Model Checking XML Manipulating Software

Xiang Fu Tevfik Bultan Jianwen Su
fuxiang@cs.ucsb.edu bultan@cs.ucsb.edu su@cs.ucsbh.edu

Department of Computer Science
University of California
Santa Barbara, CA 93106-5110

ABSTRACT all web service standards (e.g. WSDL [18], BPELAWS [1], WSCI

|_[20], OWL-S [17]) are built on XML and related standards unt
ing XML Schema [23] and XPath [22]. The rich tree-structured
data representation of XML and powerful XPath expressibog-
ever, impede direct application of model checking techegto the
verification of Web based systems. Earlier efforts to venigb ser-
vices (e.g. [6, 15, 12]) basically focus on only the controhf$ by
abstracting away the XML data semantics during analysis.

This paper presents our initial efforts in formal specificatand
verification of software systems with XPath based manipurabf
(bounded) XML data. The techniques presented in this pamer ¢
stitute the basis of our Web Service Analysis Tool (WSAT),[19]
which can verify Linear Temporal Logic (LTL) properties obre-
versation protocols [7] and interacting BPEL4WS [1] webvsmes
[8]. Clearly, these techniques can also be used for veiificaif
other types of software systems that exchange XML data.

The use of XML as the de facto data exchange standard has a
lowed integration of heterogeneous web based softwarersgste-
gardless of implementation platforms and programminglziggs.
On the other hand, the rich tree-structured data represemtand
the expressive XML query languages (such as XPath) makeaform
specification and verification of software systems that malate
XML data a challenge. In this paper, we present our initifdn$

in automated verification of XML data manipulation operatais-
ing the SPIN model checker. We present algorithms for tegims]
(bounded) XML data and XPath expressions to Promela, the inp
language of SPIN. The techniques presented in this papstitde
the basis of our Web Service Analysis Tool (WSAT) which vesfi
LTL properties of composite web services.

Categories and SUbjeCt Descriptors We use SPIN [11] as a back-end model checker in verification
D.2.4 [Software Engineering: Software/Program Verificaton— of XML data manipulation operations. We developed alganith
formal methods, model checking for translating XML data types and XPath expressions to Rtam

the input language of SPIN. Our handling of XML data manipula
tion consists of two parts: (1) a mapping from XML Schema ® th

General Terms type system of Promela, and (2) a translation algorithm tvigien-

Verification, Design erates Promela code for an XPath expression. The type n@ppin
is straightforward; however, the translation of XPath egsions is
Keywords not trivial. We implemented the translation algorithmsseneted in

this paper as a part of WSAT.

Our use of SPIN as the back-end model checker is based on
the following considerations: (1) Promela supports arnairch
is very useful in translating XML Schema data types. (2) The
1. INTRODUCTION communication channels in Promela enables us to model yme as

Web based software systems (e.g. web services) are becomingEhronous communication among web services [8]. HoweveiNSP
increasingly important partly due to the wide use of the Web i IS an explicit-state model checker, and may not scale t@ldega

Model Checking, SPIN, Promela, Web Service, XML, XML
Schema, MSL, XPath.

electronic commerce. Errors in such systems, where muiltiom domains due to state-space explosion. In the future we plam t
dollar transactions are carried out, can be very costlyhaclre- vestigate the use of symbolic model checking techniquesiifi-v
pairs after failure are not acceptable. Static analysisrigies and ~ ¢ation of XML data manipulation.

especially model checking can be very valuable in ensutiagor- In [15] verification and composition of web services are Btire
rectness and robustness of such systems before they aoyeepl ~ 9dated using a Petri Net model. In [6], web service compasitare

Itis generally agreed that messages exchanged among web bas SPecified using message sequence charts, modeled usiegfatit
systems should be in the XML [21] format. For example, almost Machines and analyzed using the LTSA model checker. These ea

lier efforts on verification of Web based software systemstigo

concentrate on analysis of the control flows. Our technidoes

handling XML data, however, enable verification of propestre-

Permission to make digital or hard copies of all or part of thiork for lating to data manipulation. This enables us to analyze Vésied

personal or classroom use is granted without fee providatidbpies are software systems at a greater level of detail without ad-deta

not made or distributed for profit or commercial advantage #yat copies abstractions. The idea of employing back-end model chedier

bear this notice and the full citation on the first page. Toyooiherwise, to verification of an expressive language is used in other eatifin
republish, to post on servers or to redistribute to listquies prior specific tools such as Bandera [4]

permission and/or a fee.) . .
ISSTA'04,July 11-14, 2004, Boston, Massachusetts, USA. JWIG project extends the Java language with high-levelfeat

Copyright 2004 ACM 1-58113-820-2/04/00073$5.00.

for web service programming such as dynamic construction of
XML documents [5]. To ensure that the generated XML document
is consistent with the message format (declared using D8D §l
type system similar to XML Schema), JWIG provides staticlana
ysis for a set of pre-defined properties. The verificatiorbfgm
considered in this paper (and in WSAT) is rather different: aon-
sider the relationships (expressed in temporal logic) betwnul-
tiple XML messages during the execution of a web service. Also,
we focus on XPath expressions which are not part of JIWIG.

The techniques presented in this paper apply to bounded XML
data only, where the number of children of an XML node is alsvay

bounded. Unbounded XML Schema types, and various fragments

of XPath can be captured using unranked tree automata [13, 16
While the unranked tree automata model overcomes the protile
boundedness, the data semantics of leaf value nodes are thst
modeling. For example, the fragment of XPath studied in fi®js
not allow arithmetic constraints in qualifiers, and it onBasons
about the structure of an XML document.

This paper is organized as follows. Section 2 reviews XML re-
lated standards that are essential for systems that exehélkid
data. Formal models are established for these standardgito f
itate the technical discussion later. Section 3 introdubesmap-
ping from MSL (a theoretical model for XML Schema) to Promela
and the translation algorithm from XPath to Promela is pmées
in Section 4. Section 5 discusses the application of theepted
techniques to the verification of web services. Section €lcmes
the paper.

2. XML RELATED STANDARDS

In this section we present the syntax and semantics of XML,
MSL, and XPath. The translation algorithms presented irfohe
lowing sections build on the definitions given in this seatio

2.1 XML

Extensible Markup Language (XML) is a markup language used
for describing data [21]. As the de facto universal datadfan
format over the Internet, XML plays a central role in speiify
semi-structured data in a way that is platform and languageral,
and to a degree, self-explanatory. XML Schema [23] provities
type system for XML, i.e., it is used to specify the expectathd
organization of an XML document. XPath [22], one of the most
popular XML query languages, is used to navigate throughidi X
document and to access its components.

Similar to HTML, all XML documents are structured using tags
which are written agtag> followed by</tag> . However, tags
in XML describe the content of the data rather than the appear
ance. Fig. 1(a) shows an XML document containing the data for
aRegister message sent from an investor to register for a stock
analysis service (a description of the service is providefection
5). The XML document consists of a string containing the fden
fication of the investor, a list of stock identifiers that theestor is
interested in, and payment information.

XML documents can be modeled as trees where each internal
node corresponds to a tag and leaf nodes correspond to fgpsic t
values. The document in Fig. 1(a) corresponds to the treégin F
1(b).

In the following we introduce a formal representation for KM
documents. One simplification we make here is to omit the tag a
tributes used in XML. Since a tag attribute can be regardedeaf
node that is a child of the corresponding tag node, this sfiog!
tion does not impair the expressive power of our model.

