by conducting a modified binary search between a failing
and a succeeding run of a program. The technique is extended to an
approach to automatic software debugging that includes the modifi-
cation of parts of the program’s state to isolate cause effect chains
[19].

Ball, Naik, and Rajamani [1] find successful paths to the control
location at which an error is discovered in order to find the real cause
of the failure. Once a cause is discovered, a restricted model in which
the system is prevented from executing the causal transitions to dis-
cover whether other causes for the same error are possible.

Groce and Visser [7] attempt to extract information from a single
counterexample produced by model checking in order to facilitate the
understanding of malfunctioning systems. The key to their approach
is to find multiple variations on a single counterexample.

Algorithmic program debugging as originally introduced by
Shapiro [16] is an interactive process where the debugging system
acquires knowledge about the expected behavior of the debugged
program and applies these knowledge for fault localization. The
knowledge is collected by the system through a number of questions
and thus requires heavy user interaction. In [10] the authors discuss
the automatic diagnosis of VLSI circuit designs using algorithmic
debugging.

Chung and colleagues [3] introduce a different approach to fault
localization. Although, they use the logical description of hardware
designs directly for fault localization, there work is different to ours
in several respects: Chung and colleagues introduce specialized al-
gorithms. The hardware designs has to be described at the gate level
which is below the register-transfer-level. The algorithms can only
find single faults in the design whereas MBD is not restricted to sin-
gle fault diagnoses.

Zanella and Lamperti [11] present a diagnosis technique subsum-
ing two complementary approaches to diagnosis of discrete-event
systems. The proposed technique copes with a generalized class of
discrete-event systems and deals with synchronous as well as asyn-
chronous behavior. At the current state of research it is open whether
these techniques can be incorporated in our approach.

Cordier and Largoüet [4] demonstrate how to exploit model check-
ing techniques for diagnosing dynamic systems represented by dis-
crete event models. Rather than focusing on exploring the counterex-
ample trace this work shows how model checking techniques can
perform a diagnostic task.

7 Conclusion

Model-based diagnosis can be used effectively for locating faults in
hardware designs. The idea behind the application of MBD to soft-
ware debugging is to compile the program, i.e., the VHDL design,
into a logical description, and use this description together with the
specification of the program directly for diagnosis. Although, several
models of VHDL programs have been published so far [6, 18] none
of them really captures the full semantics of VHDL.

In this article we show that an event-driven, simulation-based de-
bugging approach, that exactly captures VHDL’s process and event
semantics, hampers the integration of model checking and model-
based debugging techniques considerably.

The event-driven model we described in the paper fully captures
the semantics by unfolding the process executions over time. The
used sub-models for the processes are still extracted from the source
code but the rest of the model, i.e., the connections of this models
over time are created at run-time. Intuition tells us, that this is not a
limitation of the approach since the process comprising the erroneous
statement is executed when simulating the VHDL design. This must
be the case in order to produce an observable contradiction to a given

specification. As shown in this paper, for representing the exact se-
mantics of VHDL in the diagnosis model, this intuition turns out to
have no firm computational grounds.

Consequently, we rely on a static but still event-driven model to
represent VHDL’s original semantics precisely. Our running exam-
ple indicates the applicability of this diagnosis model for small to
medium-sized designs. The proposed data-driven model overcomes
both, the problem of state explosion and those of VHDL’s event and
process semantics, and shows that the coupling of model-checkers
and MBD techniques for automated source level debugging is at least
in reach on a conceptual level.

Usually, an abstraction like the proposed data-driven model, con-
tains spurious paths to possible faulty statements. At the current
state of research, it is unclear whether, in comparison to the data-
driven model, the event-driven approach to source-level debugging
of VHDL designs offers benefits in terms of quality of the obtained
diagnoses. Hence, this area is subject of further research.

References
[1] T. Ball, M. Naik, and S.K. Rajamani, ‘From symptom to cause: local-

izing errors in counterexample traces’, inProceedings of the 30th ACM
SIGPLAN-SIGACT symposium of programming languages (POPL), pp.
97–105. ACM Press, (2003).

[2] Boris Beizer,Software Testing Techniques, Van Nostrand Reinhold,
1990.

[3] Pi-Yu Chung, Yi-Min Wang, and Ibrahim N Hajj, ‘Logic design error
diagnosis and correction’,IEEE Transactions on VLSI Systems, 2(3),
(1994).

[4] Marie-Odile Cordier and Christine Largouët, ‘Using model-checking
techniques for diagnosing discrete-event systems’, inProceedings of
the 12th International Workshop on Principles of Diagnisis (DX-01),
pp. 39–46, (March 2001).

[5] Johan de Kleer and Brian C. Williams, ‘Diagnosing multiple faults’,
Artificial Intelligence, 32(1), 97–130, (1987).

[6] Gerhard Friedrich, Markus Stumptner, and Franz Wotawa, ‘Model-
based diagnosis of hardware designs’,Artificial Intelligence, 111(2),
3–39, (July 1999).

[7] A. Groce and W. Visser, ‘What went wrong: Explaining counterexam-
ples’, in10th International SPIN Workshop on Model Checking of Soft-
ware, (5 2003).

[8] IEEE, IEEE Standard VHDL Language Reference Manual LRM Std
1076-1987, 1988.

[9] Daniel Jackson, ‘Aspect: Detecting Bugs with Abstract Dependences’,
ACM Transactions on Software Engineering and Methodology, 4(2),
109–145, (April 1995).

[10] Kuchcinski Krzysztof, Drabent Wlodzimierz, and Maluszynski Jan,
‘Automated diagnosis of VLSI digital circuits using algorithmic debug-
ging’, in Proceeding of the first International Workshop on Automated
and Algorihmic Debugging, ed., Peter Fritzon, pp. 350–367, (1993).

[11] Gianfranco Lamperti and Marina Zanella, ‘Continous diagnosis of
discrete-event systems’, inProceedings of the 14th International Work-
shop on Principles of Diagnosis, Washington DC, USA, (June 2003).

[12] Kenneth L. McMillan,Symbolic Model Checking, Kluwer Academic
Publishers, 1993. ISBN 0-7923-9380-5.

[13] Zainalabedin Navabi,VHDL Analysis and Modeling of Digital Systems,
McGraw-Hill, 1993.

[14] Bernhard Peischl and Franz Wotawa, ‘Modeling state in software de-
bugging of vhdl-rtl designs - a model based diagnosis approach’, in
Proceedings to the 5th International Workshop on Automated and Al-
gorithmic Debugging (AADEBUG 2003), Ghent, Belgium, (September
2003).

[15] Raymond Reiter, ‘A theory of diagnosis from first principles’,Artificial
Intelligence, 32(1), 57–95, (1987).

[16] Ehud Shapiro,Algorithmic Program Debugging, MIT Press, Cam-
bridge, Massachusetts, 1983.

[17] L.-T. Wang, N. E. Hoover, E. H. Porter, and J. J. Zasio, ‘Ssim: a soft-
ware levelized compiled-code simulator’, in24th ACM/IEEE confer-
ence proceedings on Design automation conference, pp. 2–8. ACM
Press, (1987).

[18] Franz Wotawa, ‘Debugging hardware designs using a value-based
Model’, Applied Intelligence, 16(1), 71–92, (2002).

[19] Andreas Zeller, ‘Isolating cause effect chains from computer pro-
grams’,ACM SIGSOFT Software Engineering Notes, 27(6), 1–10, (11
2002).

166

