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ABSTRACT
The use of XML as the de facto data exchange standard has al-
lowed integration of heterogeneous web based software systems re-
gardless of implementation platforms and programming languages.
On the other hand, the rich tree-structured data representation, and
the expressive XML query languages (such as XPath) make formal
specification and verification of software systems that manipulate
XML data a challenge. In this paper, we present our initial efforts
in automated verification of XML data manipulation operations us-
ing the SPIN model checker. We present algorithms for translating
(bounded) XML data and XPath expressions to Promela, the input
language of SPIN. The techniques presented in this paper constitute
the basis of our Web Service Analysis Tool (WSAT) which verifies
LTL properties of composite web services.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
formal methods, model checking

General Terms
Verification, Design

Keywords
Model Checking, SPIN, Promela, Web Service, XML, XML
Schema, MSL, XPath.

1. INTRODUCTION
Web based software systems (e.g. web services) are becoming

increasingly important partly due to the wide use of the Web in
electronic commerce. Errors in such systems, where multi-million
dollar transactions are carried out, can be very costly; ad-hoc re-
pairs after failure are not acceptable. Static analysis techniques and
especially model checking can be very valuable in ensuring the cor-
rectness and robustness of such systems before they are deployed.

It is generally agreed that messages exchanged among web based
systems should be in the XML [21] format. For example, almost
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all web service standards (e.g. WSDL [18], BPEL4WS [1], WSCI
[20], OWL-S [17]) are built on XML and related standards includ-
ing XML Schema [23] and XPath [22]. The rich tree-structured
data representation of XML and powerful XPath expressions,how-
ever, impede direct application of model checking techniques to the
verification of Web based systems. Earlier efforts to verifyweb ser-
vices (e.g. [6, 15, 12]) basically focus on only the control flows by
abstracting away the XML data semantics during analysis.

This paper presents our initial efforts in formal specification and
verification of software systems with XPath based manipulation of
(bounded) XML data. The techniques presented in this paper con-
stitute the basis of our Web Service Analysis Tool (WSAT) [10, 19]
which can verify Linear Temporal Logic (LTL) properties of con-
versation protocols [7] and interacting BPEL4WS [1] web services
[8]. Clearly, these techniques can also be used for verification of
other types of software systems that exchange XML data.

We use SPIN [11] as a back-end model checker in verification
of XML data manipulation operations. We developed algorithms
for translating XML data types and XPath expressions to Promela,
the input language of SPIN. Our handling of XML data manipula-
tion consists of two parts: (1) a mapping from XML Schema to the
type system of Promela, and (2) a translation algorithm which gen-
erates Promela code for an XPath expression. The type mapping
is straightforward; however, the translation of XPath expressions is
not trivial. We implemented the translation algorithms presented in
this paper as a part of WSAT.

Our use of SPIN as the back-end model checker is based on
the following considerations: (1) Promela supports arrayswhich
is very useful in translating XML Schema data types. (2) The
communication channels in Promela enables us to model the asyn-
chronous communication among web services [8]. However, SPIN
is an explicit-state model checker, and may not scale to large data
domains due to state-space explosion. In the future we plan to in-
vestigate the use of symbolic model checking techniques in verifi-
cation of XML data manipulation.

In [15] verification and composition of web services are investi-
gated using a Petri Net model. In [6], web service compositions are
specified using message sequence charts, modeled using finite state
machines and analyzed using the LTSA model checker. These ear-
lier efforts on verification of Web based software systems mostly
concentrate on analysis of the control flows. Our techniquesfor
handling XML data, however, enable verification of properties re-
lating to data manipulation. This enables us to analyze Web based
software systems at a greater level of detail without ad-hocdata
abstractions. The idea of employing back-end model checkers for
verification of an expressive language is used in other verification
tools such as Bandera [4].

JWIG project extends the Java language with high-level features



for web service programming such as dynamic construction of
XML documents [5]. To ensure that the generated XML document
is consistent with the message format (declared using DSD [14], a
type system similar to XML Schema), JWIG provides static anal-
ysis for a set of pre-defined properties. The verification problem
considered in this paper (and in WSAT) is rather different: we con-
sider the relationships (expressed in temporal logic) betweenmul-
tiple XML messages during the execution of a web service. Also,
we focus on XPath expressions which are not part of JWIG.

The techniques presented in this paper apply to bounded XML
data only, where the number of children of an XML node is always
bounded. Unbounded XML Schema types, and various fragments
of XPath can be captured using unranked tree automata [13, 16].
While the unranked tree automata model overcomes the problem of
boundedness, the data semantics of leaf value nodes are lostin the
modeling. For example, the fragment of XPath studied in [13]does
not allow arithmetic constraints in qualifiers, and it only reasons
about the structure of an XML document.

This paper is organized as follows. Section 2 reviews XML re-
lated standards that are essential for systems that exchange XML
data. Formal models are established for these standards to facil-
itate the technical discussion later. Section 3 introducesthe map-
ping from MSL (a theoretical model for XML Schema) to Promela,
and the translation algorithm from XPath to Promela is presented
in Section 4. Section 5 discusses the application of the presented
techniques to the verification of web services. Section 6 concludes
the paper.

2. XML RELATED STANDARDS
In this section we present the syntax and semantics of XML,

MSL, and XPath. The translation algorithms presented in thefol-
lowing sections build on the definitions given in this section.

2.1 XML
Extensible Markup Language (XML) is a markup language used

for describing data [21]. As the de facto universal data transfer
format over the Internet, XML plays a central role in specifying
semi-structured data in a way that is platform and language neutral,
and to a degree, self-explanatory. XML Schema [23] providesthe
type system for XML, i.e., it is used to specify the expected data
organization of an XML document. XPath [22], one of the most
popular XML query languages, is used to navigate through an XML
document and to access its components.

Similar to HTML, all XML documents are structured using tags,
which are written as<tag> followed by</tag> . However, tags
in XML describe the content of the data rather than the appear-
ance. Fig. 1(a) shows an XML document containing the data for
a Register message sent from an investor to register for a stock
analysis service (a description of the service is provided in Section
5). The XML document consists of a string containing the identi-
fication of the investor, a list of stock identifiers that the investor is
interested in, and payment information.

XML documents can be modeled as trees where each internal
node corresponds to a tag and leaf nodes correspond to basic type
values. The document in Fig. 1(a) corresponds to the tree in Fig.
1(b).

In the following we introduce a formal representation for XML
documents. One simplification we make here is to omit the tag at-
tributes used in XML. Since a tag attribute can be regarded asa leaf
node that is a child of the corresponding tag node, this simplifica-
tion does not impair the expressive power of our model.

DEFINITION 2.1. AnXML documentis a quadrupleX = (l, n,
p, r) where

1. l is a list of labelswhere each label can either be an inter-
nal node tag, or a leaf node value with a basic type (such as
boolean, integer or string). We denotei-th node ofl with l[i]
(indices start from1).

2. n is the size ofl.