DEFINITION 2.1. AnXML documenis a quadruplet’ = (I, n,
p,r) where

1. I is a list of labelswhere each label can either be an inter-
nal node tag, or a leaf node value with a basic type (such as
boolean, integer or string). We denatéh node ofl with [[:]
(indices start froml).

2. nis the size of.
3. p:[1,n] — [0,n—1] is aparentfunction such that

(@) p(1) =0, and
(b) foreachl < i <n,1<p(i)<i

We defingp™ as the transitive and reflexive closurepof
4. r:[1,n] — [1,n] is arangefunction where

(a) r(¢) > i foreachi € [1, n], and

(b) for eachi < j < r(i), ¢« € p*(j), and for eacly ¢
(i, x(9)], i & p*(4)-

Given a node at index, p(¢) points to its parent node. Since
the root has no parent, we defipél) = 0. For each node, r(¢)
denotes the maximum index of the nodes in the subtree of hode
Note that constraints op andr guarantee that is the pre-order
traversal of the document tree af.

ExamMpPLE 2.1. Fig. 1(c) is the quadruple representation of the
XML document in Fig. 1(a). Obviously the ligtis the pre-order
traversal of the tree in Fig. 1(b), and parent functipand range
function r describe the tree structure. For example, the subtree
starting from nodeequestList spans over five nodes; hence
the range functiom(4) = 8. 1

Definition 2.1 can be extended to descrilige® sequencavhen
restriction “1 < p(7)” in item 3(b) is modified to 0 < p(7)”.
In a tree sequence, we call each node whose parent ndila is
root node We introduce aplit operator that splits a tree sequence
into two tree sequences, and artractoperator that generates a
tree sequence from a single XML document tree by extractsg i
contents.

DEFINITION 2.2. Given an XML tree sequenceé = (I,n,p,
r), asplit at integers can be applied tét if node s is a root node
ands # 1. The result is two tree sequencé&s = (l1,n1,p1,r1)
andX> = (l2,n2, p2,r2) Where

1.l =1[1,s—1] andlz = I[s, n].
2. n1 = s—1,andns = n—s-+1.
3. p1 coincides withp on the domair1, s—1], and
. p(i+s—1)—s+1 if p(i+s—1)#0
pﬂ”::{ 0 if p(i+s—1)=0
for eachi € [1,n—s+1].
4. r; coincides withr, but is restricted to the domaiji, s—1],

andrz (i) = r(i+s—1)—s+1 for eachi € [1, n—s+1].

Given an XML tree sequence which has at leastoot nodes,
for any k < m we can split the tree sequence iktsequences, by
consecutively applying the split operator- 1 times to the second
part of the result of the previous split. We call this operata
k-split.

<Register>
<investorID>

VIPO1
</investor|D>)
<requestList> Regi st er)))
<stockID> I = { Register, investorID, VIPO1, requestList,
0001 j stockID, 0001, stockiD, 0002,
</stocklD> i i ayment, accountNum, 0425
<stockiD> i nvestor| DrequestList payment n:lFi y }
0002 | / \ |
</stocklD>
</requestList> VIPO1 stockl Dstockl D account Num 1]2]3]4]5|6]7]8]9]10]11
<payment> l l l plO|1|2[1[4[5[4[7[1]9]10
<accountNum> r (113 [3|8|6|6|8|8|11]11]11
0425 0001 0002 0425
</accountNum>
</payment>
</Register>
@ (b) (©)
Figure 1: An XML document (a), the corresponding tree (b), ard its formal representation (c)

DEFINITION 2.3. Given a single XML tree¥ = (I,n,p,r), g1l -..1gil -..] gr. We associate an attribute callehd” with
the extractoperator generates a tree sequestcgract(X) = (I, each MSL typey. If g is derived from the rulgy — t[go], then
n',p’,r’) wherel’ = [[2,n], n = n—1, and for each € [1,n/], g.tag = t; otherwisetagis null
r'(¢) = r(i+1)—1andp’ (i) = p(i+1)—1. Formally, an XML document tree sequende= (I, n,p,r) is

aninstanceof an MSL typeg if one of the following holds:
EXAMPLE 2.2. If we apply the exact operator to the XML tree

in part (c) of Fig. 1, we get the XML tree sequenté = (I',n’,p’, 1. wheng — b: n = 1 and![1] is a leaf node value and its type
') where isb.
V' = {investorlD, VIPOL List. stockiD 2. wheng — [go] : X is a single XML document tree where
=1 InvestoriD, , requestList, stoci s _ . .
0001, stockiD, 0002, payment, accountNum, 0425 } I[1] = t andextract(X) is an instance ofo.
n'=10 3. wheng — ¢1{ m,n}: there exists &-split on X for some
TT2 T3 1747576171 8 9 10 integerm < k < n such that the resulting tree sequences
P l0]1]|0|3|4|3|6| 0] 8] 9 Xy, ..., Xy are all instances af; .
rj2l2]r]5]5]7]7[10]10]10 4. wheng — g1, ..., gi! there exists a&-split of X, such
. that the resulting tree sequen ..., Xk are instances of
Note that, the tree sequend& can be split a8 and8, and there respeg(]:tively quences, ..., A
exists a3-split for . 1 is- -2 Gk o .
5. wheng — gi| ...| gx: X is an instance of;; for some
2.2 XML Schema and MSL integeri € [1, k].

XML provides a standard way to exchange data over the Inter-
net. However, the parties that exchange XML documentshstile
to agree on théypeof the data, i.e., what are the tags that will ap-
pear in the document, in what order, etc. XML Schema [23] is a Register|]
language for defining XML data types. In this paper, we foquso 'r';‘(’ﬁztg{ll_i[t?"gggklD[int]{l 3]
subset of XML Schema, for example, we do not handle unordered payment[creditCardjint] | accountNum[int]]
sequence types. Model Schema Language (MSL) [2] is a compact] 1
formal model that captures most features of XML Schema. We
use a simplified version of MSL with type expressions defined a 2.3 XPath
follows:

ExamMPLE 2.3. It is easy to verify that the XML document
Register in Fig. 1 is an instance of the following MSL type.

In order to write specifications or programs that manipuk_
g—b|tgl | g1{m,n} | g1, ---, gx | 91 ---| 9% documents we need an expression language to access vatlies an
nodes in XML documents. We use a subset of XPath [22] to navi-
gate through XML trees and return the answer nodes. The agm

of XPath we use consists of the following operators: thedchxis

(/), the descendant axi# (), self-reference.(), parent-reference

(..), basic type testtf()), node name test), wildcard ¢), and
predicates[{). An XPath expressiois defined with the following

Hereg, go, g1, - - - , gx represent MSL types; is a basic data type
such as string, integer or boolearis a tag, andn andn are two
positive integers wherex < n. Intuitively, the semantics of the
above MSL type expressions can be summarized as folltvs]
denotes a type with a root node labeled witand children with
types that match the sequence of MSL types representeg;by

gi{m,n} denotes a sequence of size at leastind at most grammar

where each member is of tyge; ¢1, ..., gr denotes an ordered exzp — p|const |op exp|expop ezp
sequence where the first member is of typethe second member p — rllr|ilr

is of typegz, and so on; andy1| ...| gx denotes a choice among r — sl|rls|rll s

typesg: to gx. To simplify our presentation, we will assume that s — .|.|n’(Lexp])* | position) | last)
the typesy, . . ., gx that appear i, ..., gr andgi| ...| gx are no— b |t

derived by the rulesg — b" or “g — t[go] "
Similar to XML, we can define a “parent function” for MSL wheren’ denotes: or empty string and[exp])* denotes zero or

types. Given two MSL typeg andg;, p(g:) = ¢ if there exists a more repetition of exp] .

g’ such that either of the following two conditions are satifit) In the above syntax rules, an expression on basic types (such

g—tldl1 ANg =g, -y Gir -y GrrOr2)g —tlg'l A g — as boolean, integer, and string) can be constructed by congpi

XPath location pathgrepresented by) and constant values (rep-
resented byonst) with operators on basic types (represented by
op). There are two types of location paths: relative locatiathp
and absolute location paths. An absolute location patlisstéth

/ or/l . A relative location path (represented by consists of
a list of steps (represented By which are connected with or

/I . The steps in a relative location path are evaluated frotrtdef
right. A step can be a self-reference)(a parent-reference. (),
or a more complex form which consists of a node tegtdnd a
sequence of predicates of the fofrazp] . A node test: has three
possible forms: type tesb()), name testt)), and wildcard match
(). Finally, a step can be a function call suchpassition()
orlast() with the following restriction: Function calls can only
appear as the last step of a location path.

Formally, an XPath expression accepts inputs of the fard)
wherecontextc is a set of node indices in some XML document
X, andd is either a single node &’ or a set of values with the
same basic type. The set of node indices in the input contast m
be in ascending order with no repetition. The output of antkPa
expression is a set of nodes in the same XML document used in th
input, or a set of values. Fot'(,n,p,r), let N be the domain of
all node indices int’ (i.e.,[1, n]), and DOM be the domain of all
leaf node values. Then the semantics of an XPath expression
(as well as a step, a node test:, and a location path) can be
defined as a function:

exp: 2N x (N U2POM) — 2N y2PoM,

Before we formally define the semantics of XPath expressiaes
will give some example expressions and the results of etiatya
them below. To distinguish node indices from other valueswite
node indices in bold characters.

ExAMPLE 2.4. Considertheinpyf{1},1), wherel is the root
node of the XML document presented in Fig. 1, and the follgwvin
XPath expressions

e investorlD
e //stockID[position() = 2]/int() ,and
e //stocklID/int() = 0002
The results ar¢2}, {0002}, and{false, true }, resp.]

We now present the formal semantics of XPath expressions. We o, path. For an absolute location path- / r, and input(c, d)

will give the semantics of a node test first, and then a stepttan
a location path, and finally an entire XPath expression.

Consider a node test and an input(c, d) wherec is a set of
node indices and a node in the XML document’(I, n, p, r), the
results ofn(c, d) is defined as follows:

1. whenn — b() : n(c,d) ={d’ | p(d’) =d A I[d]is of
typeb}.

2. whenn —t:n(c,d)={d' |p(d)=d A Il[d] =t}
n(c,d)={d" | p(d') = d}

Basically, rules 1 and 2 select the children nodes of thetinpu
noded by their types and tags (resp.), and rule 3 simply returns all
the children nodes. Finally, when inpdis a set of values;(c, d)
returns the empty sét

The definition of a step is similar. Given a step and input
(c,d), whend is a set of valuess simply returng), and whend is
a node ofX the result is defined as follows:

s(e,d) ={d}.
s(c,d) ={p(d)}.

3. whenn — *:

1. whens — . :
2. whens — .. :

3. whens — [ezp]:
{d} true € exp(c,d)and
exp is a boolean expression
{d} exp(c,d) # dand
exp is a location path
] otherwise.

s(e,d) =

4. whens — n [exp1]. .. [expk]: s(c,d) =p'(c, d) where

p' =nl [expi]! [exp2]! ... | [expy]

5. whens — last()

ts(e,d) = {lcl}

6. whens — position() : s(¢,d) = {position of d in c}

In rules 1 and 2, the handling of self reference and parestref
ence is straightforward. For the third rule, the step eitbarrns the
singleton sefd} or an empty set, depending on the evaluation of
the predicate. Note that when a location path is used as &pted
it evaluates tdrue if it returns a non empty set of nodes. Finally,
the evaluation of a step which consists of node test plusiasser
of predicates is reduced to that of an equivalent locatidgh.p&or
example, the stegtocklID[position()=2] is equivalent to a
location pathstockID/[position()=2] . Given input(c, d),
function calllast() simply returns the singleton set which con-
tains the size of context position() returns the position of
in ¢ where position is counted starting from 1.

Given a relative path — r1/ s, and an inpu{c, d),

U

d’ery(c,d)

r(e,d) = s(ri(c,d),d’). (1)

According to the above formula the steps of a relative laragath
are executed one by one from left to right. Note that the cdnte
each step is the result of the previous step. For the caseewher
rill s, we replaceri(c, d) in Equation 1 with the following set
{n | p*(n) = n' for some n’ € r1(c,d)}. For example, given the
XML document in Fig. 1 and the inpt{4}, 4), the first step and
the descendants operator of the location path
stockID//[position()=3]/int() produces the new con-
text{4, 5, 6, 7, 8}, and the later steps generates the regud1}.

An absolute location path is defined based on a relative loca-
p(e,d) = r({1},1) wherelis the root. Wherp — /I 7, p(c,d)
=p'({1},1) wherep’ = /I r.

Finally, the semantics of an XPath expression on basic types
the formexzp — exp1 Op exp: is defined as follows:

exp(c,d) = {v|v=wv10pv2 A vi€expi(c,d) A va€expa(c,d)}.

Basically, it computes the results of all possible combamrest
from the value sets of the two operanelsp; and exps. Unary
operators are handled similarly. We assume that operatiois
either a relational operato= #, <, ><, >), or an arithmetic op-
erator ¢, —, *, /, %), or a boolean operaton(v, —). Note that,
when used as a condition, a boolean XPath expression esslitat
true if its result set contains at least ovee value?!

tXPath 2.0 (working draft) has a more delicate handling fas th
scenario. There are two sets of arithmetic/comparisonatpes:
one to support the XPath 1.0 semantics (presented in thisrpap
the other will raise a type error when any operand containeemo
than one value. Itis not hard to support the second semaniiics
our approach.

typedef t5_creditCard{

typedef t1_investorID{ int intvale:

mtype stringvalue;

}

mtype {m_accountNum,
m_creditCard}

typedef t6_payment{

t4_accountNum accountNum;

t5_creditCard creditCard;

mtype choice;

typedef t2_stockID{
int intvalue;

typedef t3_requestList{
t2_stocklD stockID [3];

int stocklD_occ; typedef Register{

tl_investorID investorID;
t3_requestList requestList;
t6_payment payment;

}
typedef t4_accountNum{
int intvalue;

Figure 2: Promela translation of Example 2.3

3. FROM MSL TO PROMELA

In this section we focus on mapping types in MSL to Promela.
We present an example translation in Fig. 2, and the traoslat
algorithm is given in Fig. 3.

Fig. 2 is the Promela translation of the MSL type given in Exam
ple 2.3. Clearly each MSL basic type has a straightforwarg-ma
ping to Promela. For examplént andboolean are mapped
to Promela typent andbool respectively. MSL typestring
is mapped tantype (enumerated type) in Promela, e.g., the leaf
node value ofnvestorlD . In the XPath translation, which will
be explained later, all string constants will be collectéelclared,
and used as symbolic constantswtfype . We assume strings are
used solely as constants, and we do not expect any operators t
change values of thesetype variables.