3. p : [1, n] → [0, n−1] is aparentfunction such that

(a) p(1) = 0, and

(b) for each1 < i ≤ n, 1 ≤ p(i) < i

We definep∗ as the transitive and reflexive closure ofp.

4. r : [1, n] → [1, n] is arangefunction where

(a) r(i) ≥ i for eachi ∈ [1, n], and

(b) for eachi ≤ j ≤ r(i), i ∈ p∗(j), and for eachj 6∈
[i, r(i)], i 6∈ p∗(j).

Given a node at indexi, p(i) points to its parent node. Since
the root has no parent, we definep(1) = 0. For each nodei, r(i)
denotes the maximum index of the nodes in the subtree of nodei.
Note that constraints onp and r guarantee thatl is the pre-order
traversal of the document tree ofX .

EXAMPLE 2.1. Fig. 1(c) is the quadruple representation of the
XML document in Fig. 1(a). Obviously the listl is the pre-order
traversal of the tree in Fig. 1(b), and parent functionp and range
function r describe the tree structure. For example, the subtree
starting from noderequestList spans over five nodes; hence
the range functionr(4) = 8.

Definition 2.1 can be extended to describe atree sequence, when
restriction “1 ≤ p(i)” in item 3(b) is modified to “0 ≤ p(i)”.
In a tree sequence, we call each node whose parent node is0 a
root node. We introduce asplit operator that splits a tree sequence
into two tree sequences, and anextractoperator that generates a
tree sequence from a single XML document tree by extracting its
contents.

DEFINITION 2.2. Given an XML tree sequenceX = (l, n, p,
r), asplit at integers can be applied toX if nodes is a root node
ands 6= 1. The result is two tree sequencesX1 = (l1, n1, p1, r1)
andX2 = (l2, n2, p2, r2) where

1. l1 = l[1, s−1] andl2 = l[s, n].

2. n1 = s−1, andn2 = n−s+1.

3. p1 coincides withp on the domain[1, s−1], and

p2(i) =

{

p(i+s−1)−s+1 if p(i+s−1) 6=0
0 if p(i+s−1)=0

for eachi ∈ [1, n−s+1].

4. r1 coincides withr, but is restricted to the domain[1, s−1],
andr2(i) = r(i+s−1)−s+1 for eachi ∈ [1, n−s+1].

Given an XML tree sequence which has at leastm root nodes,
for anyk ≤ m we can split the tree sequence intok sequences, by
consecutively applying the split operatork − 1 times to the second
part of the result of the previous split. We call this operation a
k-split.



<Register>
<investorID>

VIP01
</investorID>
<requestList>

<stockID>
0001

</stockID>
<stockID>

0002
</stockID>

</requestList>
<payment>

<accountNum>
0425

</accountNum>
</payment>

</Register>

investorID

Register

VIP01

requestList

0001 0002

payment

accountNum

0425

stockIDstockID

l = { Register, investorID, VIP01, requestList,
stockID, 0001, stockID, 0002,
payment, accountNum, 0425 }

n = 11

1 2 3 4 5 6 7 8 9 10 11
p 0 1 2 1 4 5 4 7 1 9 10
r 11 3 3 8 6 6 8 8 11 11 11

(a) (b) (c)
Figure 1: An XML document (a), the corresponding tree (b), and its formal representation (c)

DEFINITION 2.3. Given a single XML treeX = (l, n, p, r),
the extractoperator generates a tree sequenceextract(X ) = (l′,
n′, p′, r′) wherel′ = l[2, n], n′ = n−1, and for eachi ∈ [1, n′],
r′(i) = r(i+1)−1 andp′(i) = p(i+1)−1.

EXAMPLE 2.2. If we apply the exact operator to the XML tree
in part (c) of Fig. 1, we get the XML tree sequenceX ′ = (l′, n′, p′,
r′) where

l′ = { investorID, VIP01, requestList, stockID,
0001, stockID, 0002, payment, accountNum, 0425 }

n′ = 10

1 2 3 4 5 6 7 8 9 10
p′ 0 1 0 3 4 3 6 0 8 9
r′ 2 2 7 5 5 7 7 10 10 10

Note that, the tree sequenceX ′ can be split at3 and8, and there
exists a3-split forX ′.

2.2 XML Schema and MSL
XML provides a standard way to exchange data over the Inter-

net. However, the parties that exchange XML documents stillhave
to agree on thetypeof the data, i.e., what are the tags that will ap-
pear in the document, in what order, etc. XML Schema [23] is a
language for defining XML data types. In this paper, we focus on a
subset of XML Schema, for example, we do not handle unordered
sequence types. Model Schema Language (MSL) [2] is a compact
formal model that captures most features of XML Schema. We
use a simplified version of MSL with type expressions defined as
follows:

g → b | t[ g0] | g1{m, n} | g1, . . . , gk | g1| . . . | gk

Hereg, g0, g1, . . . , gk represent MSL types,b is a basic data type
such as string, integer or boolean,t is a tag, andm andn are two
positive integers wherem ≤ n. Intuitively, the semantics of the
above MSL type expressions can be summarized as follows:t[ g0]
denotes a type with a root node labeled witht and children with
types that match the sequence of MSL types represented byg0;
g1{ m,n} denotes a sequence of size at leastm and at mostn
where each member is of typeg1; g1, . . . , gk denotes an ordered
sequence where the first member is of typeg1, the second member
is of typeg2, and so on; and,g1| . . . | gk denotes a choice among
typesg1 to gk. To simplify our presentation, we will assume that
the typesg1, . . . , gk that appear ing1, . . . , gk andg1| . . . | gk are
derived by the rules “g → b” or “ g → t[ g0] ”.

Similar to XML, we can define a “parent function” for MSL
types. Given two MSL typesg andgi, p(gi) = g if there exists a
g′ such that either of the following two conditions are satisfied: 1)
g → t[g′] ∧ g′ → g1, . . . , gi, . . . , gk, or 2)g → t[g′] ∧ g′ →

g1| . . . | gi| . . . | gk. We associate an attribute called “tag” with
each MSL typeg. If g is derived from the ruleg → t[g0], then
g.tag = t; otherwisetag is null .

Formally, an XML document tree sequenceX = (l, n, p, r) is
an instanceof an MSL typeg if one of the following holds:

1. wheng → b: n = 1 andl[1] is a leaf node value and its type
is b.

2. wheng → t[ g0] : X is a single XML document tree where
l[1] = t andextract(X ) is an instance ofg0.

3. wheng → g1{ m,n} : there exists ak-split onX for some
integerm ≤ k ≤ n such that the resulting tree sequences
X1, ...,Xk are all instances ofg1.

4. wheng → g1, . . . , gk: there exists ak-split of X , such
that the resulting tree sequencesX1, . . . ,Xk are instances of
g1, . . . , gk respectively.

5. wheng → g1| . . . | gk: X is an instance ofgi for some
integeri ∈ [1, k].