Translation of complex MSL types is more complicated. Gen-
erally, each MSL complex type is translated into a corregjpan
typedef (record) type in Promela. For example, tRegister
type in Example 2.3 is mapped into Promela declaratypedef
Register , and the intermediate typeequestList inside
Register is translated intotypedef t3 _requestList
Prefixes such at3 _ are added to prevent name collisions for in-
termediate types. Since each intermediate MSL type is d ciil
its parent type, in the Promela type declaration for its patgpe,
it has a corresponding attribute definition. For example,dtate-
ment ‘t3 _requestList requestList " defines the attribute
requestList intypedef Register . When an intermediate
MSL type has multiple occurrences, e.g., fftecklID element, it
is defined as an array with its max occurrence as the array ize
addition, an additional variable (e.gtocklID _occ) is defined in
its parent type to record its actual occurrence. For the Mfples
constructed using the choice operdtorn variablechoice is used
to record the actual type chosen in an XML instance of the MSL
type (e.g., thehoice attribute declared it6 _payment).

In Fig. 3 we present a procedutie , which takes an MSL type
declarationg as its input, and generates two strings as its output.
The first string, i.e.ret[1] , contains the type declaration fgr
(as well as all the necessary type declarations for its iméeliate
types). The second output is the attribute definitiongfaf ¢ is an
intermediate type. For example, when the procedure isdétie
intermediate typeequestList , ret[1l] contains the declara-
tion of t2 _stockID andt3 _requestList ,andret[2] con-
tains ‘t3 _requestList requestList; . (We do not show
the generation of separator ™ in Fig. 3, however, it can be han-
dled easily). As shown in Fig. 3, the function bodytof pro-
cesses the input MSL type declaration recursively accgrtiirthe
syntax rules. Note that, it properly handles the issues asdrray
declaration for types with multiple occurrences and compypes
constructed using choice operator.

/I ret[1]: type declaration fog, including intermediate types.
/I ret[2]: attribute definition for the inpug if g is intermediate.
function tr(g: MSL): String[2]
begin
String retl, ret2;
switch case
g—b:
retl = null;
ret2=b+“”+b+"“value ”;
g — tlgo] :
if (g is an intermediate typehen
type = generate a unique name;
retl = tr(go)[1] + “typedef " +type +“{" +1tr(go)[2] +“}";
ret2 =type +“” +t;
else
retl = tr(go)[1] + “typedef
ret2 =null ;
end if
g — g1{m,n}:
retl = tr(g1)[1];
ret2 = tr(gy)[2] + “["+n+“] " + “int
9 —91,92,---,9k *
retl =tr(gy)[1] + tr(g2)[1] + . .. +tr(gx)[1];
ret2 =trg1)[2] + tr(g2)[2] + . . . +tr(gx)[2];
g—gil g2l ...l gk :
retl =trig1)[1] + tr(g2)[1] + . . . + tr(gx)[1] +
“mtype {"+“m’+g;.tag+...+“m"+g.tag+“}";
ret2 = tr(g1)[2] + tr(g2)[2] + . . . + tr(gx)[2] + “mtype choice
end switch
return (retl, ret2)
end

e o)) +)

"+ gy tag +“_occ”

Figure 3: Translation from MSL to Promela

4. FROM XPATH TO PROMELA

In this section we present the translation algorithm fromadP
to Promela. We start with a brief discussion of the use of KPat
expressions in XML manipulating software, then we study aimo
vating example, and finally we present the translation dtigor.

Consider the use of XPath in languages with XML data manipu-
lation such as BPELAWS and WSCI. There are basically twostype
of usage: 1) boolean XPath expressions are used in branclopr |
conditions, and 2) location paths and arithmetic expressire
used on the left and right hand sides of assignment statsyment
spectively. We handle these two cases separately sincehens
tics of XPath expressions can depend on the context theysark u
For example, when a location path is used as a boolean comdi
meaning is different than the case where it is used on thé&efd
side of an assignment. Since the implementation of theseaaes
are similar, in the remainder of this paper, we concentratg on
the translation of boolean XPath expressions.

4.1 A Motivating Example

Consider the following XPath boolean expression where XML
variableregister is of MSL typeRegister as defined in Ex-
ample 2.3, and the MSL type of variablequest consists of a
single childstocklD (in XPath the prefix$ is used to denote
variable names):

$request//stockID/int()=
$register//stocklD[int()>5][position()=last()]/int() (@
An XPath expression following a variable name is evaluated o
the value of the variable (which is an XML document) startivith
the context({1}, 1), wherel is the root node of the correspond-
ing XML document. The above expression queries whetheren th
XML documentregister the laststocklD which has a value
greater than 5 is equal to tleockIlD of request . Its corre-
sponding Promela translation is shown in Fig. 4.

/* result of the XPath expression */

bool bResult = false;

/* results of the predicates 1, 2, and 1 resp. */
bool bResl, bRes2, bRes3;

/* index, position(), last(), index, position() */

int i1, i2, i3, i4, i5;

©CO~NOOAWNE

i2=1;

/* pre-calculate the value of last(), store in i3 */

10 i4=0; i5=1; i3=0;

11 do
i1 i4 < v_register.requestList.stocklD_occ

13 ->

14 /* compute first predicate */

15 bRes3 = false;

16 if

17 i1 v_register.requestList.stocklD[i4].intvalue>5
18 -> bRes3 = true

19 o else -> skip

20 fi

21 if

22 : bRes3 -> i5++; i3++;

23 o else -> skip

24 fi;

25 4+t

26

27 . else -> break;

28 od;

29 /* translation of the whole expression */
30 i1=0;

31 do

32 : i1 < v_register.requestList.stocklD_occ
33 ->

34 [* first predicate */
35 bResl = false;

36 if

37 1 v_register.requestList.stockID[i1].intvalue>5
38 -> bResl = true

39 o else -> skip

40 fi;

41 if

42 : bResl ->

43 /* second predicate */

44 bRes2 = false;

45 if

46 i (i2 == i3) -> bRes2 = true;
a7 : else -> skip

48 fi;

49 if

50 . bRes2 ->

51 /* translation of expression */
52 if

53 i (v_request.stocklID.intvalue ==
54 v_register.requestList.stocklD[i1].intvalue)
55 -> bResult = true;

56 ;o else -> skip

57 fi

58 o else -> skip

59 fi;

60 /* update position() */

61 i2++;

62 ;o else -> skip

63 fi;

64 i1++;

65 :: else -> break;

66 od

Figure 4: XPath to Promela Example

Note that we have four boolean variables and five integer vari
ables in the Promela translation. Boolean varidiiResult is
used to record the evaluation result of the whole XPath essive,
bResl andbRes2 are used for evaluation of the two predicates
on the right hand side of the expression, &es3 is used during
the evaluation of théast() function. Integer variablel and
i4 are used as array indices in different parts of the Promeda,co
i3 records the value of function cdiist() , andi2 andi5 are
used forposition() function.

It is not hard to see that we can compute the valukasi()

prior to the evaluation of the whole XPath expression, and we
record its value in3 . The main body of the calculation is a loop
searching for the proper value of array indéx which satisfies the
first predicate (value astocklD greater than 5).