EXAMPLE 2.3. It is easy to verify that the XML document
Register in Fig. 1 is an instance of the following MSL type.

Register[
investorID[string],
requestList[ stockID[int]{1,3} ],
payment[ creditCard[int] | accountNum[int] ]

]

2.3 XPath
In order to write specifications or programs that manipulateXML

documents we need an expression language to access values and
nodes in XML documents. We use a subset of XPath [22] to navi-
gate through XML trees and return the answer nodes. The fragment
of XPath we use consists of the following operators: the child axis
(/ ), the descendant axis (// ), self-reference (. ), parent-reference
(.. ), basic type test (b() ), node name test (t), wildcard (* ), and
predicates ([] ). An XPath expressionis defined with the following
grammar

exp → p | const | op exp | exp op exp

p → r | / r | // r

r → s | r/ s | r// s

s → . | .. | n?([ exp] )∗ | position() | last()

n → b() | t | ∗

wheren? denotesn or empty string and([ exp] )∗ denotes zero or
more repetition of[ exp] .

In the above syntax rules, an expression on basic types (such
as boolean, integer, and string) can be constructed by combining



XPath location paths(represented byp) and constant values (rep-
resented byconst ) with operators on basic types (represented by
op). There are two types of location paths: relative location paths
and absolute location paths. An absolute location path starts with
/ or // . A relative location path (represented byr) consists of
a list of steps (represented bys) which are connected with/ or
// . The steps in a relative location path are evaluated from left to
right. A step can be a self-reference (. ), a parent-reference (.. ),
or a more complex form which consists of a node test (n) and a
sequence of predicates of the form[ exp] . A node testn has three
possible forms: type test (b() ), name test (t), and wildcard match
(∗). Finally, a step can be a function call such asposition()
or last() with the following restriction: Function calls can only
appear as the last step of a location path.

Formally, an XPath expression accepts inputs of the form(c, d)
wherecontextc is a set of node indices in some XML document
X , andd is either a single node inX or a set of values with the
same basic type. The set of node indices in the input context must
be in ascending order with no repetition. The output of an XPath
expression is a set of nodes in the same XML document used in the
input, or a set of values. ForX (l, n, p, r), let N be the domain of
all node indices inX (i.e., [1, n]), andDOM be the domain of all
leaf node values. Then the semantics of an XPath expressionexp
(as well as a steps, a node testn, and a location pathr) can be
defined as a function:

exp : 2N × (N ∪ 2DOM) → 2N ∪ 2DOM .

Before we formally define the semantics of XPath expressions, we
will give some example expressions and the results of evaluating
them below. To distinguish node indices from other values wewrite
node indices in bold characters.

EXAMPLE 2.4. Consider the input({1}, 1), where1 is the root
node of the XML document presented in Fig. 1, and the following
XPath expressions

• investorID ,

• //stockID[position() = 2]/int() , and

• //stockID/int() = 0002

The results are{2}, {0002}, and{false, true }, resp.

We now present the formal semantics of XPath expressions. We
will give the semantics of a node test first, and then a step, and then
a location path, and finally an entire XPath expression.

Consider a node testn and an input(c, d) wherec is a set of
node indices andd a node in the XML documentX (l, n, p, r), the
results ofn(c, d) is defined as follows:

1. whenn → b() : n(c, d) = {d′ | p(d′) = d ∧ l[d′] is of
typeb}.

2. whenn → t : n(c, d) = {d′ | p(d′) = d ∧ l[d′] = t}.

3. whenn → * : n(c, d) = {d′ | p(d′) = d}

Basically, rules 1 and 2 select the children nodes of the input
noded by their types and tags (resp.), and rule 3 simply returns all
the children nodes. Finally, when inputd is a set of values,n(c, d)
returns the empty set∅.

The definition of a steps is similar. Given a steps and input
(c, d), whend is a set of values,s simply returns∅, and whend is
a node ofX the result is defined as follows:

1. whens → . : s(c, d) = {d}.

2. whens → .. : s(c, d) = {p(d)}.

3. whens → [exp]:

s(c, d) =



















{d} true ∈ exp(c, d) and
exp is a boolean expression

{d} exp(c, d) 6= φ and
exp is a location path

∅ otherwise.

4. whens → n [exp1] . . . [expk]: s(c, d) = p′(c, d) where

p′ = n / [exp1] / [exp2] / . . . / [expk]

5. whens → last() : s(c, d) = {|c|}

6. whens → position() : s(c, d) = {position of d in c}

In rules 1 and 2, the handling of self reference and parent refer-
ence is straightforward. For the third rule, the step eitherreturns the
singleton set{d} or an empty set, depending on the evaluation of
the predicate. Note that when a location path is used as a predicate,
it evaluates totrue if it returns a non empty set of nodes. Finally,
the evaluation of a step which consists of node test plus a series
of predicates is reduced to that of an equivalent location path. For
example, the stepstockID[position()=2] is equivalent to a
location pathstockID/[position()=2] . Given input(c, d),
function call last() simply returns the singleton set which con-
tains the size of contextc; position() returns the position ofd
in c where position is counted starting from 1.

Given a relative pathr → r1/ s, and an input(c, d),

r(c, d) =
⋃

d′∈r1(c,d)

s(r1(c, d), d′). (1)

According to the above formula the steps of a relative location path
are executed one by one from left to right. Note that the context of
each step is the result of the previous step. For the case where r →
r1// s, we replacer1(c, d) in Equation 1 with the following set
{n | p∗(n) = n′ for some n′ ∈ r1(c, d)}. For example, given the
XML document in Fig. 1 and the input({4}, 4), the first step and
the descendants operator of the location path
stockID//[position()=3]/int() produces the new con-
text{4, 5, 6, 7, 8}, and the later steps generates the result{0001}.

An absolute location path is defined based on a relative loca-
tion path. For an absolute location pathp → / r, and input(c, d),
p(c, d) = r({1}, 1) where1 is the root. Whenp → // r, p(c, d)
= p′({1}, 1) wherep′ = .// r.

Finally, the semantics of an XPath expression on basic typesin
the formexp → exp1 op exp2 is defined as follows:

exp(c, d) = {v | v = v1 op v2 ∧ v1∈exp1(c, d) ∧ v2∈exp2(c, d)}.

Basically, it computes the results of all possible combinations
from the value sets of the two operandsexp1 and exp2. Unary
operators are handled similarly. We assume that operationop is
either a relational operator (=, 6=, <, >≤,≥), or an arithmetic op-
erator (+,−, ∗, /, %), or a boolean operator (∧,∨,¬). Note that,
when used as a condition, a boolean XPath expression evaluates to
true if its result set contains at least onetrue value.1

1XPath 2.0 (working draft) has a more delicate handling for this
scenario. There are two sets of arithmetic/comparison operators:
one to support the XPath 1.0 semantics (presented in this paper);
the other will raise a type error when any operand contains more
than one value. It is not hard to support the second semanticswith
our approach.



typedef t1_investorID{
mtype stringvalue;

}

typedef t2_stockID{
int intvalue;

}
typedef t3_requestList{

t2_stockID stockID [3];
int stockID_occ;

}
typedef t4_accountNum{

int intvalue;
}

typedef t5_creditCard{
int intvalue;

}
mtype {m_accountNum,

m_creditCard}
typedef t6_payment{

t4_accountNum accountNum;
t5_creditCard creditCard;
mtype choice;

}
typedef Register{

t1_investorID investorID;
t3_requestList requestList;
t6_payment payment;

}

Figure 2: Promela translation of Example 2.3

3. FROM MSL TO PROMELA
In this section we focus on mapping types in MSL to Promela.

We present an example translation in Fig. 2, and the translation
algorithm is given in Fig. 3.

Fig. 2 is the Promela translation of the MSL type given in Exam-
ple 2.3. Clearly each MSL basic type has a straightforward map-
ping to Promela. For example,int and boolean are mapped
to Promela typeint andbool respectively. MSL typestring
is mapped tomtype (enumerated type) in Promela, e.g., the leaf
node value ofinvestorID . In the XPath translation, which will
be explained later, all string constants will be collected,declared,
and used as symbolic constants ofmtype . We assume strings are
used solely as constants, and we do not expect any operators to
change values of thesemtype variables.

Translation of complex MSL types is more complicated. Gen-
erally, each MSL complex type is translated into a corresponding
typedef (record) type in Promela. For example, theRegister
type in Example 2.3 is mapped into Promela declarationtypedef
Register , and the intermediate typerequestList inside
Register is translated intotypedef t3 requestList .
Prefixes such ast3 are added to prevent name collisions for in-
termediate types. Since each intermediate MSL type is a child of
its parent type, in the Promela type declaration for its parent type,
it has a corresponding attribute definition. For example, the state-
ment “t3 requestList requestList ” defines the attribute
requestList in typedef Register . When an intermediate
MSL type has multiple occurrences, e.g., thestockID element, it
is defined as an array with its max occurrence as the array size. In
addition, an additional variable (e.g.stockID occ ) is defined in
its parent type to record its actual occurrence. For the MSL types
constructed using the choice operator| , a variablechoice is used
to record the actual type chosen in an XML instance of the MSL
type (e.g., thechoice attribute declared int6 payment ).

In Fig. 3 we present a proceduretr , which takes an MSL type
declarationg as its input, and generates two strings as its output.
The first string, i.e.,ret[1] , contains the type declaration forg
(as well as all the necessary type declarations for its intermediate
types). The second output is the attribute definition forg, if g is an
intermediate type. For example, when the procedure is called for
intermediate typerequestList , ret[1] contains the declara-
tion of t2 stockID andt3 requestList , andret[2] con-
tains “t3 requestList requestList; ”. (We do not show
the generation of separator “; ” in Fig. 3, however, it can be han-
dled easily). As shown in Fig. 3, the function body oftr pro-
cesses the input MSL type declaration recursively according to the
syntax rules. Note that, it properly handles the issues suchas array
declaration for types with multiple occurrences and complex types
constructed using choice operator.

// ret[1]: type declaration forg, including intermediate types.
// ret[2]: attribute definition for the inputg if g is intermediate.
function tr(g: MSL): String[2]
begin

String ret1, ret2;
switch case

g → b :
ret1 = null;
ret2 = b + “ ” + b + “value ”;

g → t[g0] :
if (g is an intermediate type)then

type = generate a unique name;
ret1 = tr(g0)[1] + “ typedef ” + type + “{” + tr(g0)[2] + “}”;
ret2 = type + “ ” +t;

else
ret1 = tr(g0)[1] + “ typedef ” + t + “{” + tr(g0)[2] + “}”;
ret2 =null ;

end if
g → g1{m, n} :

ret1 = tr(g1)[1];
ret2 = tr(g1)[2] + “ [ ”+n+“ ] ” + “ int ” + g1.tag +“ occ ”

g → g1, g2, . . . , gk :
ret1 = tr(g1)[1] + tr(g2)[1] + . . . + tr(gk )[1];
ret2 = tr(g1)[2] + tr(g2)[2] + . . . + tr(gk )[2];

g → g1 | g2 | . . . | gk :
ret1 = tr(g1)[1] + tr(g2)[1] + . . . + tr(gk )[1] +

“mtype {”+ “ m ”+g1.tag + . . . + “m ”+gk.tag + “}”;
ret2 = tr(g1)[2] + tr(g2)[2] + . . . + tr(gk )[2] + “ mtype choice ”;

end switch
return (ret1, ret2)

end

Figure 3: Translation from MSL to Promela

4. FROM XPATH TO PROMELA
In this section we present the translation algorithm from XPath

to Promela. We start with a brief discussion of the use of XPath
expressions in XML manipulating software, then we study a moti-
vating example, and finally we present the translation algorithm.

Consider the use of XPath in languages with XML data manipu-
lation such as BPEL4WS and WSCI. There are basically two types
of usage: 1) boolean XPath expressions are used in branch or loop
conditions, and 2) location paths and arithmetic expressions are
used on the left and right hand sides of assignment statements, re-
spectively. We handle these two cases separately since the seman-
tics of XPath expressions can depend on the context they are used.
For example, when a location path is used as a boolean condition its
meaning is different than the case where it is used on the lefthand
side of an assignment. Since the implementation of these twocases
are similar, in the remainder of this paper, we concentrate only on
the translation of boolean XPath expressions.

4.1 A Motivating Example
Consider the following XPath boolean expression where XML

variableregister is of MSL typeRegister as defined in Ex-
ample 2.3, and the MSL type of variablerequest consists of a
single childstockID (in XPath the prefix$ is used to denote
variable names):

$request//stockID/int()=

$register//stockID[int()>5][position()=last()]/int( ) (2)

An XPath expression following a variable name is evaluated on
the value of the variable (which is an XML document) startingwith
the context({1}, 1), where1 is the root node of the correspond-
ing XML document. The above expression queries whether in the
XML documentregister the laststockID which has a value
greater than 5 is equal to thestockID of request . Its corre-
sponding Promela translation is shown in Fig. 4.