The main body to compute the whole boolean XPath expression
is similar. There is a loop searching for the proper valuercdya
indexil , and the code handling two predicates are nested. Note
that position variablé€2 and array index1 are properly updated.
According to the semantics of boolean expressions in thettKPa
standardpResult is set to true once we find a valuei@f satis-
fying the boolean expression.

Finally, note that there are more efficient Promela traimhat
than the one presented in Fig. 4. For example, integer Varidb
(for array index) can be reused to replate. In our implementa-
tion, we have a variable assignment optimizer to achieve dbi
jective. However, we omit the details of its implementati@re to
simplify the presentation.

4.2 Supporting Data Structures

We can make the following observations based on the matiyati
example shown in Fig. 4: (1) Every XPath language constmct (
pression, path, step) corresponds to a Promela code segRmnt
example, the boolean XPath expression shown in Equation-2 co
responds to the whole Promela code in Fig. 4, its right hadd si
corresponds to the whole code with lines 51 to 57 left blamii a
the left hand side corresponds to an “empty” statement giace
code is generated for it. (2) In particular, loops are geteerdor
those steps which generate XML data that corresponds to dn MS
type with multiple occurrences (i.e., types declared;ps, n}).

For example, the stegtockID in the right hand side corresponds
to the loop from line 30 to line 66. (3) The generated code seg-
ments are embedded into each other. For example the segment

(lines 34 to 63) that corresponds trit()>5] " is embedded in
the code for steptockID ; while it embeds the code for predicate
“[position()=last()] " (lines 43 to 59). (4) The generated

code can be regarded as an nested-loop which simulatesatuh se
procedures for each location path, and the evaluation diabé&an
expression is placed in the body of the inner-most loop.

Our translation algorithm needs a mechanism to represent th
structure of the input XML document and an approach to conve-
niently capture the Promela code segments that are gedexate
embedded into each other. Hence, we introduce two datastesc
which will be used in the translation algorithm:type treestruc-
ture which represents the MSL types anstatement macravhich
represents (partially) generated Promela code segmengsalst
define several functions that manipulate these data stasctu

Type Tree. We use the type trees to statically represent the input
and output of an XPath location path (or a step). Given an XML
variable and its MSL type, it is straightforward to derive ttorre-
sponding type tree. For example, Fig. 5 is the correspontyipg
tree for XML variableregister in Equation 2, with the MSL
type given in Example 2.3. Note that each node in the type tree
corresponds to a subexpression of the MSL type expressi@m gi
in Example 2.3, where the root hode corresponds to the wipke t
expression. Hence, each node also corresponds to an MSL type
In a type tree, each node is labeled with an MSL type (for the
root node, it is also labeled with the XML variable name). &lot
that if the associated MSL type has multiple occurrence ntiae
is equipped with an additional index. For example, indkxis
associated with node 5 in Fig. 5. Recall that an MSL type with
multiple occurrence is translated into an array in Promeéhas in-
dex is used to access the elements of that array. For eactimade

regi ster: Regist eFk

/®l\®‘

investorl D requestList paynent
o | ® VR
string stocklD creditCard accountNum
(idx: i1) l l
® @
@l int int

int

Figure 5: Type-Tree for Variable r egi st er

type tree, by tracing back to the root of the tree, we can geial-
ified namei.e., the expression in the Promela translation which ac-
cesses the data with the type represented by that node. &opé,
v_register.requestList.stocklID[il].intvalue

is the qualified name of node 6, where the prefixs automatically
added by the system to avoid name collision, andithealue

is the name of the attribute with the basic type .

We now define a number of functions on type trees. Given a type
treet, and an XPath step, function MarkChild¢,s) proceeds as
follows: (1) unmark all marked nodes inand (2) for each node
that is unmarked in step 1, mark its children which are theltes
of executing step, and (3) return the modified For example, let
t- be the type tree in Fig. 5 where node 1 is the only marked node
(marked with “*"), let s be the steprequestList . The result
of MarkChild(t,,s) is the same type tree where node 4 is the only
marked node. Other functions such as MarkPatgnt{arkAll(¢),
MarkRoot¢) work in a similar way. For example, nodes 6,9, and
11 are the marked nodes after executing MarkChild(MarkA)I(

“int()).

Statement Macro. In our translation algorithm, each XPath con-
struct corresponds to a Promela code segment. A code segarent
be regarded as a list of statement macros which are segientia
concatenated using ". A statement macro (or simply macro)
captures a block of Promela code for a certain functionatityd
each macro has at most oBEANKspace where another Promela

a macro tree, it is straightforward to generate the corredjpy
Promela code. For example, the macro tree in Fig. 6 corretspon
to the code segment from line 30 to line 66 (with line 51 to lTe
asBLANK) in Fig. 4.

$register // stockID/ [int()>5] / [position() = fast()]/ int()

N e &

cond = v_register.requestlist.stocklD[il] > 5

INT
(bRes2, 0)

EX

§)<® @EW

Sequence »
Inserte—

INIT
(bRes1,0

®

INIT 3
bRes1, 1) {

INT |
bRes2, 0)

®

Figure 6: Code Sample

We associate two attributes with each macro: an input typeno
and an output type node from a type tree. For each macro, i in
node characterizes the starting node where the macro seamtsh-
ing, and the output node is the starting point of its embedmen
For example in Fig. 6, mac®BOR(i1,1,3) s the corresponding
code for the step/fstockID " in the location path at the top of
the figure. Its input type node is the type node 1 in Fig. 5, Whic
corresponds to the type of the XML variabiegister . Its out-
put node (also the input node for its embedment) is the typle no
5 (with MSL typestockID), which is the result of evaluating the
step on the input type node. In our translation, except focate-
nating code for two expressions, the input node of embedddd c
should match the output node of tBeANKwhere it is inserted.

We also associate a hashtable with each macro, which rettwrds
mapping from XPath location paths to qualified names. Fomexa

code segment can be embedded. There are five types of macros W8, the hashtable of the last EMPTY macro in Fig. 6 will mag th

are using in our translation algorithm which are summaribed
low. A macro can have input parameters, and in the correspgnd
Promela code, the appearance of these parameters will lzee€ep
by the actual input value when the macro is used.

[Statement Macro | Promela Code |

if
n v -> BLANK
IF(v) i else -> skip
fi
v =1 -1
do
:: v < h -> BLANK
FOR,1,h) v o+t
else -> break
od
EMPTY BLANK
[INC(v) v ++ |
[INIT(v,a) | vV = a |

location path shown in Fig. 6 (i.e., right hand side of EquaR) to
qualified name of node 6, i.e., the expression
“v _register.stocklID[il].intvalue

We have three different functions to embed macros into each a
other: Matchlinsert(; ,c2), InsertAll(c1,c2), and
InsertAndReplacef ,c2). All these functions return one macro tree
that is the result of embedding into the BLANKs of ¢;. In our
translationg; is always guaranteed to be a single macro tree, while
c2 can be a set of macro trees. The Matchlnsert function regjuire
that the inserted macro tree must match the output node lobits
while InsertAll and InsertAndReplace do not require matghi
When insertingee into the BLANKs of ¢; InsertAndReplace re-
places the location paths i with qualified names based on the
hashtable of the host.