1 /* result of the XPath expression */
2 bool bResult = false;
3 /* results of the predicates 1, 2, and 1 resp. */
4 bool bRes1, bRes2, bRes3;
5 /* index, position(), last(), index, position() */
6 int i1, i2, i3, i4, i5;
7
8 i2=1;
9 /* pre-calculate the value of last(), store in i3 */
10 i4=0; i5=1; i3=0;
11 do
12 :: i4 < v_register.requestList.stockID_occ
13 ->
14 /* compute first predicate */
15 bRes3 = false;
16 if
17 :: v_register.requestList.stockID[i4].intvalue>5
18 -> bRes3 = true
19 :: else -> skip
20 fi;
21 if
22 :: bRes3 -> i5++; i3++;
23 :: else -> skip
24 fi;
25 i4++;
26
27 :: else -> break;
28 od;
29 /* translation of the whole expression */
30 i1=0;
31 do
32 :: i1 < v_register.requestList.stockID_occ
33 ->
34 /* first predicate */
35 bRes1 = false;
36 if
37 :: v_register.requestList.stockID[i1].intvalue>5
38 -> bRes1 = true
39 :: else -> skip
40 fi;
41 if
42 :: bRes1 ->
43 /* second predicate */
44 bRes2 = false;
45 if
46 :: (i2 == i3) -> bRes2 = true;
47 :: else -> skip
48 fi;
49 if
50 :: bRes2 ->
51 /* translation of expression */
52 if
53 :: (v_request.stockID.intvalue ==
54 v_register.requestList.stockID[i1].intvalue)
55 -> bResult = true;
56 :: else -> skip
57 fi
58 :: else -> skip
59 fi;
60 /* update position() */
61 i2++;
62 :: else -> skip
63 fi;
64 i1++;
65 :: else -> break;
66 od;

Figure 4: XPath to Promela Example

Note that we have four boolean variables and five integer vari-
ables in the Promela translation. Boolean variablebResult is
used to record the evaluation result of the whole XPath expression,
bRes1 andbRes2 are used for evaluation of the two predicates
on the right hand side of the expression, andbRes3 is used during
the evaluation of thelast() function. Integer variablesi1 and
i4 are used as array indices in different parts of the Promela code,
i3 records the value of function calllast() , andi2 andi5 are
used forposition() function.

It is not hard to see that we can compute the value oflast()

prior to the evaluation of the whole XPath expression, and we
record its value ini3 . The main body of the calculation is a loop
searching for the proper value of array indexi4 which satisfies the
first predicate (value ofstockID greater than 5).

The main body to compute the whole boolean XPath expression
is similar. There is a loop searching for the proper value of array
index i1 , and the code handling two predicates are nested. Note
that position variablei2 and array indexi1 are properly updated.
According to the semantics of boolean expressions in the XPath
standard,bResult is set to true once we find a value ofi1 satis-
fying the boolean expression.

Finally, note that there are more efficient Promela translations
than the one presented in Fig. 4. For example, integer variable i4
(for array index) can be reused to replacei1 . In our implementa-
tion, we have a variable assignment optimizer to achieve this ob-
jective. However, we omit the details of its implementationhere to
simplify the presentation.

4.2 Supporting Data Structures
We can make the following observations based on the motivating

example shown in Fig. 4: (1) Every XPath language construct (ex-
pression, path, step) corresponds to a Promela code segment. For
example, the boolean XPath expression shown in Equation 2 cor-
responds to the whole Promela code in Fig. 4, its right hand side
corresponds to the whole code with lines 51 to 57 left blank, and
the left hand side corresponds to an “empty” statement sinceno
code is generated for it. (2) In particular, loops are generated for
those steps which generate XML data that corresponds to an MSL
type with multiple occurrences (i.e., types declared asg{ m,n} ).
For example, the stepstockID in the right hand side corresponds
to the loop from line 30 to line 66. (3) The generated code seg-
ments are embedded into each other. For example the segment
(lines 34 to 63) that corresponds to “[int()>5] ” is embedded in
the code for stepstockID ; while it embeds the code for predicate
“ [position()=last()] ” (lines 43 to 59). (4) The generated
code can be regarded as an nested-loop which simulates the search
procedures for each location path, and the evaluation of theboolean
expression is placed in the body of the inner-most loop.

Our translation algorithm needs a mechanism to represent the
structure of the input XML document and an approach to conve-
niently capture the Promela code segments that are generated and
embedded into each other. Hence, we introduce two data structures
which will be used in the translation algorithm: atype treestruc-
ture which represents the MSL types and astatement macrowhich
represents (partially) generated Promela code segments. We also
define several functions that manipulate these data structures.

Type Tree. We use the type trees to statically represent the input
and output of an XPath location path (or a step). Given an XML
variable and its MSL type, it is straightforward to derive the corre-
sponding type tree. For example, Fig. 5 is the correspondingtype
tree for XML variableregister in Equation 2, with the MSL
type given in Example 2.3. Note that each node in the type tree
corresponds to a subexpression of the MSL type expression given
in Example 2.3, where the root node corresponds to the whole type
expression. Hence, each node also corresponds to an MSL type.

In a type tree, each node is labeled with an MSL type (for the
root node, it is also labeled with the XML variable name). Note
that if the associated MSL type has multiple occurrence, thenode
is equipped with an additional index. For example, indexi1 is
associated with node 5 in Fig. 5. Recall that an MSL type with
multiple occurrence is translated into an array in Promela.This in-
dex is used to access the elements of that array. For each nodein a
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Figure 5: Type-Tree for Variable register

type tree, by tracing back to the root of the tree, we can get itsqual-
ified name, i.e., the expression in the Promela translation which ac-
cesses the data with the type represented by that node. For example,
v register.requestList.stockID[i1].intvalue
is the qualified name of node 6, where the prefixv is automatically
added by the system to avoid name collision, and theintvalue
is the name of the attribute with the basic typeint .

We now define a number of functions on type trees. Given a type
tree t, and an XPath steps, function MarkChild(t,s) proceeds as
follows: (1) unmark all marked nodes int, and (2) for each node
that is unmarked in step 1, mark its children which are the results
of executing steps, and (3) return the modifiedt. For example, let
tr be the type tree in Fig. 5 where node 1 is the only marked node
(marked with “*”), let s be the step “requestList ”. The result
of MarkChild(tr ,s) is the same type tree where node 4 is the only
marked node. Other functions such as MarkParent(t), MarkAll(t),
MarkRoot(t) work in a similar way. For example, nodes 6,9, and
11 are the marked nodes after executing MarkChild(MarkAll(tr),
“ int() ”).

Statement Macro. In our translation algorithm, each XPath con-
struct corresponds to a Promela code segment. A code segmentcan
be regarded as a list of statement macros which are sequentially
concatenated using “; ”. A statement macro (or simply macro)
captures a block of Promela code for a certain functionality, and
each macro has at most oneBLANKspace where another Promela
code segment can be embedded. There are five types of macros we
are using in our translation algorithm which are summarizedbe-
low. A macro can have input parameters, and in the corresponding
Promela code, the appearance of these parameters will be replaced
by the actual input value when the macro is used.

Statement Macro Promela Code

IF(v)

if
:: v -> BLANK
:: else -> skip

fi

FOR(v,l,h)

v = l - 1
do

:: v < h -> BLANK
v ++

:: else -> break
od

EMPTY BLANK

INC(v) v ++
INIT(v,a) v = a

Fig. 6 presents a set of macros organized as a tree. There are
two types of edges from a child to its parent: the embedment edge
which is shown as a solid arrow and the sequential composition
edge which is shown as a dotted arrow. We call such a tree amacro
tree. In fact, any Promela code generated for an XPath expression
construct can be captured using one or a set of macro trees. Given

a macro tree, it is straightforward to generate the corresponding
Promela code. For example, the macro tree in Fig. 6 corresponds
to the code segment from line 30 to line 66 (with line 51 to line57
asBLANK) in Fig. 4.

FOR 
(i1,1,3)

EMPTY

IF    
(cond)

INIT 
(bRes1,0)

IF    
(bRes1)

IF         
(i2==i3)

IF    
(bRes2) EMPTY

INIT 
(bRes2,0)

INIT 
(bRes2,0)

INIT 
(bRes1,1)

$register // stockID / [int()>5] / [position() = = last()]/ int()

cond ≡≡≡≡ v_register.requestlist.stockID[i1] > 5
Sequence

Insert

1 5

5 5

5 5 5 5
5 6

Figure 6: Code Sample

We associate two attributes with each macro: an input type node,
and an output type node from a type tree. For each macro, the input
node characterizes the starting node where the macro startssearch-
ing, and the output node is the starting point of its embedment.
For example in Fig. 6, macroFOR(i1,1,3) is the corresponding
code for the step “//stockID ” in the location path at the top of
the figure. Its input type node is the type node 1 in Fig. 5, which
corresponds to the type of the XML variableregister . Its out-
put node (also the input node for its embedment) is the type node
5 (with MSL typestockID ), which is the result of evaluating the
step on the input type node. In our translation, except for concate-
nating code for two expressions, the input node of embedded code
should match the output node of theBLANKwhere it is inserted.

We also associate a hashtable with each macro, which recordsthe
mapping from XPath location paths to qualified names. For exam-
ple, the hashtable of the last EMPTY macro in Fig. 6 will map the
location path shown in Fig. 6 (i.e., right hand side of Equation 2) to
qualified name of node 6, i.e., the expression
“v register.stockID[i1].intvalue ”.

We have three different functions to embed macros into each an-
other: MatchInsert(c1,c2), InsertAll(c1,c2), and
InsertAndReplace(c1,c2). All these functions return one macro tree
that is the result of embeddingc2 into theBLANKs of c1. In our
translation,c1 is always guaranteed to be a single macro tree, while
c2 can be a set of macro trees. The MatchInsert function requires
that the inserted macro tree must match the output node of itshost;
while InsertAll and InsertAndReplace do not require matching.
When insertingc2 into the BLANKs of c1 InsertAndReplace re-
places the location paths inc2 with qualified names based on the
hashtable of the host.

Function GenCode(n) generates a macro tree given a type node
n. GenCode relies on a global registryR which registers index
variables that are processed before. The function traces back from
the current type node to the root type node. Whenever an unpro-
cessed index is encountered, a FOR macro is generated for that
index, and the index is registered inR. When a new FOR macro is
generated, the old FOR macro generated before is embedded inthe
new macro to form a nested loop. For example, if indexi1 has not
been processed, GenCode(n6) generates a FOR(i1 ,1,3), givenn6

is the node 6 in Fig. 5.



(1) exp → exp1 op exp2:
exp1.inTree= exp.inTree
exp2.inTree= exp.inTree
If exp is intermediateThen

exp.code= InsertAll(exp1.code,exp2.code)
else

exp.code=
InsertAndReplace(InsertAll(exp1 .code, exp2.code),IF(exp))

where theBLANKof IF(exp) is filled with “exp.var= true ”
End If

(2) exp → op exp1:
exp1.inTree= exp.inTree
exp.code= exp1.code

(3) exp → const :
exp.code= EMPTY

(4) exp → p :
p.inTree= exp.inTree
exp.code= p.code

(5) p → $v p1:
p1.inTree= generate a type tree for$v
p.outTree= p1.outTree
p.code= p1.code

(6) p → / p1 | // p1:
If p → / p1 Then

p1.inTree= MarkRoot(p.inTree)
Else

p1.inTree= MarkAll(p.inTree)
End If
p.code= p1.code
p.outTree= p1.outTree

(7) p → p1 / s | p1 // s:
p1.inTree= p.inTree
If p → p1/ s Then

s.inTree= MarkRoot(p1.outTree)
Else

s.inTree= MarkAll(p1 .outTree)
End If
p.code= MatchInsert(p1.code,s.code)
p.outTree= s.outTree

(8) s → . :
s.outTree= s.inTree
s.code= EMPTY

(9) s → .. :
s.outTree= MarkParent(s.inTree)
s.code= EMPTY

(10) s → b() | t | ∗ :
s.outTree= MarkChild(s.inTree,s)
s.code= {c1, . . . ,ck} where

ci is GenCode(di) for each type nodedi in s.outTree

(11) s → [exp] :
exp.var = a unique variable name
s.outTree= s.inTree
s.code= exp.code“;” IF( exp.var)

Figure 7: Translation Algorithm

4.3 Syntax Directed Translation Algorithm
Now we discuss the syntax directed translation algorithm which

is presented in Fig. 7. Each non-terminal (e.g.exp, p, s ) has one
inherited-attribute:inTree, and two synthesized-attributes:outTree
and code. Attributes inTreeandoutTreeare both type trees, and
they are used to capture the input and output of XPath language
constructs, respectively. Attributecode is a set of macro trees,
which records the generated Promela code that corresponds to the
non-terminal. Non-terminalexp has an additional attributevar,

which is the boolean variable that records the evaluation results for
the exp. Thevar attribute is not null if and only ifexp is not an
intermediate expression (e.g.exp is used as a branch condition in
host language or it is a predicate in another XPath location path).
For example, when generating the Promela code (Fig. 4) for Equa-
tion 2, the attributevar for the boolean expressions in predicates
“ [int()>5] ” and “[position()=last()] ” arebRes1 and
bRes2 respectively.

Handling of Expressions. Rules 1, 2, 3, and 4 handle the trans-
lation of XPath (boolean or arithmetic) expressions. In rule 1 both
subexpressions inherit theinTree from exp. For example, when
evaluating Equation 2 theinTreeto inherit is null. For another ex-
ample, when processing the expression “int() > 5 ”, the inTree
to inherit is a version of the type tree shown in Fig. 5 where the
node 5 is the only marked node. We will discuss where instances
of type trees are generated later in the handling of XPath location
paths.

Thecodeof exp is synthesized from thecodeof the two subex-
pressions. The basic idea is to embed the code generated byexp2

into the code ofexp1, regardless of the matching of input/output
type node (by the use of InsertAll instead of MatchInsert). If exp
is not intermediate (e.g. it is used as a boolean branching condi-
tion), we need additional processing (calling InsertAndReplace) to
insert another IF macro into the synthesized code. The IF macro
assignstrue to attributevar if the exp evaluates to true. Hence
the generated code evaluates the boolean expression and stores the
result invar. For example, as we mentioned earlier, the code for
the right hand side of Equation 2 is the whole code in Fig. 4 except
lines 51 to 57 areBLANK, and the code for the left hand side is an
EMPTY macro. When we synthesize thecodefor Equation 2 from
these two subexpressions, an IF macro (which assigns thevar, i.e.,
thebResult ) is embedded in thatBLANK(lines 51 to 57) by the
call to InsertAndReplace. Note that the location paths of Equation
2 are replaced by qualified names.