Function GenCodef) generates a macro tree given a type node
n. GenCode relies on a global registR which registers index
variables that are processed before. The function tracelsfbam
the current type node to the root type node. Whenever an unpro

Fig. 6 presents a set of macros organized as a tree. There arecessed index is encountered, a FOR macro is generated tor tha

two types of edges from a child to its parent: the embedmege ed
which is shown as a solid arrow and the sequential compasitio
edge which is shown as a dotted arrow. We call such a treaco

index, and the index is registered iy When a new FOR macro is
generated, the old FOR macro generated before is embedtteel in
new macro to form a nested loop. For example, if indexhas not

tree In fact, any Promela code generated for an XPath expressionbeen processed, GenCodg) generates a FOR(,1,3), givenng

construct can be captured using one or a set of macro treesnGi

is the node 6 in Fig. 5.

(1) exp — exp1 Op exp2:

expi.inTree= exp.inTree
expsz.inTree= exp.inTree
If exp is intermediateThen

exp.code= InsertAll(exp; .codeexps.codg
else

exp.code=

InsertAndReplace(InsertAllcp; .code exp2.codg,IF(exp))
where theBLANKof IF(exp) is filled with “exp.var= true ”

End If

(2) exp — op expi:
expi.inTree= exp.inTree
exp.code= exp;.code

(3) exp — const :
exp.code= EMPTY

@) exp—p:
p.inTree= exp.inTree
exp.code= p.code

B)p — $v p1:
p1.inTree= generate a type tree fév
p.outTree= p;.outTree
p.code= p;.code

®)p—1p1 |/l pi:
If p — / p1 Then
p1.inTree= MarkRootf.inTree
Else
p1.inTree= MarkAll(p.inTreg
End If
p.code= p;.code
p.outTree= p;.outTree

Mp—p1! s | pll s

p1.inTree= p.inTree
If p — p1/ s Then

s.inTree= MarkRootf; .outTreg
Else

s.inTree= MarkAll(p; .outTreg
End If
p.code= MatchlInsertp, .codes.codg
p.outTree= s.outTree

(8) s — ..
s.outTree= s.inTree
s.code= EMPTY

(9) S — ...
s.outTree= MarkParent¢.inTree
s.code= EMPTY

(10)s — b() | t]| *:
s.outTree= MarkChild(s.inTreges)
s.code={cy, ..., ck } Where
c; is GenCoded;) for each type nodé; in s.outTree

(11) s — [exp] :
exp.var = a unique variable name
s.outTree= s.inTree
s.code= exp.code*;” IF(exp.var)

Figure 7: Translation Algorithm

4.3 Syntax Directed Translation Algorithm

Now we discuss the syntax directed translation algorithricivh
is presented in Fig. 7. Each non-terminal (ezgp, p, s) has one
inherited-attributeinTree and two synthesized-attributesutTree
andcode AttributesinTree and outTreeare both type trees, and
they are used to capture the input and output of XPath larguag
constructs, respectively. Attributeodeis a set of macro trees,
which records the generated Promela code that corresporttie t
non-terminal. Non-terminatzp has an additional attributear,

which is the boolean variable that records the evaluatisulte for
the exp. Thevar attribute is not null if and only ikzp is not an
intermediate expression (e.gzp is used as a branch condition in
host language or it is a predicate in another XPath locatath)p
For example, when generating the Promela code (Fig. 4) fanEq
tion 2, the attributevar for the boolean expressions in predicates
“[int()>5] "and “[position()=last()] "arebRes1 and
bRes2 respectively.

Handling of Expressions. Rules 1, 2, 3, and 4 handle the trans-
lation of XPath (boolean or arithmetic) expressions. Irerllboth
subexpressions inherit thaTree from exp. For example, when
evaluating Equation 2 th@Treeto inherit is null. For another ex-
ample, when processing the expressioni(j > 5 ", theinTree

to inherit is a version of the type tree shown in Fig. 5 where th
node 5 is the only marked node. We will discuss where inst&nce
of type trees are generated later in the handling of XPathtioc
paths.

The codeof exp is synthesized from theodeof the two subex-
pressions. The basic idea is to embed the code generatecpby
into the code okxp:, regardless of the matching of input/output
type node (by the use of InsertAll instead of Matchlnserft)eadp
is not intermediate (e.g. it is used as a boolean branchingico
tion), we need additional processing (calling InsertAngRRee) to
insert another IF macro into the synthesized code. The IFanac
assigngrue to attributevar if the exp evaluates to true. Hence
the generated code evaluates the boolean expression aesl tte
result invar. For example, as we mentioned earlier, the code for
the right hand side of Equation 2 is the whole code in Fig. £pkc
lines 51 to 57 ar&LANK and the code for the left hand side is an
EMPTY macro. When we synthesize tbedefor Equation 2 from
these two subexpressions, an IF macro (which assignethee.,
thebResult) is embedded in tha&LANK(lines 51 to 57) by the
call to InsertAndReplace. Note that the location paths afdfign
2 are replaced by qualified hames.

The rest of the expression related syntax rules, i.e., rBle3
and 4, work in a similar way: they pass down informatiofireeto
subexpressions, and synthesgmeleand outTreefrom subexpres-
sions. Finally, note thatutTreeis not used in the syntax rules for
expressions.

Handling of Location Paths. Rules 5, 6, and 7 handle the transla-
tion of an XPath location paths. In rule 5, where a locatioth s
associated with an XML variable, a corresponding type tsegen-
erated and passed to the steps of the path. For example,diehan
the right hand side of Equation 2, the type tree in Fig. 5 isegen
ated. Note that even for the same XML variable, when a new type
tree instance is generated, the index attributes should haigjue
names. For example, when pre-calculating the valukast()
(line 11 to 28), another type tree is generated for XML vdegab
register , and the index of node 5 id (instead of thdl in
Fig. 5).

Rule 6 handles the absolute location paths, where the telderi
attributeinTreeis handled differently for XPath operatof ™ and
“/I " respectively. Rule 7 processes a path, step by step and from
left to right, as it passes tlmitTreeof the partial pathp; to the step
s on the right. Note that when synthesiziogde we need to match
the type node when embedding macros, so Matchlnsert igicalle

Handling of Steps.Rules 8, 9, 10, 11 handle steps. The semantics
of rules 8 and 9 is clear. Rule 11 calls MarkChild function yms
bolically execute the step on theinTree For each type nodé;
in theoutTree function GenCode is called to generate a macro tree
for d;. Finally, rule 11 handles the case when the step is a preglicat

for example, the boolean expressiant() > 5 " (let us call it [position()=last()] , integer variables2 andi3 are ac-
e2) in Equation 2. Its synthesized code consists of two pams: a quired for the function two calls respectively. The initzaition

evaluation code for the expression (lines 35 to 40 for théuewin and update statements foosition() are generated (line 8 and
of e3), and an IF macro (lines 41 to 63) which allows insertion of line 61). However since it is in the normal mode fast() , we
code for later steps (lines 44 to 61). do not generate any code flast() . Instead, the translation of
. . Equation 2 is called again for the pre-calculatiorlasft() , and
4.4 Handling of Function Calls lines 9 to 28 are generated. After the return from the secamsia-
The handling ofposition() andlast() calls is a little bit tion call on Equation 2, the first translation call advanaethe last
more complicated, though the idea is similar: substitutesibpear- stepint which generates an EMPTY macro whose hashtable con-
ance of a function call with an integer variable, and propegdate tains the information that maps the right hand side locapiati to
its value so that when the function is called the integeralde con- the corresponding qualified name. Finally, when synthegithe
tains the right value. codeattribute for Equation 2, an IF macro (lines 51 to 57) is in-
Eachposition() (orlast()) call has arownerwhich is an serted and the two location paths in Equation 2 are repladéd w
non-intermediate boolean XPath expression where the gpdias. qualified names. 1

For an ownerexp, we need another attribute callpdefix which
contains Promela macros (just like tbedeattribute). The codein 5. APPLICATIONS
prefix will be placed ahead of the code containecc@aueto form

the complete code for the owner.