The rest of the expression related syntax rules, i.e., rules2, 3,
and 4, work in a similar way: they pass down informationinTreeto
subexpressions, and synthesizecodeandoutTreefrom subexpres-
sions. Finally, note thatoutTreeis not used in the syntax rules for
expressions.

Handling of Location Paths. Rules 5, 6, and 7 handle the transla-
tion of an XPath location paths. In rule 5, where a location path is
associated with an XML variable, a corresponding type tree is gen-
erated and passed to the steps of the path. For example, to handle
the right hand side of Equation 2, the type tree in Fig. 5 is gener-
ated. Note that even for the same XML variable, when a new type
tree instance is generated, the index attributes should have unique
names. For example, when pre-calculating the value oflast()
(line 11 to 28), another type tree is generated for XML variable
register , and the index of node 5 isi4 (instead of thei1 in
Fig. 5).

Rule 6 handles the absolute location paths, where the inherited
attributeinTree is handled differently for XPath operator “/ ” and
“ // ” respectively. Rule 7 processes a path, step by step and from
left to right, as it passes theoutTreeof the partial pathp1 to the step
s on the right. Note that when synthesizingcode, we need to match
the type node when embedding macros, so MatchInsert is called.

Handling of Steps.Rules 8, 9, 10, 11 handle steps. The semantics
of rules 8 and 9 is clear. Rule 11 calls MarkChild function to sym-
bolically execute the steps on theinTree. For each type nodedi

in theoutTree, function GenCode is called to generate a macro tree
for di. Finally, rule 11 handles the case when the step is a predicate,



for example, the boolean expression “int() > 5 ” (let us call it
e2) in Equation 2. Its synthesized code consists of two parts: an
evaluation code for the expression (lines 35 to 40 for the evaluation
of e2), and an IF macro (lines 41 to 63) which allows insertion of
code for later steps (lines 44 to 61).

4.4 Handling of Function Calls
The handling ofposition() and last() calls is a little bit

more complicated, though the idea is similar: substitute the appear-
ance of a function call with an integer variable, and properly update
its value so that when the function is called the integer variable con-
tains the right value.

Eachposition() (or last() ) call has anownerwhich is an
non-intermediate boolean XPath expression where the call appears.
For an ownerexp, we need another attribute calledprefix which
contains Promela macros (just like thecodeattribute). The code in
prefix will be placed ahead of the code contained incodeto form
the complete code for the owner.

When aposition() call is encountered, we acquire a unique
integer variable for that call (let it bev). Then we append the macro
INIT(v,1) in the prefix attribute ofowner and insert the INC(v)
in the BLANK of the macros generated by the immediate previ-
ous step. For example, to handle theposition() of Equation
2, the integer variablei2 is acquired, and its initialization state-
ment is at line 8, and its update statement is at line 61 (whichis
inside theBLANKof the code that corresponds to the previous step
“ [int()>5] ”).

The handling oflast() is even more complicated: it works in
three modes: normal mode, copy mode, and processed mode. The
normal mode is for the first time thelast() call is encountered;
in the copy mode thelast() is encountered for a second time
when the pre-calculation code is being generated; the processed
mode is the case where the value for thelast() call has been pre-
calculated and this value should not be changed any more. Consider
thelast() call in Equation 2 as an example. In the normal mode,
we acquire an integer variable for thelast() call (i.e., i3 ), and
call the handling of its owner (i.e., Equation 2) to pre-calculate the
value oflast() (hence line 9 to line 28 will be generated). Now
when the second translation of Equation 2 reaches thelast()
call, it is in the copy mode. The initialization and update statements
are generated for the pre-calculation code (i.e., line 10 and line
22). When we return from the pre-calculation, the processing of
the last() enters the processed mode, andi3 is not allowed to
be changed. The appearance oflast() in the second predicate is
replaced byi3 .

EXAMPLE 4.1. The translation of Equation 2 is split into two
recursive translation tasks on its left and right hand paths. It is
not hard to see that the left hand side generates an EMPTY macro.
Now we concentrate on the right hand side, which is convertedto
the following form:

$register//stockID/[int()>5]/[position()=last()]/in t()

The translation algorithm will start from$register and then
processes steps from left to right. First a type tree forregister
(as shown in Fig. 5) is generated. Then function MarkAll is called,
and the resulting tree is passed as theoutTreeto stepstockID .
In the outTreeof stepstockID , node 5 will be the only marked
node. Then function GenCode is called for node 5, which gen-
erates a FOR macro that corresponds to lines 31 to 65 in Fig. 4
(with lines 34 to 63 asBLANK). The handling of the next step
[int()>5] is similar, where an IF macro is generated and em-
bedded into the FOR macro generated before. For the third step

[position()=last()] , integer variablesi2 and i3 are ac-
quired for the function two calls respectively. The initialization
and update statements forposition() are generated (line 8 and
line 61). However since it is in the normal mode forlast() , we
do not generate any code forlast() . Instead, the translation of
Equation 2 is called again for the pre-calculation oflast() , and
lines 9 to 28 are generated. After the return from the second transla-
tion call on Equation 2, the first translation call advances to the last
stepint which generates an EMPTY macro whose hashtable con-
tains the information that maps the right hand side locationpath to
the corresponding qualified name. Finally, when synthesizing the
codeattribute for Equation 2, an IF macro (lines 51 to 57) is in-
serted and the two location paths in Equation 2 are replaced with
qualified names.

5. APPLICATIONS
In this section we discuss the applications of our techniques to

the verification of web services. We present a case study, where our
techniques help to identify a very delicate design error of XPath
expressions in a conversation protocol. Then, we briefly discuss
our work on verifying interacting BPEL4WS web services, and
the Web Service Analysis Tool (WSAT), where the techniques pre-
sented in this paper constitute the basis.

A conversation protocol [3, 7, 9] is a top-down specification,
which specifies desired global behaviors (message sequences) of
a composite web service. Formally, aconversation protocolis a
tuple 〈(P, M),A〉 where the composition schema(P, M) defines
the set of peers (participants of the composite web service), and the
message classes that are transmitted among peers.A is a Guarded
Finite State Automaton (GFSA)A = (M, T, s, F, ∆), whereM
is the set of message classes as defined in the composition schema
(here a message class consists of an MSL type, the sender and re-
ceiver),T is a finite set of states,s ∈ T is the initial state,F ⊆ T
is a set of final states, and∆ is the transition relation. Each transi-
tion τ ∈ ∆ is of the formτ = (s, (c, g), t), wheres, t ∈ T are the
source and the destination states ofτ , c ∈ M is a message class and
g is theguardof the transition. A guard consists of a guard condi-
tion and a set of assignments. A transition is taken only if the guard
condition evaluates to true. The assignments specify the contents of
the message that is being sent. Given a transitionτ = (s, (c, g), t)
where peerp is the sender of the message of typec, then guardg is
a predicate of the following form:g(m, ~m), wherem is the mes-
sage being sent, and the vector~m contains the last instance of each
message type that is received or sent by peerp. Guards are written
using XPath expressions.

We now present a conversation protocol named Stock Analy-
sis Service (SAS). Fig. 8 presents its overall structure andcon-
trol flow, and Fig. 9 is a fragment of its formal specification.As
shown in Fig. 8, SAS involves three peers: Investor (Inv), Stock
Broker Firm (SB), and Research Department (RD). Inv initiates the
stock analysis service by sending aregister message to SB.
SB mayaccept or reject the registration. If the registration
is accepted, SB sends an analysisrequest to RD. RD sends the
results of the analysis directly to Inv as areport . After receiv-
ing a report , Inv can either send anack to SB orcancel the
service. Then, SB either sends thebill for the services to Inv, or
continues the service with another analysisrequest .

In Fig. 9 we present a partial specification of the SAS proto-
col. The specification of SAS consists of two parts: a schema and a
GFSA protocol. The schema specifies the set of peers, a list ofMSL
types, and a list of peer to peer message classes which are built upon
the MSL types. The GFSA specification consists of states, andtran-
sitions. We present two key transitions from the protocol:t8 and
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Figure 8: Stock Analysis Service

t14 . A transition is equipped with a guard which determines the
transition condition and the assignment of the message being sent.
For example, transitiont8 sends a message of typerequest . Its
transition condition is the following boolean XPath expression:

$request//stockID/int() !=

$register//stockID [position() = last()]/int()

The rest of the guard assigns values to theinvestorID and
thestockID fields of therequest message being sent. Accord-
ing to the semantics of GFSA [8], except therequest message
which appears at the left side of assignment operator “:= ”, the ap-
pearance of all other message classes refers to thelatestcopy of
that message class. Hence the transition condition oft8 means
“if the stockID of the latestrequest message is not the last
stockID of register message”. Its assignment tries to send
thestockID which is subsequent (in theregister message) to
thestockID appeared in the latestrequest message. Similarly
the guard of transitiont14 specifies that if the latestrequest
message contains the laststockID in the register message,
then abill message is sent to conclude the interaction. Generally
the logic of t8 andt14 intends to send out the list ofstockID
in the initial register message one by one.

It is not hard to see that the SAS protocol can be translated into
a Promela process (the translation of XPath and MSL to Promela
is presented in this paper, and the translation of the control flow of
a GFSA is discussed in [8]). Note that in the Promela translation,
there is an initialization stage which assigns initial values to all
messages nondeterministically.

Given the logic of the transitionst8 and t14 , it is natural to
propose the following LTL property for the Promela translation of
the SAS protocol:
G (

(
index < v register.requestList.stockID occ &&
v register.requestList.stockID[index].intvalue == value
&& msg == mregister

)
⇒
(
F(msg == m reject) ||
F(msg == m cancel) ||
F(request.stockID == value)

)
)

Conversation {
Schema{

PeerList{Inv,SB,RD},
TypeList{

Register[
investorID[xsd:string],
requestList[

stockID[xsd:int]{1,3}
],
payment [

accountNum[xsd:int] |
creditCard[xsd:int]

],
},
...
MessageList{

register{Inv -> SB: Register},
reject{SB -> Inv: Reject},
...

}
},

Protocol{
States{s1,s2,...,s12},
InitialState {s1},
FinalStates{s4},
TransitionRelation{

...
t8{s8 -> s9 : request,

Guard{
$request//stockID/int() !=

$register//stockID [position() = last()]/int() =>
$request[

//investorID := $register//investorID,
//stockID :=

$register // stockID
[ position() = $register // stockID

[int()=$request//stockID/int()]/position()+1
]

}
},
t14{ s8 -> s12 : bill,

Guard{
$request//stockID =

$register//stockID [position() = last()] =>
$bill[

//orderID:= $register//orderID
]

}
},

...
}

}
}

Figure 9: A Sample Conversation Specification

In the above LTL property, temporal operatorG means “glob-
ally”, temporal operatorF means “eventually” andindex andvalue
are two predefined constants. The variables starting withv are the
qualified names referring to XML data, as we have discussed in
Sections 3 and 4. The variablemsg is a variable in the Promela
translation for GFSA, which records the current message being
sent. For example, when transitiont8 is executed,msg will be
assigned the valuemrequest .

The LTL property states that: if theregister message con-
tains astockID (at positionindex, with valuevalue), then even-
tually there should be arequest containing thatstockID , if
nothing wrong happens (i.e., theregister is not rejected, and
the Inv does not cancel the service).

Interestingly, SPIN soon identifies that the SAS specification
does not satisfy the proposed LTL property. SPIN gives an error-
trace where theregister message has threestockID s with
values0, 1, 0 respectively. The error-trace shows that when the
first request for stockID 0 is sent, transitiont8 is disabled
because thestockID of the latestrequest is the laststockID
in theregister message; instead, the transitiont14 is triggered



to send out thebill message to conclude the interaction. The ver-
ification identifies the error in the design of XPath transition guards
which rely on the presumption that “there should be no redundant
stockID s in theregister message”, however this is not en-
forced by the specification.

As SPIN is an explicit model checker, the verification, unfor-
tunately does not scale very well. When integer domain is setto
[0,1], the verification time is 3 seconds and memory consumption
is around 50MB. When the domain is increased to [0,3], the mem-
ory consumption grows to over 600MB. However, our experience
shows that SPIN is still useful in identifying errors in protocols by
restricting the data domains.

Complexity of data manipulation is only one of the challenges
that arise in model checking composite web services. Since com-
munication among web services is asynchronous, most interesting
problems in analyzing web services become undecidable [7].In
[7, 8], we proposed several sufficient conditions which restrict con-
trol flows of web services so that undecidability induced by the
asynchronous communication can be avoided in the verification
process. Decision procedures for these sufficient conditions are
implemented in our research project WSAT [10, 19]. WSAT also
supports LTL model checking for composite web services thatare
specified in popular industry standards such as BPEL4WS. Thekey
idea is to translate BPEL4WS services into GFSA representation
[8], and then the techniques presented in this paper can be applied
to translate from GFSA to Promela. The WSAT can be extended
in the future to support more web service specification languages
(such as DAML-S, WSCI, etc.).

6. CONCLUSION
In this paper we presented techniques for representing XML data

and XPath expressions in Promela. These techniques allow usto
verify LTL properties of XML manipulating software, such asweb
services. In contrast to earlier work, our approach does notab-
stract away the XML data manipulation. We implemented the al-
gorithms in our WSAT tool, and verified several example systems
including conversation protocols and BPEL4WS web services. As
future work we are planning to apply symbolic model checking
techniques to tackle the large state spaces caused by XML data.
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