When aposition() call is encountered, we acquire a unique
integer variable for that call (let it be). Then we append the macro
INIT(v,1) in the prefix attribute of owner and insert the INGY)
in the BLANK of the macros generated by the immediate previ-
ous step. For example, to handle thesition() of Equation
2, the integer variabl@ is acquired, and its initialization state-
ment is at line 8, and its update statement is at line 61 (wisich
inside theBLANK of the code that corresponds to the previous step
“[int()>5]).

The handling ofast() is even more complicated: it works in
three modes: normal mode, copy mode, and processed mode. Th
normal mode is for the first time thast() call is encountered,;
in the copy mode théast() is encountered for a second time
when the pre-calculation code is being generated; the psece
mode is the case where the value forldmt() call has been pre-
calculated and this value should not be changed any moresi@an
thelast() call in Equation 2 as an example. In the normal mode
we acquire an integer variable for thest() call (i.e.,i3), and
call the handling of its owner (i.e., Equation 2) to pre-cédte the
value oflast() (hence line 9 to line 28 will be generated). Now
when the second translation of Equation 2 reachedabi)
call, itis in the copy mode. The initialization and updatsinents
are generated for the pre-calculation code (i.e., line 1 lare
22). When we return from the pre-calculation, the processif
thelast() enters the processed mode, aBdis not allowed to
be changed. The appearancdasit() in the second predicate is
replaced by3 .

In this section we discuss the applications of our techridoe
the verification of web services. We present a case study,enhe
techniques help to identify a very delicate design error &fath
expressions in a conversation protocol. Then, we brieflgudis
our work on verifying interacting BPEL4AWS web services, and
the Web Service Analysis Tool (WSAT), where the techniques p
sented in this paper constitute the basis.

A conversation protocol [3, 7, 9] is a top-down specification
which specifies desired global behaviors (message secgjeate
a composite web service. Formally,canversation protocois a
tuple ((P, M), A) where the composition scheni®, M) defines
the set of peers (participants of the composite web senéce) the
F’Fnessage classes that are transmitted among pdessa Guarded
Finite State Automaton (GFSAL = (M, T, s, F, A), where M
is the set of message classes as defined in the compositiemach
(here a message class consists of an MSL type, the sendeg-and r
ceiver),T is a finite set of states, € T'is the initial state /' C T
is a set of final states, aml is the transition relation. Each transi-
' tionT € Ais of the formr = (s, (¢, g), t), wheres, t € T are the
source and the destination states of € M is a message class and
g is theguard of the transition. A guard consists of a guard condi-
tion and a set of assignments. A transition is taken onlyafghard
condition evaluates to true. The assignments specify thieots of
the message that is being sent. Given a transitien (s, (¢, g),t)
where peep is the sender of the message of typéhen guardy is
a predicate of the following formg(m, i), wherem is the mes-
sage being sent, and the vecfidrcontains the last instance of each
message type that is received or sent by pe€suards are written
using XPath expressions.

We now present a conversation protocol named Stock Analy-
sis Service (SAS). Fig. 8 presents its overall structure eot-
trol flow, and Fig. 9 is a fragment of its formal specificatioAs
shown in Fig. 8, SAS involves three peers: Investor (Invict
Broker Firm (SB), and Research Department (RD). Inv ingsahe
stock analysis service by sendingregister message to SB.
$register//stockID/[int()>5)/[position()=last()]/in t() SB mayaccept orreject the registration. If the registration

is accepted, SB sends an analysiguest to RD. RD sends the
The translation algorithm will start frorfiregister ~ and then results of the analysis directly to Inv ageport . After receiv-

EXAMPLE 4.1. The translation of Equation 2 is split into two
recursive translation tasks on its left and right hand pathss
not hard to see that the left hand side generates an EMPTYomacr
Now we concentrate on the right hand side, which is convexied
the following form:

processes steps from left to right. First a type treerégister ing areport , Inv can either send aack to SB orcancel the
(as shown in Fig. 5) is generated. Then function MarkAll iBech service. Then, SB either sends thi# for the services to Inv, or
and the resulting tree is passed as théTreeto stepstockiD . continues the service with another analysiquest

In the outTreeof stepstocklD , node 5 will be the only marked In Fig. 9 we present a partial specification of the SAS proto-

node. Then function GenCode is called for node 5, which gen- col. The specification of SAS consists of two parts: a schemdeaa
erates a FOR macro that corresponds to lines 31 to 65 in Fig. 4 GFSA protocol. The schema specifies the set of peers, a \45bf
(with lines 34 to 63 aBLANK). The handling of the next step types, and a list of peer to peer message classes which #negan
[int()>5] is similar, where an IF macro is generated and em- the MSL types. The GFSA specification consists of statestrand
bedded into the FOR macro generated before. For the thipd ste sitions. We present two key transitions from the protod8l: and

register
I nvest or ack, cancel St ock Broker
(Inv) (SB)
accept,

reject, bill
report request,
terminate

Resear ch Dept .
(RD)

6 report U
request cancel
\
accept O
P 5 S

terminate

register request

reject

&,
report

terminate cancel

Figure 8: Stock Analysis Service

t14 . A transition is equipped with a guard which determines the
transition condition and the assignment of the messagey lseint.

For example, transitiot8 sends a message of typejuest . Its
transition condition is the following boolean XPath exies:
$request//stockID/int() =
$register//stockID [position() = last()]/int()
The rest of the guard assigns values to itineestorID and

thestockID fields of therequest message being sent. Accord-
ing to the semantics of GFSA [8], except trequest message
which appears at the left side of assignment operatof,“the ap-
pearance of all other message classes refers ttatestcopy of
that message class. Hence the transition conditiot8 omeans

“if the stocklD of the latestrequest message is not the last
stocklD of register message”. Its assignment tries to send
thestocklD which is subsequent (in thegister =~ message) to
thestocklD appeared in the latestquest message. Similarly
the guard of transitioil4 specifies that if the latesequest
message contains the lagbckID in theregister message,
then abill message is sent to conclude the interaction. Generally
the logic oft8 andtl4 intends to send out the list stockiD

in the initialregister message one by one.

It is not hard to see that the SAS protocol can be translated in
a Promela process (the translation of XPath and MSL to Pramel
is presented in this paper, and the translation of the cbfitre of
a GFSA is discussed in [8]). Note that in the Promela traimsiat
there is an initialization stage which assigns initial esduo all
messages nondeterministically.

Given the logic of the transitiont8 andtl4 , it is natural to
propose the following LTL property for the Promela tranilatof
the SAS protocol:

G(
(

index < v_register.requestList.stockiD occ &&

v _register.requestList.stocklD[index].intvalue == value
&& msg == mregister
=
F(msg == m_reject) ||
F(msg == m_cancel) ||

F(request.stocklD ==

)

value

)

Conversation {

Schema{
PeerList{Inv,SB,RD},
TypeList{

Register|
investorID[xsd:string],
requestList[

stockID[xsd:int){1,3}

I

payment [

accountNum([xsd:int] |
creditCard[xsd:int]

I

s

MessagelList{
register{lnv -> SB: Register},
reject{SB -> Inv: Reject},

.
h

Protocol{
States{s1,s2,...,s12},
InitialState {s1},
FinalStates{s4},
TransitionRelation{

t8{s8 -> s9 : request,
Guard{
$request//stockID/int() =
$register//stockID [position() = last())/int() =>
$request|
llinvestorID := $register//investorID,
/IstockID :=
$register // stocklD
[position() = $register // stocklD
[int)=$request//stockID/int()]/position()+1
]

}
h
t14{ s8 -> s12 : bill,
Guard{
$request//stocklD =
$register//stockID [position() = last()] =>
$hill[
/lorderID:= $register//order|D
1
}
h
}

Figure 9: A Sample Conversation Specification

In the above LTL property, temporal operat@rmeans “glob-
ally”, temporal operatoF means “eventually” anéhdex andvalue
are two predefined constants. The variables starting witlre the
qualified names referring to XML data, as we have discussed in
Sections 3 and 4. The variabiesg is a variable in the Promela
translation for GFSA, which records the current messagegoei
sent. For example, when transitio® is executedmsg will be
assigned the valuerequest

The LTL property states that: if theegister =~ message con-
tains astocklD (at positionindex with valuevalué), then even-
tually there should be sequest containing thatstocklD , if
nothing wrong happens (i.e., thegister is not rejected, and
the Inv does not cancel the service).

Interestingly, SPIN soon identifies that the SAS specifirati
does not satisfy the proposed LTL property. SPIN gives aorerr
trace where theegister message has thredocklD s with
valuesO, 1, 0 respectively. The error-trace shows that when the
first request for stocklID 0 is sent, transitiort8 is disabled
because thetocklD of the latestequest s the lassstocklD
intheregister message; instead, the transitidd is triggered

to send out théill message to conclude the interaction. The ver-
ification identifies the error in the design of XPath tramsitguards
which rely on the presumption that “there should be no redund
stocklD s in theregister = message”, however this is not en-
forced by the specification.

As SPIN is an explicit model checker, the verification, unfor
tunately does not scale very well. When integer domain igcset
[0,1], the verification time is 3 seconds and memory consionpt
is around 50MB. When the domain is increased to [0,3], the mem
ory consumption grows to over 600MB. However, our expergenc
shows that SPIN is still useful in identifying errors in poobls by
restricting the data domains.

Complexity of data manipulation is only one of the challenge
that arise in model checking composite web services. Siaoe ¢
munication among web services is asynchronous, most gitege
problems in analyzing web services become undecidable IfY].
[7, 8], we proposed several sufficient conditions whichrieston-
trol flows of web services so that undecidability induced bg t
asynchronous communication can be avoided in the verificati
process. Decision procedures for these sufficient conditiare
implemented in our research project WSAT [10, 19]. WSAT also
supports LTL model checking for composite web services dnat
specified in popular industry standards such as BPEL4WSkaye
idea is to translate BPEL4WS services into GFSA representat
[8], and then the techniques presented in this paper canfiedp
to translate from GFSA to Promela. The WSAT can be extended
in the future to support more web service specification |aiggs
(such as DAML-S, WSCI, etc.).

6. CONCLUSION

In this paper we presented techniques for representing Xata d
and XPath expressions in Promela. These techniques allde us
verify LTL properties of XML manipulating software, suchwagb
services. In contrast to earlier work, our approach doesabet
stract away the XML data manipulation. We implemented the al
gorithms in our WSAT tool, and verified several example syste
including conversation protocols and BPELAWS web serviées
future work we are planning to apply symbolic model checking
techniques to tackle the large state spaces caused by XML dat

Acknowledgments

Bultan was supported in part by NSF Career award CCR-9984822
and NSF grant CCR-0341365; Fu was partially supported by NSF
Career award CCR-9984822, NSF grants 11S-0101134 and CCR-
0341365; Su was supported in part by NSF grants 11S-0101484 a
11S-9817432.

7. REFERENCES

[1] Business Process Execution Language for Web Services
(BPEL4WS), version 1.lavailable athttp://www.ibm.
com/developerworks/library/ws-bpel .

[2] A. Brown, M. Fuchs, J. Robie, and P. Wadler. MSL a model
for W3C XML Schema. IrProc. of 10th World Wide Web
Conf. (WWW)pages 191-200, 2001.

[3] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation
specification: A new approach to design and analysis of
e-service composition. IRroc. of the 12th Int. World Wide
Web Conf. (WWW)pages 403410, May 2003.

[4] J. C.Corbett, M. B.Dwyer, J. Hatcliff, S. Laubach, C. S.
Pasarenau, Robby, and H. Zheng. Bandera: Extracting
finite-state models from java source codePlioc. 22nd Int.

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]
[21]
[22]

(23]

Conf. on Software Engineering (ICSpages 439-448,
2000.

A. Simon Christensen, A. Mgler, and M. |. Schwartzbach.
Extending java for high-level web service constructi&@M
Trans. Program. Lang. Sys25(6):814-875, 2003.

H. Foster, S. Uchitel, J. Magee, and J. Kramer. ModekHas
verification of web service compositions. Rroc. 18th IEEE
Int. Conf. on Automated Software Engineering (ASBP3.

X. Fu, T. Bultan, and J. Su. Conversation protocols: A
formalism for specification and verification of reactive
electronic services. IRroc. 8th Int. Conf. on Implementation
and Application of Automata (CIAAYyolume 2759 o£.NCS
pages 188-200, 2003.

X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL
Web Services. To appear in tReoc. of 13th Int. World Wide
Web Conf. (WWWR004.

X. Fu, T. Bultan, and J. Su. Realizability of conversatio
protocols with message contents. To appear irPttoe. of
2004 IEEE Int. Conf. on Web Services (ICWZ)04.

X. Fu, T. Bultan, and J. Su. WSAT: A tool for formal analys
of web service compositions. To appear in Brec. of 16th
Int. Conf. on Computer Aided Verification (CAZP04.

G. J. HolzmannThe SPIN Model Checker: Primer and
Reference ManuaAddison-Wesley, Boston, Massachusetts,
2003.

M. Koshkina and F. van Breugel. Verification of business
processes for web services. Technical report, York
University, 2003.

G. Miklau and D. Suciu. Containment and equivalenceafor
XPath fragment. IfProc. of 21th Symposium on Principles of
Database Systems (POD$ages 65-76, 2002.

A. Mgller. Document Structure Description 2.0, Dec&nb
2002. BRICS, Department of Computer Science, University
of Aarhus, Notes Series NS-02-7. Available from
http://www.brics.dk/DSD/

S. Narayanan and S. A. Mcllraith. Simulation, verificat

and automated composition of web servicesPtaceedings
of the 11th Int. World Wide Web Con2002.

F. Neven. Automata theory for XML researcheBégmod
Record 31(3), 2002.

The OWL Services Coalition. OWL-S: Semantic markup for
web serviceshttp:

IImww.daml.org/services/owl-s/1.0/owl-s.pdf ,
2003.

W3C. Web Services Description Language (WSDL) version
1.1.available athttp://www.w3.org/TR/wsdl

Web Service Analysis Tool (WSAT).
http://www.cs.ucsb.edu/"su/WSAT

Web Service Choreography Interface (WSCI).
http://www.w3.org/TR/wsci/

Extensible markup language (XMLavailable at
http://www.w3c.org/XML.

XML Path Languageavailable at
http://www.w3.org/TR/xpath

XML Schema.available at
http://www.w3c.org/XML/Schema

